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The wrinkling and folding of thin elastic sheets is very familiar.
Today: a (mostly) variational perspective on how math can help.

[l

Physical context: rich phenomenology, readily observed; potential
applications eg to metrology and device design; provocative
analogies to other physical systems where defects and patterns form
(eg liquid crystals, ferromagnets, martensitic phase transformation).

Mathematical context: elastic energy is very nonconvex, resembling a
Landau theory from condensed matter physics; we see defects and
patterns — but how to describe and analyze them? A developing
chapter in the calc of varns: “energy-driven pattern formation.”
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Many MS18 minisymposia address aspects of this topic; see Thin
Structures: Defects, Patterns, & Bifurcations, I-1V (Mon and Tues) and
Geometry & Elasticity, I-IV (Wed and Thurs)

Annie Raoult’s plenary talk Models for thin prestrained
structures (Thurs pm) is also related.
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Talk plan

(1) Getting started
The membrane and bending energies;
Mobius strips, d-cones, and more.
(2) Tensile wrinkling
The direction of wrinkling is clear;
but what determines the length scale?
(3) Compressive wrinkling
The direction of wrinkling is no longer clear; but energy scaling
laws are still informative in some examples.
(4) Wrinkling and geometry

A current focus for several groups. Striking recent progress (but
still many open questions).

A recurrent theme: energy scaling laws provide a convenient
framework for analysis. They’re obtained by combining a good ansatz
(providing an upper bound) with an ansatz-free lower bound. In many
settings this helps explain what we see, and why we see it.
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Getting started
Paper is familiar, but Lo
already interesting. @

Configuration of a sheet of paper is a map g : Q — R3, where Q C R?
is the (undeformed) sheet’s shape.

Elastic energy consists of membrane energy and bending energy
(plus terms assoc to loads or bdry conds).

Membrane energy reflects in-plane stretching or compression of
sheet; hence proportional to sheet thickness h. Integrand depends on
“principal stretches” (eigenvalues of 2 x 2 matrix (Dg” Dg)'/?),
derivable from 3D elastic law. Key feature: it prefers isometry. Simple
example:

Membrane energy = h/ |(Dg” Dg)'/? — 1|2 dx
Q
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Getting started

Bending energy reflects effect of

curvature: if midplane is isometric, | q - D
parallel surfaces won't be!

Lack of isometry grows linearly with distance to midplane. So
Bending energy = ch3/ K3 4+ K3 dx
Q
where k1, k2 are prin curvatures of (deformed) sheet.

The energy per unit thickness
E, = / |(Dg"Dg)'/? — I dx + ch2/ K3 + K3 dx
Q Q

is like a Landau theory from condensed matter physics: a nonconvex
term regularized by a higher-order singular perturbation.

After non-dimensionalization: for a sheet with extent L and thickness
t, Q is its normalized shape and h is the eccentricity t/L.
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Getting started

Paper is already
interesting.

When his small, elastic energy vastly prefers isometry
En= / (Dg"Dg)'/? — I dx + chz/ K+ K5 dx
Q Q

Mobius band For some bc, isometry is consistent with finite bending
energy. Then configuration minimizes bending subject
to constraint of isometry, and min E, ~ H.

d-cone, crumpling For other bc, there is no isometry with finite
bending energy. Then the two terms are in conflict; this
leads to defects (eg point singularities or folds).
Signature of such defects: min E, > K.

Example: for a conical configuration, curvature ~ 1/r at dist r from
center, leading to bending energy h? [ r=2 r dr = co. Smoothing near
center costs membrane energy.
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Some talks this week

@ For thin ribbons (eg Mobius band), can energy minimization be
reduced to a 1D var’l problem on the ribbon’s midline?
(Maria Giovanna Mora, MS24, Tues 8:30am)

@ For bdry conditions that produce conical defects, can we
understand the local structure & find the energy scaling law?
(Heiner Olbermann, MS14, Mon 4:30pm)

@ Crumpling is disordered, but ordered patterns can also achieve
confinement. What can be done using relatively simple
origami-based constructions?

(Paul Plucinsky, MS24, Tues 9am)

@ My models assume sheet is initially flat, elastically isotropic and
homogeneous. What about sheets with prestrain, due eg to
nonuniform growth or swelling?

(Annie Raoult, IT9, Thurs 2pm)
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Taking stock

Lessons thus far:
@ Elastic energy of a thin sheet has the form

E, = membrane + h? bending + terms assoc loads or bc
@ Scaling law wrt h provides a signature for the presence of
defects (such as point defects or folds).

@ Rich with challenges; even relatively simple problems (eg the
mechanics of ribbons, and the local structure of point defects)
still pose challenges.

Talk plan:

1
2

(1) Getting started

(2) Tensile wrinkling

(3) Compressive wrinkling
(4) Wrinkling and geometry
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Tensile wrinkling

A thin sheet may wrinkle to avoid compression. When there is
tension, the direction of the wrinkling is clear. But what sets the
amplitude and length scale? (Note that they typically vary
macroscopically.) Images from some experiments:

@ hanging drapes (Vandeparre et al,
PRL 2011)

@ stretched sheets (Cerda &
Mahadevan, PRL 2003)

@ water drop on floating sheet (Huang ’! 7z
et al, Science 2007) ‘ 7
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Framework for analysis of tensile wrinkling
nm

Conjecture: wrinkled configurations resemble the ground state. So
we focus on “energy scaling law,” i.e. how the min of

Ej = (membrane energy) + h?(bending energy) + (loads)

depends on has h— 0.

A key advantage: we lack a language to describe the pattern. The
energy scaling law is amenable to rigorous analysis, and we learn a
lot by identifying it.

When conjecture fails — when states seen in nature don’t resemble
energy minimizers — that too is interesting.
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Framework for analysis of tensile wrinkling
nm

Ej = (membrane energy) + h*(bending energy) + (loads)

STEP 1: As h — 0, energy min requires infinitesimal wrinkling.
Analysis via relaxed variational problem, obtained by replacing
membrane term by the elastic energy of an infinitesimally wrinkled
sheet and dropping the bending term. (An old idea.)

Relaxed problem determines macroscopic features, including the
tension, the wrinkled region, and “how much arclength must be
wasted by wrinkling.” Its min value is the limiting energy

& = limp_o min Ep.
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Framework for analysis of tensile wrinkling

Ej, = (membrane energy) + h?(bending energy) + (loads)

Step 2: When h > 0 scale of wrinkling must be positive, to keep
bending energy finite. Wrinkling produces out-of-plane displacement,
increasing membrane term. Local length scale of wrinkling is
determined by competition between bending & membrane effects.
(Recognized by Cerda & Mahadevan, 15 years ago).
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Framework for analysis of tensile wrinkling
ne

Ej, = (membrane energy) + h?(bending energy) + (loads)

Step 2: When h > 0 scale of wrinkling must be positive, to keep
bending energy finite. Wrinkling produces out-of-plane displacement,
increasing membrane term. Local length scale of wrinkling is
determined by competition between bending & membrane effects.
(Recognized by Cerda & Mahadevan, 15 years ago).

Let &, = min E, be the min energy at fixed h > 0, and define
En = &y + excess energy.

An ansatz for the wrinkling gives an upper bound on the excess
energy. Ansatz-free lower bounds assess the quality of upper bound.
Since excess energy is linked to the length scale of wrinkling, such
results — and their proofs — provide insight and intuition.
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An example: the annulus problem

Annulus-shaped sheet, loaded by uniform tension at both boundaries.
Captures essential physics of the “sheet-on-drop” experiment
(Davidovitch et al, PNAS 2011).

No wrinkling at larger radii; g 3 =
lots of wrinkling at smaller - ;\\éé/,/ E Iz
radii, to avoid compression. A T ) %
¢ !
Free boundary at r = r;. Vool .

Energy scaling law studied with Peter Bella (CPAM 2014). Main
conclusion: excess energy is linear in h,

Eo+ Cith<minE, < & + Coh

Really two assertions:

@ upper bound (requires a good ansatz)

@ lower bound (ansatz-free!)
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An example: the annulus problem

Recall intuition: h > 0 forces finite-scale . 5N |
wrinkling, hence nontrivial out-of-plane (ji
displacement. Larger length scale reduces the A 7S :
bending energy but increases membrane term. T

Let w be the out-of-plane displacement of the sheet.

Upper bound min Ex < & + Coh is not entirely trivial:

@ Ansatz of form w = f(r) sin(8/h'/2) works near the center, but
not near edge of wrinkled region. Its membrane term is too large
there, giving excess energy of order h|log h.

@ The log can be eliminated by being more careful:

(a) keep length scale of order h'/2 near edge of wrinkled region, but
let the profile of the wrinkling depend on r; or

(b) introduce a “cascade of wrinkles,” changing the length scale near
the edge of the wrinkled region (as seen in the hanging drape).

@ The upper bound requires care near the edge of the wrinkled
region. Is nature so careful? (Maybe not.)
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An example: the annulus problem

Lower bound min E, > & + Cih has an
interpolation inequality at its heart.

Argue by contradiction. Suppose a configuration exists with excess
energy less than dh; show ¢ cannot be too small.

@ Excess energy includes bending term, so out-of-plane
displacement w has h? [ |[VVw|? dx < Céh.

@ Radial tension = rays from origin are like stretched rubber
bands; out-of-plane displacement makes them stretch more,
increasing the membrane term. Thus out-of-plane displacement
is controlled by excess energy: [ w? dx < §h.

@ Inequality ||[Vw/| 2 < C|\W||1L2/2HVVW||1L2/2 shows that

Vw2 < C5'/2.
@ But: small slope = no room to wrinkle = configuration is

essentially planar. This requires in-plane compression, hence
large membrane energy — a contradiction.

Robert V. Kohn Wrinkles and Folds



A word about the hanging drape

Drape gathered at the top, hanging due to gravity.
(Expt and ansatz-based analysis: Vandeparre et al,
PRL 2011. Energy scaling law: Bella & Kohn, CPAM
2017.)

To save bending energy, wrinkles coarsen and/or sides spread.
Scaling law of excess energy identifies # generations of
coarsening, and whether spreading is significant.

Coarsening of wrinkles cannot proceed too quickly, since it
costs membrane energy. Analysis relies on a lemma estimating
this cost.
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An example without tension in the wrinkled region

Tension may control the direction of wrinkling even if there’s no
tension in the wrinkled region.

A recent example, with Ethan O’Brien: wrinkling in the center of a
stretched, twisted ribbon (J Nonlin Sci 2018, building on modeling by
Chopin et al J Elast 2015).

Expts (Chopin & Kudrolli, PRL
2013) show several regimes; my
focus is on leftmost figure.

|

In regime of the leftmost figure: lines parallel to ribbon midline form
helices. Arclength of helix is longest for lines at outer edge. In regime
of interest, those are stretched while midline is in compression.

Robert V. Kohn Wrinkles and Folds



An example without tension in the wrinkled region

@ Outer edges have little freedom, due to
tension. As a result, relaxed problem
predicts uniaxial compression in center,
uniaxial tension near outer edges.
Horizontal lines have strain 0.

@ Wrinkling requires transverse deflection,
costing excess membrane energy.

@ Scaling of excess energy is h*/3. (Different
from annulus problem, since horizontal
lines are not in tension.)

For more detail: go to Ethan O’Brien’s talk in MS15 (Mon 4:30pm)
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Taking stock

Lessons wrt tensile wrinkling:

@ Relaxed problem predicts leading-order energy and
macroscopic features, including extent of the wrinkled region
and the uniaxial compression that is avoided by wrinkling.

@ Scale of wrinkling is linked to scaling law of excess energy.

@ Upper bound requires care at the edge of the wrinkled region
(with features not typically seen in expts).

@ Ansatz-free lower bound displays mechanism of competition
between membrane and bending terms.
Talk plan:
1
2

3
4) Wrinkling and geometry

Getting started
Tensile wrinkling

(1)
(@)
(3) Compressive wrinkling
(4)
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Compressive wrinkling

In the absence of tension, the situation is different. One example:

Compression due to thermal mismatch:
a thin film bonded to a too-short bdry
(Lai et al, J Power Sources 2010)

@ Relaxed energy is 0, providing no information at all.
@ Greater multiplicity of low-energy structures.

@ Energy scaling law: Cih < min E, < Cxh (Ben Belgacem et al
2000, Jin & Sternberg 2001). Carries little info on bulk pattern,
since energy of layer near bdry must have energy of order h.

@ In general: in the absence of tension even the direction of
wrinkling is unclear.
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An example: the herringbone pattern

Work with Hoai-Minh Nguyen, concerning a thin, stiff layer bonded to
a thick, compliant substrate (J Nonlin Sci 2013)

@ stretch a polymer layer (biaxially) N— .
@ deposit the film [/// ////
@ release the polymer /

@ film buckles to avoid compression

Commonly seen: a
herringbone pattern.

gold on pdms
Chen & Hutchinson, Scripta Mater 2004
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An example: the herringbone pattern

We use a “small-slope” (von Karman) version
of elasticity, writing (uy, Uz, w) for the elastic
displacement. Periodicity is assumed on
some (large) scale L. The energy per unit
area Ej has three terms:

(1) Membrane term captures fact that film’'s natural length is larger than that
of the substrate:

ﬂz le(u) + 1Vw & Vw — nl|? dx
L [0,L]2
(2) Bending term captures resistance to bending:
3
h—z / |VVw|? dx
L [O,L]2

(3) Substrate energy captures fact that substrate acts as a “spring”, tending
to keep film flat:

75 (1wl e + el /e)
where [|]2,o = 5= [K||3(K) 2
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An example: the herringbone pattern

A brief explanation of the small-slope (von Karman) membrane
energy

h/ le(u) + 1Vw @ Vw — nl? dx dy

where (u1, Uz, w) is the elastic displacement, and 7 is the misfit (both
assumed small). Notation: e(u) is the linear strain 3(Du + DuT).

@ 1D analogue: [ [0kt + 5(0xw)? — n|? dx

@ Explanation: if (x,0) — (x + us(x), w(x)) then local stretching is

V0 2+ (0w — 1~ d,us + 1(0xw)?
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An example: the herringbone pattern

Summary of main results:

@ energy of unbuckled state
. 2 . 50 nm.
w=u=0isnh; Autim
e

@ energy of herringbone pattern has
order a‘g/snh;

@ min E, ~ min{n2h, a2*yh}, so
herringbone achieves the energy
scaling law when a§/3 <.
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An example: the herringbone pattern

Essence of upper bound: good understanding of the pattern.
Film wants to expand (isotropically) relative to substrate.

@ 1D wrinkling expands only transverse to the wrinkles
@ a simple shear expands one diag dirn, compresses the other
@ shear combined with wrinkling achieves isotropic expansion

A\

Substrate prohibits large deformation; therefore the film mixes the two
shear-combined-with-wrinkling variants. Thus, the herringbone
pattern has two length scales:

@ The smaller (the scale of the wrinkling) is set by
competition between bending term and
Substrate energy of w.

@ The larger one (scale of the phase mixture) must
be s.t. the substrate energy of u is insignificant.
(It is not fully determined.)
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An example: the herringbone pattern

Lower bound has, at its heart, another interpoln ineq.
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An example: the herringbone pattern

Lower bound has, at its heart, another interpoln ineq.

Claim: For any periodic (us, Uz, w), Ep > Cmin{n?h, a3/°nh}. Take L = 1 for
simplicity. Recall that

membrane term = h/ le(u) + 1Vw @ Vw — i dx,

bending term = A®||[VVw||%, and substrate term > as||wl|/%: 2.
g L HY/
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An example: the herringbone pattern

Lower bound has, at its heart, another interpoln ineq.

Claim: For any periodic (us, Uz, w), Ep > Cmin{n?h, a3/°nh}. Take L = 1 for
simplicity. Recall that

membrane term = h/ le(u) + 1Vw @ Vw — i dx,

bending term = B*||[VVw|%, and substrate term > as|w| /%4 /..

CASE 1: If [|Vw|? < nthen membrane > n?h, since e(u) has mean 0.
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An example: the herringbone pattern

Lower bound has, at its heart, another interpoln ineq.

Claim: For any periodic (us, Uz, w), Ep > Cmin{n?h, a3/°nh}. Take L = 1 for
simplicity. Recall that

membrane term = h/ le(u) + 1Vw @ Vw — i dx,

bending term = B*||[VVw|%, and substrate term > as|w| /%4 /..

CASE 1: If [|Vw|? < nthen membrane > n?h, since e(u) has mean 0.

cAase2:If [ |Vw|? > 7 use the interpolation inequality

1/3 2/3
IVwllz < IVVwl 22w,

to see (using arith mean/geom mean ineq) that

Bending + substrate terms = B°|[VVWI[® + Las||w| 2 + Sas||wZ e
1/3
2 (PIvvwlPediwlfy: )
z had* Vw2 2 hol®y
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Taking stock

Lessons wrt compressive wrinkling:

@ Relaxed problem is completely degenerate (no longer useful).

@ We nevertheless understood the herringbone, as a mechanism
for achieving the min energy scaling law.

@ Uniqueness is not asserted! Indeed, less ordered patterns are
also seen (“labyrinths”); do they achieve same scaling law?

@ Lower bounds always rely on interpolation. How else to use
knowledge that [ |[VVw|? dx scales like a neg power of h?
Talk plan:

1
2

(1) Getting started

(2)

(3) Compressive wrinkling
(4)

Tensile wrinkling

4) Wrinkling and geometry
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Geometry and wrinkling

The interaction of geometry and wrinkling is a current frontier. Too
rich and too new for a synthesis; instead, three snapshots:

@ an indented sheet, floating on water;
@ aflat circular sheet, strongly attracted to a sphere;

@ a naturally-spherical thin sheet, floating on water.

Common features: membrane and bending effects interact with
geometry, producing effects not seen in examples discussed earlier.
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An indented sheet, floating on water

Flat film floating on water, poked from below
(relaxed problem: Vella et al, PRL 2015;
wrinkling scale: Paulsen et al, PNAS 2016).

Recall from our discussion of tension-driven wrinkling (eg the annulus
problem) that

(a) relaxed pbm gave leading-order energy and macroscopic
features;

(b) excess energy is from competition btwn bending & membrane
terms.

When geometry requires wrinkles to bend, this framework persists
but the nature of the competition is different.

Wrinkles don't like to bend (same reason corrugated cardboard is
stiff). This effect is was absent in annulus problem, but dominates in
the indentation example. Analysis by Paulsen et al is compelling but
ansatz-based (we do not yet have an ansatz-free understanding).
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A flat circular sheet, strongly attracted to a sphere

The situation changes if the geometric constraint is strong enough.

A flat circular sheet, strongly attracted to a sphere
(Bella & Kohn, Phil Trans Roy Soc 2017)

2
ax

2
Eh:/]e( +ivwe vwl? dX+h2/|VVW| ax +h~ /‘W-l—' |

Each circle r = const in sheet avoids compression by wrinkling.
@ Optimization of substrate and bending sets length scale; assoc energy
is order one.

@ Sheet stretches radially, to reduce cost of wrinkling; optimization of
radial stretching determines leading-order energy.

@ Scale of wrinkling is fixed, so number of wrinkles changes with r. This
effect dominates next-order asymptotics in h.
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A naturally-spherical thin sheet, floating on water

Breaking news: talks by Eleni Katifori (MS55, Wed 5:00) and
lan Tobasco (MS66, Thurs 9:30).

Sheets cut from spherical shells and placed on water
(Albarran et al, arxiv:1806.03718)

Sheets with the same natural curvature but different shapes show
very different wrinkling patterns.

ZAS

Y/ 8

@ This is geometrically-driven compressive wrinkling.

@ What sets dirn of wrinkling? Is there a variational pbm that
determines the leading order energy? (An elegant answer is just
now emerging.)
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Stepping back

@ Variational viewpoint, with thickness as a small parameter: the
elastic energy of a sheet is like a Landau theory from physics: a
nonconvex membrane energy, regularized by a higher order
term (bending) with a small coefficient.

@ We're interested in h — 0. Bifurcation diagrams are difficult in
this regime. Energy scaling laws provide an alternative.

@ Focus on energy scaling law permits rigorous analysis.

@ We also get insight about patterns, e.g. whether they achieve
the optimal scaling. (But note: patterns in nature can be local
minima.)

@ Analysis is useful, as a complement to simulation. Simulation
shows how patterns form; ansatz-free lower bounds explain why
patterns form.
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