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Abstract

Step pinning by immobile stoppers is the most important crystal growth inhibition

mechanism. It was first studied by Cabrera and Vermilyea in 1958, who considered the

macroscopic effect of a periodic array of pinning sites. However, their analysis (and

others since) involved uncontrolled approximations and did not consider what happens

when step anisotropy induces faceting. Here we revisit the motion of a step past

a periodic array of pinning sites, simulating the evolution numerically using a semi-

implicit front-tracking scheme for anisotropic surface energies and kinetic coefficients.

We also provide exact formulas for the average step velocity when the anisotropy is

such that the interface is fully faceted. We compare the average step velocities obtained

numerically to the estimates derived in the isotropic setting by Cabrera & Vermilyea

(1958) and Potapenko (1993), and to the exact results obtained in the fully-faceted

setting. Our results show that while the local geometry of the propagating step varies

considerably with anisotropy, the average step velocity is surprisingly insensitive to

anisotropy. The behavior starts changing only when the ratio between minimum and

maximum values of the surface energy is roughly less than 0.1.
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Introduction

Additives and impurities are major factors controlling the crystallization process. They can

affect polymorphism and nucleation; change crystal morphology, composition, and crystal-

lization kinetics; and modify crystal properties and perfections.1–5 Revealing the mechanisms

of crystal-additive interaction is one of the primary tasks of crystal growth science and is

crucial for numerous practical applications. In this study, we consider the effect of additives

on crystallization kinetics for crystals growing by step motion on flat surfaces. This includes

most solution and vapor grown crystals as well as some melt grown crystals.

Additives can affect growth kinetics by shifting phase equilibria, changing solution specia-

tion, and modifying solvation/desolvation energies and mobility of species.4,6 Stronger effects

can be achieved if the additives compete with the growth units and decrease the number of

active growth points as proposed in the Bliznakov-Chernov model.7,8 However, the strongest

effect occurs when impurities and additives adsorb to the crystal surface, becoming stoppers

that interfere with step propagation over the surface.

In 1958, Cabrera and Vermilyea considered the kinetics of step propagation past a peri-

odic array of stoppers.9 They focused on strongly adsorbed stoppers on the crystal terrace,

distributed over the surface in an idealized square grid (Figure 1). While the step is pinned

by stoppers, it can advance in the region between them. When the spacing between the stop-

pers is small enough, the step is blocked by the “impurity fence” and comes to rest. When

the spacing exceeds a critical value, however, the step gets past the stoppers by wrapping

around them.

To make this picture quantitative, Cabrera and Vermilyea assumed as an approximation

that although the curvature κ of the moving front varied with time, it was constant in space.

As the step advances κ increases, the Gibbs-Thomson effect leads to a higher step free energy

and, as a result, the step advancement slows down. If the stopper separation d is below the

diameter of the critical nucleus, 2rc, the step cannot percolate through the array of stoppers

and growth stops; this is the origin of the so-called “dead zone.” If, however, ζ = 2rc/d < 1,
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then the step velocity reaches its minimum, Vmin = V0(1 − ζ) > 0, when κ = 2/d; at that

moment the neighboring circular segments coalesce into a continuous step, thereby getting

past the stoppers. The growth front becomes straight again, regaining its original velocity,

V0, until it encounters the next line of stoppers. Cabrera and Vermilyea argued that the

average step velocity Vavg is well-approximated by the geometric mean of the minimum step

velocity and the velocity of the straight step; we shall refer to this as the C-V model:

Vavg =
√
V0Vmin = V0

√
1− ζ. (1)

Figure 1: Propagation of an isotropic step through an array of immobile stoppers (orange
dots) distributed over a square grid and separated by d = 1. The blue lines are fixed time
snapshots. The step motion here corresponds to Eq. (5) with M(n) ≡ 1, and γ(n) ≡ 1. The
angle θ (dark blue), defined at any point on the growth front, is the angle between the vertical
direction and the normal n to the front. The angle φ (red), defined at a stopper, denotes
the “pinning angle”, which is the angle that the front makes with the vertical direction at
the stopper.

Due to its simplicity and the clear physical meaning of all model parameters, the C-
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V model has become a benchmark growth inhibition model. Indeed, the key features of

the model – formation of a dead zone and roughening of the step edges – have been ob-

served in many systems. However, direct comparison of Eq. (1) to experiment requires

high quality kinetic measurements, which were not possible until atomic force microscopy

and interferometric techniques were developed and applied to crystal growth problems. To-

day, such data are available for several systems, including potassium dihydrogen phosphate

with Al3+, Fe3+ and Cr3+,10 paracetamol with p-acetoxyacetanilide,11 sodium chlorate with

dithionate,12 calcium oxalate monohydrate with citrate ion,13,14 calcium oxalate monohy-

drate with acidic peptides,15–18 calcite with Mg2+ and Sr2+,19–21 tetragonal lysozyme with

proteins,22,23 and hexagonal L-cystine with L-cystine dimethylester and several other tailor-

made additives,24,25 along with many other less precise measurements. None of these systems

is perfectly described by the C-V model.

In particular cases some improvement has been achieved by playing with adsorption

isotherms,13,14,26 taking into account a slow rate of adsorption,15,17,23,27–31 using a different

expression for the driving force of crystallization,13,14 considering some fraction of the addi-

tive to block kinks in accordance with Bliznakov-Chernov model,13,14 using the arithmetic

mean32 or minimum velocities13,14 instead of the geometric mean, or taking into account

formation of macrosteps.33,34

Potapenko modified the C-V model35 by assuming that the step curvature increases from

0 to 1/rc, after which the step percolates through the impurity fence and its velocity becomes

equal to V0. Also within this approximation he calculated the average velocity exactly rather

than using a geometric mean estimate. This calculation gives the same percolation threshold

as the C-V model, ζ = 2rc/d = 1, but it leads to a different expression for the average step

velocity:

Vavg = V0

(
1 + ζ ln(1− ζ2)/2 +

ζ2√
1− ζ2

atan

(
ζ√

1− ζ2

))−1

. (2)

Eq. (2) sometimes works better than the C-V model (this occurs e.g. for potassium di-

hydrogen phosphate with trivalent metals10). However it still deviates significantly from
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the actual kinetic behavior. This is not surprising given that both approaches make several

approximations, including the assumption that step has constant curvature at each time.

There have been several numerical studies of crystal growth inhibition in recent years.

Kinetic Monte-Carlo simulations have been used to study steps on the {001} surface of a

solid-on-solid (SOS) Kossel crystal for random and regular distributions of stoppers,36,37 dif-

ferent stopper sizes,36,37 different bond energies (the bond energy is related to step roughness

and kink density),36,38–40 stoppers varying in their ability to be overgrown,38 and stoppers

varying in their mobility.37 Ice crystallization in the presence of antifreeze proteins was simu-

lated using molecular dynamics.41 Qualitatively, such simulations can capture many features

of experimentally-observed kinetic curves. However, quantitative comparison is difficult as

these simulations are stochastic by nature and mostly rely on specific models of the surface

and associated intermolecular interactions. The consequences of spatial randomness and

stopper size have also been explored using macroscopic phase-field simulations.42

All previous studies considered isotropic surface energies. It is natural to ask to what

degree such anisotropy influences the average step velocity. Lifting the assumption of a

surface isotropy is very important because most crystal surfaces at low homological temper-

atures grow by polygonal steps and exhibit significant anisotropy. In fact, this is the case

for all the examples cited in this paper except ice crystallizing in the presence of antifreeze

proteins.27 The propagation of steps in highly anisotropic systems is also important in other

problems (unrelated to growth inhibition by impurities), for example in understanding how

the velocity of a step depends on its length in the dislocation spiral growth mechanism.43–46

The influence of growth anisotropy is the major focus of the present study, and we address

it by simulating the step motion numerically using a semi-implicit front-tracking scheme. By

performing numerical simulations with anisotropic surface energies and mobilities, we avoid

the assumption of constant curvature and we take into account the presence of anisotropic

step edge energies and kinetic coefficients, while keeping other physical assumptions behind

the C-V model intact. Namely, we assume that: growth proceeds near equilibrium; the
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kink mobility and density are high enough that the step velocity is determined pointwise by

the Gibbs-Thomson law; the stoppers are immobile and large compared to the growth front

fluctuations; the step cannot overgrow the stoppers directly; and the stoppers are distributed

over a square grid (thus, the present study does not consider how things might be different

when the impurity locations are random, and it does not permit the density of stoppers

to change over time). We study growth inhibition from the macroscopic point of view by

considering a step as a continuous line, setting aside the details of the kink structure. In

our model the step motion is governed by a partial differential equation and the stoppers

act as pinning sites; this excludes the possibility that fluctuations might help steps go past

stoppers, and it does not consider impurities that merely slow rather than stop the step

motion.

In choosing to do our simulations using a semi-implicit front-tracking scheme, we have

made a selection. Other potential numerical approaches include (a) a fully-implicit rather

than semi-implicit front tracking scheme; (b) a level-set method, i.e. one where the growth

front at time t is represented as the zero-level-set of an evolving function of space and time;

and (c) a phase-field method, i.e. one where the growth front is treated as a diffuse rather

than sharp interface. For methods of type (a) and (b) applied to anisotropic front motion

in the absence of stoppers see, for example, ref.47; for a method of type (c) applied to

isotropic front motion in the presence of stoppers see ref.48. We have chosen a semi-implicit

front-tracking scheme (similar to the approach of ref.49) because it permits well-resolved and

accurate simulations of our growth law (5). We did not attempt fully-implicit time-stepping

as considered in47 since the solution of its time-step problem requires a convex optimization;

the main advantage of implicit time-stepping would be to permit adaptive time-stepping, a

complication we found unnecessary. We did not use a phase-field or level-set method because

these approaches require solving partial differential equations in two space dimensions rather

than in one; as a result, simulations with the same spatial resolution as ours would require

dramatically more computing time.
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Simulations provide precise solutions to specific questions, but exact formulas provide a

different type of insight. While closed-form solutions are not available for the motion laws we

simulate, they are available in the closely-related setting of a fully-faceted growth front. It is

natural to compare the numerical results for mostly-faceted growth fronts to the analytical

results for full-faceted fronts. To facilitate this, we shall discuss some fully-faceted cases,

obtaining formulas for the associated average step velocities.

We compare the average step velocities obtained numerically to the estimates derived

in the isotropic setting by Cabrera & Vermilyea (1958) and Potapenko (1993), and to the

exact solutions obtained in fully-faceted settings. In aggregate, we demonstrate that while

the local geometry of the propagating step varies considerably with anisotropy, the overall

growth rate is surprisingly insensitive to mild anisotropies that include almost all realistic

examples of faceted steps. The effect of anisotropy becomes significant only if the ratio

between the minimum and maximum surface energies γmin/γmax . 0.1, which is not typical

for most crystals.

Modeling

Step motion law

The normal velocity of a straight step, V0, can be expressed as the product of the driving

force for crystallization, usually expressed as a difference in chemical potentials between the

bulk of the crystal and growth medium, ∆µ, and a proportionality factor β called the kinetic

coefficient: V0 = β∆µ. For a curved isotropic step, this law should be corrected by a term

δµκ = ωγ/r associated with the decrease of the driving force for crystallization due to the

step curvature κ = 1/r, where γ is the surface energy and ω is the molar volume:

V = β(∆µ− δµκ) = V0(1− ωγκ/∆µ). (3)
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For an anisotropic macroscopic model of step motion, one can write down a similar law,

in which the normal step velocity is given by a geometric equation of the form

V = M(n)(σ − ξκγ(n)). (4)

Here, the difference in chemical potentials, ∆µ, is expressed through dimensionless supersat-

uration σ. The role of the kinetic coefficient is played by an orientation dependent mobility

factor, M(n), and the surface energy correction is described through the weighted mean

curvature, κγ(n)50; here n denotes the vector normal to the front, and 0 ≤ ξ ≤ ξc is a

percolation parameter. If ξ becomes equal to ξc, then the driving force for crystallization is

equal to the curvature related increase in the surface energy, σ = ξcκγ(n), and the normal

velocity is zero: V = 0. Alternatively, one can define the critical supersaturation, at which

V = 0, as σc = ξκγ(n). In terms of the standard C-V formulation (Eq. (1)), we have that

ζ = ξ/ξc = σc/σ = 2rc/d.

For numerical simulation, it is convenient to non-dimensionalize the geometric growth

law (4). Recall that the normal velocity of a straight step (no curvature) is given by V0, that

the distance between the stoppers is d, and that the supersaturation, σ, is dimensionless.

Rescaling space by x = (d)x̃ and time by t = (d/V0σ)t̃, we can rewrite (4) as

Ṽ = M̃(n)(1− ξ̃κ̃γ(n)), (5)

where Ṽ , M̃(n) ≡ M(n)/V0, ξ̃ ≡ ξ/(σd) and κ̃γ(n) are, respectively, the dimensionless

normal velocity, mobility, percolation parameter, and weighted mean curvature. In the

remainder of this paper, we will numerically simulate and analyze the non-dimensional law

(5), but always plot and present our results in terms of the dimensional parameters: V , ξ

and σ. Where convenient in the text, we will drop the tilde superscripts that appear in Eq.

(5).
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Stoppers

In experiments, the location of impurity stoppers is more or less random. However, a natural

first step is to study the influence of stoppers in a more controlled geometry such as the

periodic square grid used by Cabrera and Vermilyea9, where one can get a quantitative and

qualitative understanding of their effects. If the impurity concentration is low, the step

will eventually close around and incorporate the stoppers into its bulk. This scenario is

illustrated in Figure 1. The step approaches an impurity fence (orange dots) and is initially

pinned at several sites. As the front continues to advance away from a particular stopper,

the “pinning angle”, φ, decreases. When φ ≈ 0, the front will close around the impurity and

continue to advance unimpeded. Exactly what we mean by “φ ≈ 0”, i.e. how we define our

pinning angle breakthrough threshold, is an important modeling decision which we discuss

when we present our numerical results. If, on the other hand, the impurity concentration

is sufficiently high, then the pinning angle will remain nonzero and above the breakthrough

threshold, and the front will become completely pinned by the impurity fence.

The preceding discussion applies to our numerical simulations. For fully-faceted inter-

faces, the treatment of breakthrough must be different; this is discussed below, when we

discuss the analytical solution formula in the fully-faceted setting.

Anisotropic surface energies

In considering anisotropic surface energies, we are mainly interested in how the presence

of facets influences interactions of moving steps with impurities. Therefore we focus on

examples where faceting occurs: our numerical studies involve surface energies of the form

γ(θ) =
1 + c1| sin(θ)|+ c2| sin(2θ)|+ c3| sin(3θ)|

1 + c1 + c2 + c3

, (6)
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where the constants c1, c2, and c3 satisfy

c1, c2, c3 ≥ 0, c2 < 1/3, and c3 < 1/8. (7)

The upper limits imposed on c2 and c3 correspond to the maximal anisotropy at which the

Frank diagram remains convex (γ(θ) + γ′′(θ) > 0, see below). When at least one of the cj is

positive, this γ is not smooth; for numerical simulation we use a regularized version:

γε(θ) =
1 + c1

√
sin2(θ) + ε2 + c2

√
sin2(2θ) + ε2 + c3

√
sin2(3θ) + ε2

1 + c1 + c2 + c3

, (8)

where ε is small but positive. The dependence of our numerical results upon ε is considered

in the Supporting Information. A physical justification for the regularization is discussed

later in this section.

The evolution associated with a surface energy of the form Eq. (6) does not have closed-

form solutions. There is, however, a class of anisotropic examples where the evolutions do

have closed-form solutions; this occurs in the fully-faceted case, when the Frank diagram of

γ is a polygon. It is natural to compare the numerical solutions obtained using Eq. (6) with

the analytical results for analogous fully-faceted examples. Therefore, besides anisotropies

of the form (6), we also consider a corresponding family of fully-faceted examples.

Before discussing our examples in more detail, we briefly review some well-known facts

about anisotropic surface energies for curves in the plane (see e.g. refs.49–51):

(a) For any surface energy γ(θ) it is useful to consider its Frank diagram and its Wulff shape.

The Frank diagram is the polar plot of 1/γ; the Wulff shape is {x : x · nθ ≤ γ(θ)},

where nθ = (sin θ, cos θ) is the unit vector in direction θ; see Figure 1.

(b) The weighted mean curvature κγ is the first variation of the surface energy; in other

words, for a moving curve Γ(t), d
dt

´
Γ(t)

γ(θ(s)) ds =
´

Γ(t)
V (s)κγ(s) ds. Here s represents

arc length along the moving curve, θ(s) is the angle of the normal direction, and V
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is the normal velocity of the moving curve. For a smooth surface energy, κγ has the

simple expression κγ(s) = (γ(θ(s)) + γ′′(θ(s)))κ(s) where κ is the geometric curvature

of the curve at position s.

(c) The Frank diagram helps one see the well-posedness of the evolution law (4). Indeed, for

smooth surface energies the evolution is well-posed – reducing to a nonlinear parabolic

differential equation – when γ(θ) + γ′′(θ) ≥ 0, and this is equivalent to the Frank

diagram being convex.

(d) The Frank diagram also helps one see the presence or absence of facets. Indeed: if the

Frank diagram of γ has a convex corner at θ = θ0, then a curve evolving according to

Eq. (4) has a facet at orientation θ0. Similarly, if the Frank diagram has a slightly

rounded corner (as occurs for our regularized surface energy in Eq. (8)) then the

evolving curve has an approximate facet. To see why, note that the weighted mean

curvature κγ = (γ + γ′′)κ should stay bounded (since the normal velocity is bounded);

since γ + γ′′ is very large near θ0, it follows that the geometric curvature κ must be

very small near θ0. When the Frank diagram has a sharp corner at θ0, the weighted

mean curvature becomes nonlocal: its value on a facet with normal angle θ0 takes the

constant value

κγ =
jump in γ′ at θ0

length of the facet
≡ [γ′(θ0)]

L
. (9)

To explain (somewhat heuristically), we observe that

ˆ
facet

V (γ(θ(s)) + γ′′(θ(s)))κ ds =

ˆ
facet

V
d

ds
γ′(θ(s)) ds

(the term γ(θ(s))κ on the left vanishes since κ = 0 on the facet; the γ′′(θ(s))κ term has

been rewritten using definition of geometric curvature, κ = dθ/ds). Since the normal

velocity V must be constant on a facet, the last expression is simply the product of

the velocity V times the jump in γ′. This in turn equals
´

facet
V κγ ds when κγ is given
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by Eq. (9).

(e) The Wulff shape solves the anisotropic isoperimetric problem, i.e. it minimizes surface

energy for given volume. As a consequence, the Wulff shape has the property that κγ is

constant along its boundary. The relevance to our motion law V = M(n)(σ− ξκγ(n))

is this: if the interface is pinned by the stoppers (i.e. if ξ ≥ ξc), then the pinned

configuration solves σ − ξκγ = 0, i.e. it is a piece of a Wulff shape.

Turning now to the specific family of anisotropic surface energies given by Eq. (6), we

begin by recalling the significance of the restrictions imposed by Eq. (7) upon the constants

cj: they assure that γ + γ′′ ≥ 0, so that the Frank diagram is convex and the evolution law

(4) is well-posed.

When c1 > 0 but c2 = c3 = 0, the Frank diagram is a lens-shaped body (Figure 2

second column, bottom row). We call these examples single-facet surface energies. Actually

there are two faceting directions (θ = 0, π); however due to the symmetry of our problem,

the normal angles of our evolving curves are restricted to −π/2 < θ < π/2, so only one

one faceting direction will be seen: θ = 0 (normal to the overall growth direction). As c1

increases, the angle in the Frank diagram gets sharper (Figure 3, top row); in practice this

makes the facet at θ = 0 more prominent. The Wulff shape for this class of surface energies

is a “stadium” – its boundary consists of two facets and two semicircles; as c1 increases the

facets get longer. Since we divide by 1 + c1 + c2 + c3 in Eq. (6), taking c1 large makes the

surface energy very anisotropic and the faceting prominent, but it has relatively little effect

on the overall magnitude of the surface energy. In fact, one can show that when c2 = c3 = 0,

the value of ξc is independent of c1.

When c3 > 0 but c1 = c2 = 0 the Frank diagram varies from a circle (when c3 = 0) to

a shape closely resembling a regular hexagon as c3 approaches 1/8 (Figure 2 final column,

bottom row). We call these examples symmetric triple-facet surface energies, because there

are three symmetry-related facets (θ = −π/3, 0, and π/3) in the relevant interval |θ| < π/2.
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Figure 2: Polar plots of the surface energy γ(θ) (top row) and the corresponding Frank
diagrams (polar plots of 1/γ) (bottom row). Wulff shapes are shown in red (dashed lines).
Each plot title displays the corresponding c1, c2 and c3 values in Eq. (6). c1 = c2 = c3 = 0:
Isotropic surface energy. The corresponding step motion is shown in Figure 4 (leftmost
column). The Wulff shape and the surface energy match in the isotropic case. c1 = 1,
c2 = c3 = 0: The surface energy has a corner (γ′ is discontinuous) at θ = 0 (and θ = π).
The step motion therefore exhibits a single facet in the vertical direction; see Figure 4
(second column). c2 = 0.25, c1 = c3 = 0: The surface energy has corners at θ = nπ/2,
for n = 0, 1, 2, 3, leading to double-faceted growth; see Figure 4 (third column). c3 = 0.1,
c1 = c2 = 0: The surface energy has corners at θ = nπ/3, for n = 0, 1, . . . , 5, leading to
triple-faceted growth; see Figure 4 (rightmost column).

13



Note that while the facets are symmetry-related from the perspective of surface energy, θ = 0

is still distinguished by being normal to the overall growth direction.

We can interpolate between the single-facet case and the symmetric triple-facet case by

taking both c1 and c3 positive (while keeping c2 = 0). For example, holding c3 = 1/10 and

increasing c1 we get a family of triple-facet surface energies that interpolate between the

symmetric triple-facet case (when c1 is near 0) and the single-facet case (when c1 is large);

see Figure 3, bottom row. The Wulff shapes for these examples have facets separated by

smooth curves – one can view them as polygons with rounded corners. When c1 is large, the

polygon is a six-sided approximation of a long, thin stadium.

Figure 3: Frank diagrams for single-, double- and triple-facet surface energies. Top row:
c1 6= 0 and c2 = c3 = 0. Middle row: c2 = 0.25, c1 6= 0, and c3 = 0. Bottom row:
c3 = 0.1, c1 6= 0, and c2 = 0. As c1 increases, the Frank diagram becomes increasingly
elongated and the facet length increases.

Our triple-facet examples have c2 = 0 and c3 > 0. The opposite choice c2 > 0, c3 = 0 gives
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an analogous family of double-facet surface energies. When c1 = c3 = 0 we get symmetric

double-facet examples (Figure 2 third column, bottom row), whose Frank diagrams vary

from a circle (when c2 = 0) to a shape closely resembling a square as c2 approaches 1/3. By

increasing c1 while holding, for example, c2 = 1/4, we get a family of double-facet surface

energies that interpolate between the symmetric double-facet case and the single-facet case;

see Figure 3, middle row. The Wulff shapes for this class of examples are rectangles with

rounded corners.

Figure 4: Fixed time snapshots of front evolution for the growth law (5) with M(n) ≡ 1 and
γ(n) given by the corresponding panel in the top row of Figure 2. Only the left half of the
fronts in a single period cell are shown; the right half may be inferred by symmetry. Top
row: ζ ≡ ξ/ξc = 0.2 – far from the pinning limit. Bottom row: ζ ≡ ξ/ξc = 0.9 – near the
pinning limit. Yellow curves denote stationary front configurations corresponding to ζ = 1
(ξ = ξc).

How does anisotropy affect the actual geometry of the growth front? The answer is

encapsulated by Figure 4. For the symmetric triple-facet surface energy (with c3 large

enough that faceting is prominent), when the front is attached to the stoppers it consists

of facets connected by short curved regions (rightmost column of the Figure 4). For the
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single-facet surface energy (with c1 large enough that faceting is prominent), the only facet

is at θ = 0, so there is a large curved region near the stopper (second column of the Figure

4). The solution with our double-facet surface energy (third column of the Figure 4) is very

similar to that for the single-facet surface energy, since our numerical pinning angle threshold

is always positive (so θ is bounded away from ±π/2 and vertical facets never form).

We turn now to the question why it is natural to consider surface energies of the form

(6). The answer is that for this class of examples the anisotropy is strong enough for the

moving interface to have facets, but mild enough that the Frank diagram remains strictly

convex. This is important: if the Frank diagram were nonconvex then the motion law would

be ill-posed, and a planar front whose normal angle satisfied γ(θ) + γ′′(θ) < 0 would be

unstable. There are, to be sure, material systems whose (zero-temperature) surface energies

have nonconvex Frank diagrams. For such systems the analogue of the interface motion law

(4) is obtained by convexifying the Frank diagram and using the associated convex (but not

strictly convex) γ. Convexification of the Frank diagram corresponds physically to replacing

a straight but unstable curve by a fine-scale mixture of different orientations with the same

average slope. Our hypothesis that γ + γ′′ is strictly positive reflects our desire to avoid

systems where such behavior occurs. As justification, we note that convexification of the

Frank diagram is a zero-temperature calculation. However, crystal growth occurs at finite

temperature, and it is mediated by the formation and motion of kinks (as noted earlier, we

consider a step with a high kink density). The thermal roughness induced by the presence

of kinks should make the macroscopic surface energy strictly convex rather than degenerate-

convex (i.e. it should make γ + γ′′ > 0). This view is confirmed by physical observations of

many systems, which reveal that corners between straight step segments are always rounded

even when faceting occurs.43,44

Our discussion has mainly focused on the nonsmooth surface energies given by Eq. (6).

In practice, as already noted, our simulations use the regularized approximation (8). This

amounts to rounding the corners of the Frank diagram. Besides being convenient numerically,
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the use of a regularized γ is also quite plausible physically. Indeed, the thermal roughness

associated with the presence of kinks should have some smoothing effect on the macroscopic

surface energy.

As we have just explained, for real crystals growing at finite temperature the Frank

diagram of the surface energy should be strictly convex with slightly rounded corners. This

rules out the fully-faceted case, when the Frank diagram is a convex polygon. But we expect

that the behavior of a mostly-faceted case and a corresponding fully-faceted case should

be similar. This is useful, since we can solve the fully-faceted case analytically, thereby

obtaining an approximate solution for the mostly-faceted case. Thus, besides considering

surface energies of the form (6) we will also consider some cases where the Frank diagram

is a polygon and the motion is fully-faceted. (By comparing the numerical and analytical

results, we shall confirm that both models capture the behavior seen when the anisotropy is

prominent enough to make the Frank diagram approximately polygonal.)

Numerical methods

Front tracking is a natural numerical scheme for evolving 1D curves in the plane. The basic

algorithm consists of discretizing the front (a 1D curve), and evolving each point along the

curve according to the normal velocity law (5). Because the impurities are distributed in a

periodic lattice in our model problem, it suffices to consider a single period cell (the dotted

square in Figure 1). We pin the ends of the curve at the impurity sites until the pinning

angle, φ, falls below the pinning angle breakthrough threshold, φc. Once the front breaks

through the impurity barrier, we evolve the curve with periodic boundary conditions.

We need to contend with a two numerical subtleties. First, anisotropies of the form

shown in Eq. (6) introduce numerical stiffness into our problem, which we deal with using a

semi-implicit scheme. Second, as the front evolves, we reparameterize the points along the

curve to ensure that they remain equidistantly spaced. This avoids losing accuracy in some

regions due to inadequate resolution.
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For further details about our numerical methods, see the Supporting Information.

Analytical solution for fully-faceted cases

In many experimental systems, 2D nuclei and dislocation spirals on the crystal face have

polygonal shapes with a minimal development of curved segments between them. This

means that the surface energy anisotropy is significant and the Frank diagram and Wulff

shapes are approximately polygonal. We may suppose, as a model, that curved segments

are completely absent and the Frank diagram and Wulff shapes are exactly polygonal. The

advantage of such a model is the availability of exact solution formulas. We expect (and

our results show) that this approach can provide a good description of the real behavior of

crystals with approximately polygonal Wulff shapes.

Lest there be any confusion, we emphasize that a surface energy with polygonal Wulff

shape and Frank diagram cannot be represented in the form (6). However, given the facet

orientations θi and the associated values γ(θi), it is easy get a formula for γ when the Frank

diagram is a polygon, by using the fact that γ′′(θ) + γ(θ) = 0 at all angles other than the

facet orientations.

Using Eq. (9), the weighted mean curvature of a straight step with orientation θ0 can

be computed from the step length, L, and the jump in the surface energy [γ′(θ0)]. For the

setup in Figure 5, where the middle straight facet (with orientation θ0) is located between

two other straight facets (with orientations θ+ and θ−, respectively), the jump in surface

energy is determined by the surface energies and orientations of the two neighboring facets.

Using that γ′′(θ) + γ(θ) = 0 on a facet, one can show49,51 that the jump is given by

[γ′(θ0)] = γ(θ−) csc(θ0− θ−) + γ(θ+) csc(θ+− θ0)− γ(θ0)(cot(θ0− θ−) + cot(θ+− θ0)). (10)

The step velocity can be obtained from Eqs. (4), (9), and (10) for each step orientation.

Combining all the constants into a single constant, called the critical length Lc, we obtain
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Figure 5: Illustration of application of Eq. (10). θ is the angle between the normal to the
facet and vertical direction.

the well known growth law:46

V = V0

(
1− Lc

L

)
. (11)

The fact that the velocity of a facet depends linearly on 1/L (where L is the facet length) is

confirmed by our numerical simulations in the Supporting Information (Figure S.4). For the

formation of a 2D nucleus or a dislocation spiral, the critical length, Lc, is always positive,

and the step does not move if L < Lc. For the other configurations shown in Figure 5, Lc

can be zero or negative.

Since we are interested in the effect of stoppers, we must specify the circumstances under

which the growth front breaks through the impurity fence. In the full-faceted setting, break-

through occurs when two parts of the front (on either side of the stopper) overlap. For the

fully-faceted analogue of our triple-facet case, this occurs when the facets with orientations

θ = ±π/3 reach their critical length Lc; see Figure S.3 in the Supporting Information. For

the fully-faceted analogue of our double-facet case, breakthrough occurs when the facets
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with orientations θ = ±π/2 reach their critical length Lc; see Figure S.2 in the Supporting

Information. This model for breakthrough is open to criticism in the double-facet case, since

it permits vertical facets to form on both sides of the stopper without breakthrough.

As in Figure 5, let θ0, θ− and θ+ denote the orientations of the top, left neighboring

and right neighboring facets. Denote by Lc0, Lc− and Lc+ the critical lengths associated

with each of these respective facets. Let θ0 = 0 be the growth direction. Our breakthrough

criterion says that the step can percolate through the impurity fence if the distance between

stoppers, d, exceeds a certain length. For the symmetric case where the surface energy is

equal in left and right facet directions (γ− = γ+), the percolation parameter, 0 ≤ ζ ≤ 1, can

be introduced as

ζ =
2Lc− cos θ− + Lc0

d
(12)

During its propagation between two rows of stoppers, the fully-faceted step undergoes

several configurational changes. The stages are illustrated in Figures S.2 and S.3 in the

Supporting Information. In first stage, the horizontal segment moves with velocity given by

Eq. (11), where Lc = Lc0. The size of the facet will change if its neighboring facets are not

perpendicular to the growth front. However, the neighboring facets cannot move until their

lengths exceed their corresponding critical values, Lc− and Lc+. During the second stage,

the side facets move with velocity V0. Once the side facets begin to move, the stoppers

immediately get incorporated and do not affect the step propagation anymore. At the point

of junction where the side facets meet, two side facets form a new horizontal facet. This new

horizontal facet propagates with velocity Eq. (11), where Lc = −Lc0. Since the bottom facet

moves faster than the top one, they eventually merge restoring a straight growth front. The

third stage corresponds to growth of a straight step with V0 until the vertical coordinate of

the step becomes y = d. The average step velocity can be calculated from times τ1, τ2, and

τ3 needed for the step to complete each of these three stages:

Vavg =
d

τ1 + τ2 + τ3

. (13)
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We have obtained analytical expressions for Vavg in the double- and triple-facet cases.

Details of the calculations are given in the Supporting Information; here we simply report

the results. Denote by Lcs and Lch, the critical lengths for the vertical/side and horizontal

facets, respectively. For the double-facet case, the percolation parameter is found using Eq.

(10) to be ζ = Lch/d. The average step velocity is

Vavg = V0
1− ζ

1− ζ + αζ2
, (14)

where α = Lcs/Lch is the ratio between the critical lengths for the vertical/side and horizontal

facets. Recalling that Lc ∝ κγ and using Eqs. (10) and (11), one sees that this parameter

also characterizes the anisotropy of the surface energy: α = γh/γs.

For the triple-faceted case, the percolation parameter turns out to be ζ = (Lch +Lcs)/d,

and α = Lcs/Lch = γh/(2γs − γh). The average step velocity is given by

Vavg = V0

(
1 +

√
3

2

ζ

1 + α
ln

(
eα(1 + α− ζ)

(eα(1 + α + ζ(1− α))− ζ)(1− ζ)

))−1

. (15)

Results and discussion

Numerically, we compute the average velocity of the evolving front as follows. For a fixed

ξ and lattice size, we evolve Eq. (5) in a periodic lattice of impurities until a dynamical

(time periodic) steady state is reached. The steady state is reached when, within numerical

resolution: (a) the front has the same configuration each time it hits consecutive impurity

fences (rows of impurities) and (b) the front takes the same amount of time to move from

one impurity fence to the next. The average velocity, Vavg, is then calculated from the time

that elapsed in (b).
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Isotropic surface energy

Figure 6a shows the average velocity of the evolving front as a function of the percolation

parameter, ξ, for isotropic surface energy (c1 = c2 = c3 = 0 in Eq. (6)), and constant

mobility, M(n) = 1. In experiment, this type of plot corresponds to dependence of step

velocity on the distance between adsorbed impurities (for the Henry’s isotherm, square root

of the impurity concentration in the growth medium) at constant supersaturation. Results for

three different pinning angle thresholds, φc (see Figure 6), indicate only a slight sensitivity

of the numerical solution on the value of φc. Figure 6b plots the average velocity as a

function of the supersaturation, σ, for the growth law (4). For σ � σc, the effect of stoppers

becomes negligible and the average velocity approaches the asymptote Vavg = V0 = σ. In

experiment, plots such as Figure 6b characterize the effect of supersaturation for constant

impurity concentration.

Compared to the numerical results, the C-V formula9 is generally inaccurate, even in

the near pinning limit. The Potapenko prediction,35 on the other hand, closely matches

the numerical results near the pinning limit. Far from the pinning limit, ξ � ξc, both

predictions fail because the front is not well approximated by arcs of circles; the C-V for-

mula underestimates the velocity whereas Potapenko’s formula overestimates the velocity.

A similar conclusion was previously reached by Miura42 based on phase-field modeling of

step percolation through an array of large stoppers.

Low anisotropy of surface energy

We begin our analysis of the influence of surface anisotropy by considering relatively mild

anisotropies, i.e. those for which the ratio γmin/γmax is close to 1. This case is important

because it includes the common situation in which the Wulff shape is roughly polygonal with

moderate eccentricity. Examples include our symmetric double-facet example (given by Eq.

(6) with c1 = c3 = 0 and c2 near its maximum value 1/3, for which γmin/γmax = 3/4), and

the analogous fully-faceted case when the Wulff shape is a square. Another example is our
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Figure 6: Average step velocity as a function of (a) the percolation parameter ζ = ξ/ξc and
(b) the supersaturation σ/σc for isotropic surface energy and mobility. Results of simula-
tions are shown for three different pinning angle thresholds, φc. The C-V and Potapenko
predictions are shown in red and green, respectively. Panels (c) and (d) illustrate a series
of fixed time front snapshots for ζ = 0.2 and ζ = 0.9, respectively (φc = 2.9o). The yellow
curve in (d) is the stationary front configuration, corresponding to ζ = 1.
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symmetric triple-facet case (given by Eq. (6) with c1 = c2 = 0 and c3 near its maximum

value 1/8, for which γmin/γmax = 8/9), and the analogous fully-faceted case when the Wulff

shape is a regular hexagon. Simulations for these cases are shown in Figure 7 along with

simulations for the isotropic case and for a single-facet case with mild anisotropy, c2 = c3 = 0

and c1 = 1, for which γmin/γmax = 1/2. One can see that mild anisotropy has very little

influence on the average step velocity. Put differently: Vavg is not sensitive to the actual

Wulff shape, but rather to the degree of anisotropy or, equivalently, the ratio γmin/γmax.

Figure 7: Average step velocity as function of (a) the percolation parameter ζ = ξ/ξc and
(b) the supersaturation σ/σc for surface energies with a relatively low degree of anisotropy.
The mobility is isotropic. Results of simulations are shown for four different cases: isotropic
surface energy, single-facet motion (c1 6= 0), double-facet motion (c2 6= 0), and triple-facet
motion (c3 6= 0). Panels (c)- (e) illustrate a series of fixed time front snapshots for ζ = 0.9.
The yellow curves denote the stationary front configurations, corresponding to ζ = 1.
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High anisotropy of surface energy

In some physical systems, the Wulff shape has a large aspect ratio corresponding to high

anisotropy of the surface energy. To address such situations, the single-facet case was com-

bined with the double- and triple-facet cases. The results are shown in Figure 8. One can

see that the shape of the Vavg(ζ) curve is mostly controlled by the parameter c1 or, roughly

speaking, by the aspect ratio of the Wulff shape or by the ratio γmin/γmax. As the anisotropy

increases (c1 → ∞), the average velocity approaches a step-like dependence on ζ: for large

c1, Vavg stays approximately equal to V0 for ζ < 1 then drops sharply to 0 as ζ approaches 1.

The corresponding behavior in terms of the supersaturation σ is that Vavg is approximately

equal to σ for σ > σc, then drops sharply to 0 as σ decreases to σc.

Figure 8: Average step velocity as a function of the percolation parameter for the (a) single-
facet, (b) double-facet, and (c) triple-facet cases, including examples with a relatively high
degree of anisotropy (c1 = 10 and 100). The mobility is isotropic. Symbols indicate numerical
data; solid and dashed lines show the analytical results for the corresponding fully-faceted
models. In (b), the solid lines correspond to choosing α by Eq. (18) and the dashed lines
correspond to choosing α by Eq. (19). In (c), the solid lines correspond to choosing α by
Eq. (16) and the dashed lines correspond to choosing α by Eq. (17). Note that when c1 = 0,
the solid and dashed lines coincide.
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Figure 8 contains a lot of information, so we dwell on it a bit. Parts (b) and (c) of

the figure explore the idea that when γ is such that the interface is mostly faceted, the

behavior can be approximated by considering a corresponding fully-faceted case (for which

a closed-form solution is available). To implement this idea we must identify, for a given

γ (whose Frank diagram is close to a convex polygon), a corresponding fully-faceted case.

Focusing on our triple-faceted surface energies (i.e. on γ of the form (6) with c2 = 0

and c3 approaching 1/8), there are two natural approaches to defining a correspondence.

Both rely on the fact that the analytical solution of the fully-faceted case is determined by

α = Lcs/Lch = γh/(2γs − γh), where Lcs and Lch are the critical lengths for the slanted

and horizontal facets respectively, while γs and γh are the surface energies at the facet

orientations. The first approach chooses α using the values of γ at the facets: when γ is

given by Eq. (6) with c2 = 0 it gives

α =
γ(0)

2γ(π/3)− γ(0)
=

1

1 +
√

3c1

. (16)

The second approach chooses α using the values of Lcs and Lch for the given γ, obtained

using Eq. (9); this gives

α =
[γ′(π/3)]

[γ′(0)]
=

3c3

c1 + 3c3

=
1

1 + (c1/3c3)
. (17)

Notice that while the two approaches differ in general, they both give α = 1 when c1 = 0.

Figure 8(c) shows that when c3 = 0.1, the exact solutions obtained using either (16) or (17)

provide good approximations to the numerically-computed behavior of Vavg.

The value of our analytical solution to the fully-faceted case is not limited to the study

of anisotropic surface energies. In fact, we showed in Figure 7 that the behavior of Vavg in

the isotropic case is not much different from that of our numerical γ with c1 = c2 = 0 and

c3 = 0.1. Therefore our analytical solution for the symmetric fully-faceted case (where α = 1

and the Wulff shape is a regular hexagon) provides an alternative to Potapenko’s approximate
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formula for Vavg, Eq. (2). Of course, neither our analytical formula nor Potapenko’s formula

is exact in the isotropic setting. But our analytical formula has the attractive feature of

being exact for a particular (mildly anisotropic) surface energy.

We turn now to the double-faceted analogue of the preceding discussion. When γ has the

form (6) with c3 = 0 and c2 near 1/3, the Wulff shape resembles a rectangle, and it is natural

to compare the numerical results with those of a fully-faceted model whose Wulff shape is

exactly rectangular. There are, as before, two alternative ways to choose the fully-faceted

model. Recall that in the double-faceted setting, the analytical solution of our fully-faceted

model is determined by α = Lcs/Lch = γh/γs, where Lcs and Lch are the critical lengths for

the vertical and horizontal facets respectively, while γs and γh are the surface energies at the

facet orientations. Choosing α using the values of γ at the facets gives the double-faceted

analogue of Eq. (16):

α =
γ(0)

γ(π/2)
=

1

1 + c1

. (18)

Choosing α using the the values of Lcs and Lch for the given γ, obtained using Eq. (9), gives

the double-faceted analogue of Eq. (17):

α =
[γ′(π/2)]

[γ′(0)]
=

4c2

2c1 + 4c2

=
1

1 + (c1/2c2)
. (19)

The two choices are different in general, though they agree (giving α = 1) when c1 = 0.

Figure 8(b) compares our numerical results for some double-faceted surface energies to

the behavior of the corresponding fully-faceted models. The numerical and analytical models

do not agree very well in this case, and it is easy to understand why not. The disagreement

reflects the quirk (noted earlier) of the double-facet case, whereby side facets are oriented

perpendicular to the step propagation direction, i.e. they coincide with the orientation at

which pinch-off should occur. In our numerical solutions, pinch-off occurs when the step

orientation near the stopper deviates from vertical by a pinning angle threshold φc; thus an

exactly vertical orientation is never seen, and a vertical facet never forms. Our numerical
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solution is the physically correct one, since pinch-off should happen as the step orientation

approaches the vertical direction. The non-physical character of the exact solution for the

double-facet case is a reminder that in some special cases, neglecting the curved segments

that connect straight facets is not a good idea.

Non-constant mobility

We have thus far only considered the anisotropy of the surface energy; the mobility has been

taken to be isotropic. However, the mobility is anisotropic for most crystals. Indeed, the

anisotropy of the kinetic coefficient can be much higher than the anisotropy of the surface

energy, due to the exponential dependence of the kinetic coefficient on the activation barrier

for attachment of growth units. For example, the six 〈101̄0〉 steps on {0001} faces of L-

cystine show less than a two-fold difference in the surface energy but can exhibit a seven-fold

difference in the kinetic coefficient.24 Since both parameters are related to the bond strength,

higher surface energy is associated with a higher kinetic coefficient and vice verse.

Here, we perform a limited analysis of mobility by contrasting constant mobility, M(θ) ≡

1, and anisotropic mobility, M(θ) = (1 + m| sin(θ)|)/(1 + m), for a step with anisotropic

surface energy (c1 > 0 and c2 = c3 = 0). Figure 9 reveals only a small effect of mobility

superimposed on the effect of surface energy. Note that the unimpeded velocities, V0 =

M(0)σ, now depend on the mobility.

Conclusions

Macroscopic front-tracking simulations were performed to assess existing formulas for crystal

growth inhibition by large immobile stoppers (the Cabrera-Vermilyea inhibition mechanism)

and to examine what happens for anisotropic steps. Also, analytic solutions were obtained

for some fully-faceted models, and their behavior was compared to that of the numerical

simulations.
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Figure 9: Average step velocity as a function of (a) the percolation parameter ζ = ξ/ξc
and (b) the supersaturation σ/σc, for a fixed anisotropic single-facet surface energy (c1 = 1,
c2 = c3 = 0) and anisotropic single-facet mobility of the form M(θ) = (1+m| sin(θ)|)/(1+m),
withm ∈ {0, 1, 5, 10}. Panels (c) and (d) give a series of fixed-time front snapshots for ζ = 0.2
and ζ = 0.9, respectively, for the case m = 1. The yellow curve in (d) shows the stationary
front configuration, corresponding to ζ = 1.
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For an isotropic step (when the equilibrium Wulff shape of a corresponding 2D nucleus is

a circle), the Potapenko model (Eq. (2)) was shown to provide a better description of step

propagation through an array of large immobile stoppers compared to the classic C-V model

(Eq. (1)). This is especially true near the percolation threshold, ζ → 1.

For steps with facets, if surface energy anisotropy is not very large (i.e. if the equilibrium

Wulff shape approximates a polygon of moderate eccentricity), then the situation is not

much different from the isotropic one: the dependence of Vavg(ζ) is only slightly steeper. In

this case, the average velocity of the front is well approximated by Potapenko’s formula, and

also by the analytical result obtained using the fully-faceted model with a regular hexagon

as its Wulff shape (Eq. (15) with α = 1).

For steps with facets, as the surface energy anisotropy gets larger (i.e. when the aspect

ratio of the approximately polygonal Wulff shape gets larger) the dependence of Vavg on

the percolation parameter ζ becomes steeper. In the limit γmin/γmax → 0, Vavg has almost

step-like behavior: Vavg ≈ V0 for all ζ except as ζ → 1, where Vavg steeply drops to zero.

Making the mobility (as well as the surface energy) anisotropic – with a kinetic coefficient

proportional to the surface energy – does not change the behavior significantly.

We remind the reader that this analysis has been performed within the many assumptions

embedded in the original C-V model. Some of these assumptions, such as high kink density

on growth steps and large immobile stoppers, hold for certain systems, e.g. crystallization of

ice in the presence of antifreeze proteins,27,52 potassium dihydrogen phosphate in the pres-

ence of Me3+ colloidal particles,10 or calcium oxalate monohydrate with acidic peptides.15–18

However, direct applicability of our plots and formulas is further limited by the assumption

that all stoppers are distributed in a square-grid fashion; in real systems the distribution is

typically random. For further progress, it will be important to consider how the results are

affected by stochastic stopper distributions.
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Effect of step anisotropy on crystal growth inhibition by immobile impurity

stoppers

James P. Lee-Thorp, Alexander G. Shtukenberg, and Robert V. Kohn

Synopsis: Step pinning by adsorbed impurities is an important crystal growth inhibition

mechanism. A seminal 1958 study by Cabrera and Vermilyea considered a periodic array

of pinning sites. We revisit this problem using numerical simulations and a new type of

analytical approximation, for anisotropic surface energies that induce faceting. The average

step velocity is surprisingly insensitive to anisotropy.
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