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Overview

What is energy-driven pattern formation? Some features:

Problems from physics, whose solutions involve microstructure

Models from calculus of variations (nonconvex variational
problems regularized by singular perturbations)

Statics: energy scaling laws (at least the question makes sense)

Dynamics: patterns induced by steepest-descent dynamics

Today: a few examples (not a survey).
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Statics

Pattern formation from energy minimization (some older examples):

Branching of twins near an interface
between austenite and twinned
martensite Figure: R. James. Theory:
Kohn and Müller, CPAM, 1994.

Branching of magnetic domains in a
uniaxial ferromagnet. Figure: Hubert and
Schäfer. Theory: Choksi, Kohn, Otto,
CMP, 1999.

Vortices in type-II superconductors – the preferred arrangement
seems to be a lattice (see eg work of Sandier & Serfaty).
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Wrinkling

A rich source of examples, where there has been recent progress:
tension-driven wrinkling of thin elastic sheets

hanging drapes (Vandeparre et al,
PRL 2011)

stretched sheets (Cerda &
Mahadevan, PRL 2003)

water drop on floating sheet (Huang
et al, Science 2007)

Common features: Loading induces uniaxial tension. Wrinkles serve
to avoid compression. Wrinkling direction is known. Scale of wrinkling
may depend on location. Scale of wrinkling depends on sheet
thickness.
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Features shared by all these problems

The physics is described by a nonconvex variational problem,
regularized by higher-order term with a small parameter ε

As ε→ 0, energy minimization requires microstructure. The
effect of ε > 0 is to set the length scale (and perhaps to choose
the pattern).

A basic 1D example with similar features:∫ 1

0
(u2

x − 1)2 + ε2u2
xx + αu2
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The 1D example

∫ 1

0
(u2

x − 1)2 + ε2u2
xx + αu2

(a) When ε = 0, α > 0, min value is 0, not attained. Min sequence
requires microstructure (“ux = ±1, with prob 1/2 each”).

(b) When ε > 0, min scales like ε2/3α1/3, since for a sawtooth with
N teeth, value is approx εN + α(1/N)2. Best N ∼ (α/ε)1/3.

(c) The case ε > 0, α = 0 is different: then there should be just one
tooth, and the optimal value is c0ε.

(d) The optimal profile of a “tooth” (which determines c0) can be
found by minimizing

∫
ε−1(v2 − 1)2 + εv2

x among monotone v
such that v = −1 for x � 0 and v = 1 for x � 0. Exactly
solvable: v = tanh(x/ε).
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Branching of twins

In 2D or 3D, emergence of microstructure may be due to the bdry
conditions. Then microstructural length scale may vary with dist to
bdry. Example modeling branching of twins (Kohn & Müller, 1994):

min
uy =±1

u=0 at x=0

∫ 1

0

∫ L

0
u2

x + ε|uyy |dx dy

Simplified version of
∫

Ω
u2

x + (u2
y − 1)2 + ε2|∇∇u|2. Essential

character:

“Bulk energy” prefers two possible slopes ∇u = (0,±1).

The boundary condition requires a fine-scale mixture.

The singular perturbation (“surface energy”) prefers fewer
interfaces. But coarsening away from the edge costs energy
(ux 6= 0).
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Branching of twins

min
uy =±1

u=0 at x=0

∫ 1

0

∫ L

0
u2

x + ε|uyy |dx dy

What happens? Length scale of twinning varies with distance to the
boundary, `(x) ∼ ε1/3x2/3. Schematic top view, photo showing
mechanism of refinement, and actual twins:
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The underlying physics

Martensitic phase transformation: above Tc , atomic lattice is cubic;
below Tc , period cell is a parallelogram: image of the cubic lattice

under linear map
(

1 ±a
0 1

)
.

Variational problem is minimization of elastic + surface energy, if atom
at (x , y) moves to (x + au(x , y), y), and left hand boundary meets
(rigid) austenite.
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What can we hope to prove?
Fundamental difficulty: what is a pattern?

Proposal: Focus, for analysis, on identification of energy scaling law.
(At least the question makes sense.) For the example at hand

min
uy =±1

u=0 at x=0

∫ 1

0

∫ L

0
u2

x + ε|uyy |dx dy

the main results are:

(a) Energy scaling law: Cε2/3L1/3 ≤ min energy ≤ C′ε2/3L1/3.

(b) Local version: the energy in [0, x ]× [0,1] scales like ε2/3x1/3.

(c) Minimizer is self-similar near x = 0 [Conti, CPAM, 2000].

What kind of mathematics is needed? Focusing just on the energy
scaling law Cε2/3L1/3 ≤ min energy ≤ C′ε2/3L1/3:

The upper bound is easy (sufft to find a good test function).

The lower bound is more difficult (it must apply to any u).
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The lower bound

min
uy =±1

u=0 at x=0

∫ 1

0

∫ L

0
u2

x + ε|uyy | dx dy ≥ Cε2/3L1/3

Step 1: If the surface energy is large, we’re done. If small, then at a
generic x , the sawtooth y → u(x , y) has relatively few teeth.

Step 2: A sawtooth with few teeth and slopes ±1 must make large
excursions. Therefore the function y → u(x , y) has large L2 norm.

Step 3: Dropping the surface energy and the constraint uy = ±1, the
energy between 0 and x is bounded below by

min
bndry conds

∫ 1

0

∫ L

0
u2

x dx dy .

Easy to solve (convex!). The EL eqn is uxx = 0. If u = 0 at LHS and
L2 norm is large at RHS, the value is large.

Remark: Essence of the argument: Step 2 amounts to interpolation
between the BV, L2, and H−1 norms of uy ); Step 3 uses the relaxation
of the ε = 0 variational problem.
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Returning to wrinkling

Eh = (membrane energy) + h2(bending energy) + (loads)

A calculus of variations problem involving configuration of the sheet,
i.e. a map u : Ω→ R3, where Ω ⊂ R2 is the unloaded sheet.

The membrane energy prefers isometry; something like∫
Ω
|DuT Du − I|2 dx .

The bending energy penalizes curvature; something like∫
image |curvature|2dx . Prefactor is small: h is the sheet thickness.

Local minima of Eh are stable configurations. Since membrane
energy is nonconvex and h is small, there should be many local
minima. Do the configurations we see achieve (or approach) the
global minimum?

Robert V. Kohn Energy-Driven Pattern Formation



The big picture

Eh = (membrane energy) + h2(bending energy) + (loads)

If h = 0, minimization of membrane + loading terms requires
infinitesimal wrinkling (and infinite bending energy). Analysis via
“relaxed variational problem”. Let E0 = min E0 be the min value
when h = 0.

When h > 0, competition between bending and membrane
effects sets the local length scale of wrinkling. Let Eh = min Eh
be the min energy at fixed h > 0. Evidently

Eh = E0 + excess energy.

Convenient focus: identify the scaling law of the excess energy.
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The annulus problem

Annulus-shaped sheet, loaded by uniform tension at both boundaries.
Captures essential physics of the “drop on sheet” expt (cf Davidovitch
et al, PNAS 2011).

No wrinkling at larger radii; lots of
wrinkling at smaller radii, to avoid
compression. Free boundary at
r = r0.

Studied with Peter Bella (CPAM 2014). Main conclusion: excess
energy is linear in h,

E0 + C1h ≤ min Eh ≤ E0 + C2h

Really two assertions:

upper bound (requires a good ansatz)

lower bound (ansatz-free!)
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Key ideas

We use thin-sheet version of finite elasticity:

Eh =

∫
Wmem(Du) + h2

∫
|DDu3|2 + (bdry terms assoc to loads)

where u : R2 7→ R3, u3 is the out-of-plane deformation, and Wmem
(derived from a 3D elastic energy) resembles |DuT Du − I|2.

Upper bound min Eh ≤ E0 + Ch is not entirely trivial:

Ansatz of form u3 = f (r) sin(θ/h1/2) doesn’t quite work – it gives
excess energy of order h | log h|.
One way to eliminate the logarithm: refine the scale of wrinkling
repeatedly as r → r0. (Another way: keep length scale fixed as
r → r0 but change the profile of the wrinkles.)
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Key ideas, cont’d
Lower bound says min Eh ≥ E0 +Ch. Proof must be ansatz-free. Main steps:

Step 1 Soln of h = 0 (“relaxed”) problem is infinitesimally wrinkled but planar.
So out-of-plane deformation costs membrane energy. In particular, if a
deformation u has excess energy less than δh, then∫

|u3|2 ≤ Cδh

(using only membrane effects).

Step 2 The excess energy includes all the bending energy. So if u has
excess energy less than δh, then∫

|DDu3|2 ≤ δh−1.

Step 3 Use the interpolation inequality
∫
|Df |2 ≤ (

∫
|f |2)1/2(

∫
|DDf |2)1/2 with

f = u3 to see that ∫
|Du3|2 ≤ Cδ.

Step 4 So: if u has excess energy much smaller than h, then the associated
deformation is (almost) planar and unwrinkled. But the min energy among
unwrinkled planar deformations is much larger than E0, since no wrinkling⇒
compression in the hoop direction. So δ cannot be very small.
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There is more to life than statics

Focus thus far has been energy minimization, discussing just a
couple of examples.

But nature is also full of transient patterns.

One class of examples: surface-energy-driven coarsening. Typical
feature of coarsening: the system “forgets” its initial data, developing
steady-state statistics (until finite-size effects set in).

Focus today: a bound on the coarsening rate for motion by surface
diffusion (work with Felix Otto, CMP 2002). Key tools: interpolation
inequalities (again!) and energy inequalities.
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Coarsening

t = 1 t = 2 t = 10

Motion by surface diffusion: boundary Γ(t) between two phases
moves with normal velocity

vnor = ∆Γκ

This evolution is energy-driven:

d
dt

Perimeter =

∫
Γ
κvnor = −

∫
Γ
|∇Γκ|2

Common belief, for random initial data:
length scale coarsens, `(t) ∼ t1/4

solution is statistically self-similar
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Why is this difficult?

Conjectured self-similarity might be wrong.

Not even clear what it means!

Assertion that `(t) ∼ t1/4 says

(1) Solution never stops coarsening.
False e.g. for spheres. Therefore subtle.

(2) Solution doesn’t coarsen faster.
True without exception. Therefore accessible.

Analytic result: a weak version of (2), showing (very roughly)

`(t) ≤ Ct1/4
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Two ways to measure local length scale
Represent structure by χ(x) = ±1. Assume:

spatially periodic (so averaging is easy)
equal vol fractions (for simplicity only)

Our eye detects the length scale `(t) easily. Two ways a
computer could find it:

Method 1: E = perimeter per unit volume, scales like 1/`(t)
Method 2: L = max|∇g|≤1−

∫
gχ, scales like `(t)

Consider periodic system with N inclusions
and local length scale `.

To see why E ∼ 1/`, observe that perimeter
area ∼ N`

N`2 .

To see why L ∼ `, argue that best g has g ∼ ` at inclusion
centers, g ∼ −` far from inclusions, so χg ∼ `.
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Key observation

E and L are related by

interpolation inequality: We always have

EL ≥ const.

Proof makes no use of evolution law. Essentially:
−
∫
|χ| ≤ C

(
−
∫
|∇χ|

)1/2 (−∫ |∇−1χ|
)1/2

energy inequality: Solutions of the evolution law satisfy

dE/dt ≤ 0 and (dL/dt)2 ≤ 2E |dE/dt |

Intuition why dE/dt controls dL/dt : coarsening requires
motion, which dissipates energy. Proof is simple (like most
energy inequalities).
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These are sufficient (sort of)!

The available information

EL ≥ C, dE/dt ≤ 0, (dL/dt)2 ≤ 2E |dE/dt |

does not imply

L(t) ≤ Ct1/4 or E(t) ≥ Ct−1/4,

but it does imply a time-averaged version of the latter:

1
T

∫ T

0
E3(t) dt ≥ 1

T

∫ T

0

(
t−1/4

)3
dt

provided T � L4(0). Proof is an ODE argument (like Gronwall’s
inequality).
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What is energy-driven pattern formation?

Today’s examples were:

Branching of twins

Wrinkling of an elastic sheet

Coarsening due to motion by surface diffusion

Some common themes:

Questions from physics, posing challenges for analysis

Energy-driven, but not necessarily at equilibrium

Focus on examples; unity will emerge in due course.

Robert V. Kohn Energy-Driven Pattern Formation


