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Orientation
The wrinkling and folding of thin elastic sheets is very familiar.
Today: a (mostly) variational perspective on how math can help.

2 PETER BELLA AND ROBERT V. KOHN

effects (which prefer less stretching) and the energetic cost of wrinkling (which prefers more
stretching).

Figure 1. Circular sheet on a ball

The behavior of thin elastic sheets experiencing
compression due to geometric effects has recently re-
ceived a lot of attention. Without attempting a com-
prehensive review, let us mention studies concerning
a sheet on a deformable sphere [11, 16, 17]; indenta-
tion of a pressurized ball [20]; indentation of a float-
ing sheet [21, 16]; wrinkling of a stamped plate [12];
and crystalline sheets on curved surfaces [10, 15].
Among these references the paper [11] deserves spe-
cial note, since (as we explain in Section 2) our model
is particularly close to the one considered there.

It is well known that with increasing compression
a thin elastic sheet undergoes an instability (like Eu-
ler buckling), the onset of which is well-understood
using linear analysis (this is the so called “near-
threshold” (NT) regime). As the compression in-
creases one enters a different, “far-from-threshold”
(FT) regime (see e.g. [9]), in which predictions from
the linear theory cease to be valid. In contrast with
the NT regime, in the FT regime the sheet (almost)
completely releases the compressive stresses by de-
forming out-of-plane (e.g. by wrinkling). The wrin-
kling wavelength is then set by a competition be-
tween the bending resistance (which prefers long

wavelengths) and mechanisms favoring short wavelengths (e.g. tension, curvature along
the wrinkles, and adhesion to a substrate). The natural goals in the FT regime are to
predict the wavelength of wrinkles (by deriving a so called “local λ-law” [6, 16]) and/or
to predict the macroscopic deformation of the sheet. These goals are the primary focus of
many of the papers cited above [9, 10, 11, 16, 20, 21].

While our goal in the present paper is very similar, there is an unexpected twist com-
pared to the aforementioned work. There the energy consists of a dominant part which
decides the macroscopic deformation, and a subdominant part which controls the scale of
the wrinkling. Put differently: in the limit of vanishing thickness the wrinkling does not
cost any energy (since the energetic contribution from wrinkling is subdominant), and the
macroscopic deformation of the sheet can be obtained via tension-field theory (in math-
ematical language: by minimizing a relaxed functional). In contrast, in the problem we
consider the cost of wrinkling is comparable to other terms in the dominant energy; as a
result one cannot use tension-field theory or solve a relaxed problem to predict the macro-
scopic deformation of the sheet. Instead, one must minimize an effective functional, in
which the elastic energy of radial tension competes with the (substrate + bending) en-
ergy of circumferential wrinkling. Since the energetic cost of wrinkling contributes to the

Physical context: rich phenomenology, readily observed; potential
applications eg to metrology and device design; provocative
analogies to other physical systems where defects and patterns form
(eg liquid crystals, ferromagnets, martensitic phase transformation).

Mathematical context: elastic energy is very nonconvex, resembling a
Landau theory from condensed matter physics; we see defects and
patterns – but how to describe and analyze them? A developing
chapter in the calc of varns: “energy-driven pattern formation.”
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macroscopic deformation of the sheet can be obtained via tension-field theory (in math-
ematical language: by minimizing a relaxed functional). In contrast, in the problem we
consider the cost of wrinkling is comparable to other terms in the dominant energy; as a
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scopic deformation of the sheet. Instead, one must minimize an effective functional, in
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Many MS18 minisymposia address aspects of this topic; see Thin
Structures: Defects, Patterns, & Bifurcations, I-IV (Mon and Tues) and
Geometry & Elasticity, I-IV (Wed and Thurs)

Annie Raoult’s plenary talk Models for thin prestrained
structures (Thurs pm) is also related.
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Talk plan

(1) Getting started
The membrane and bending energies;
Mobius strips, d-cones, and more.

(2) Tensile wrinkling
The direction of wrinkling is clear;
but what determines the length scale?

(3) Compressive wrinkling
The direction of wrinkling is no longer clear; but energy scaling
laws are still informative in some examples.

(4) Wrinkling and geometry
A current focus for several groups. Striking recent progress (but
still many open questions).

A recurrent theme: energy scaling laws provide a convenient
framework for analysis. They’re obtained by combining a good ansatz
(providing an upper bound) with an ansatz-free lower bound. In many
settings this helps explain what we see, and why we see it.
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Getting started

Paper is familiar, but
already interesting.

Configuration of a sheet of paper is a map g : Ω→ R3, where Ω ⊂ R2

is the (undeformed) sheet’s shape.

Elastic energy consists of membrane energy and bending energy
(plus terms assoc to loads or bdry conds).

Membrane energy reflects in-plane stretching or compression of
sheet; hence proportional to sheet thickness h. Integrand depends on
“principal stretches” (eigenvalues of 2× 2 matrix (DgT Dg)1/2),
derivable from 3D elastic law. Key feature: it prefers isometry. Simple
example:

Membrane energy = h
∫

Ω

‖(DgT Dg)1/2 − I‖2 dx
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Getting started
Bending energy reflects effect of
curvature: if midplane is isometric,
parallel surfaces won’t be!

Lack of isometry grows linearly with distance to midplane. So

Bending energy = ch3
∫

Ω

κ2
1 + κ2

2 dx

where κ1, κ2 are prin curvatures of (deformed) sheet.

The energy per unit thickness

Eh =

∫
Ω

‖(DgT Dg)1/2 − I‖2 dx + ch2
∫

Ω

κ2
1 + κ2

2 dx

is like a Landau theory from condensed matter physics: a nonconvex
term regularized by a higher-order singular perturbation.

After non-dimensionalization: for a sheet with extent L and thickness
t , Ω is its normalized shape and h is the eccentricity t/L.
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Getting started

Paper is already
interesting.

When h is small, elastic energy vastly prefers isometry

Eh =

∫
Ω

‖(DgT Dg)1/2 − I‖2 dx + ch2
∫

Ω

κ2
1 + κ2

2 dx

Mobius band For some bc, isometry is consistent with finite bending
energy. Then configuration minimizes bending subject
to constraint of isometry, and min Eh ∼ h2.

d-cone, crumpling For other bc, there is no isometry with finite
bending energy. Then the two terms are in conflict; this
leads to defects (eg point singularities or folds).
Signature of such defects: min Eh � h2.

Example: for a conical configuration, curvature ∼ 1/r at dist r from
center, leading to bending energy h2

∫
r−2 r dr =∞. Smoothing near

center costs membrane energy.
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Some talks this week

For thin ribbons (eg Mobius band), can energy minimization be
reduced to a 1D var’l problem on the ribbon’s midline?
(Maria Giovanna Mora, MS24, Tues 8:30am)

For bdry conditions that produce conical defects, can we
understand the local structure & find the energy scaling law?
(Heiner Olbermann, MS14, Mon 4:30pm)

Crumpling is disordered, but ordered patterns can also achieve
confinement. What can be done using relatively simple
origami-based constructions?
(Paul Plucinsky, MS24, Tues 9am)

My models assume sheet is initially flat, elastically isotropic and
homogeneous. What about sheets with prestrain, due eg to
nonuniform growth or swelling?
(Annie Raoult, IT9, Thurs 2pm)
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Taking stock
Lessons thus far:

Elastic energy of a thin sheet has the form

Eh = membrane + h2 bending + terms assoc loads or bc

Scaling law wrt h provides a signature for the presence of
defects (such as point defects or folds).

Rich with challenges; even relatively simple problems (eg the
mechanics of ribbons, and the local structure of point defects)
still pose challenges.

Talk plan:

(1) Getting started

(2) Tensile wrinkling

(3) Compressive wrinkling

(4) Wrinkling and geometry
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Tensile wrinkling

A thin sheet may wrinkle to avoid compression. When there is
tension, the direction of the wrinkling is clear. But what sets the
amplitude and length scale? (Note that they typically vary
macroscopically.) Images from some experiments:

hanging drapes (Vandeparre et al,
PRL 2011)

stretched sheets (Cerda &
Mahadevan, PRL 2003)

water drop on floating sheet (Huang
et al, Science 2007)

on the film of cream that floats on warm milk;
or on the skin of fruit as it dries.

This familiar instability occurs because the
elastic energy required to stretch a sheet is re-
duced by the out-of-plane bending that accom-
panies wrinkling. Cerda and Mahadevan (1, 2)
considered a situation in which a rectangular
elastic sheet is clamped at its ends and stretched.
Beyond a critical strain, the sheet wrinkles.
Minimization of the total elastic energy leads to
scaling relationships between the amplitude and
wavelength of the wrinkles. Their arguments
have been applied to a variety of contexts, in-
cluding the mechanics of artificial skins (3, 4)
and surgical scars (5).

We report on a study of wrinkling of films
under capillary forces, which has thus far re-
mained relatively unexplored. Because thin films
are often immersed in fluid environments, both
in biological and in synthetic soft materials, the
elastic deformation of films under surface ten-
sion is relatively commonplace. Thin polymer
films form an ideal experimental setting in which
to explore wrinkling phenomena: We study films
with very high aspect ratios (the ratio of diameter
D to thickness h is D/h ~ 5 × 105), which can be
treated accurately in the framework of two-
dimensional elasticity.

We used films of polystyrene (PS; atactic,
number-average molecular weight Mn = 91,000,
weight-average molecular weight Mw = 95,500,
radius of gyration Rg ~ 10 nm) spin-coated onto
glass substrates. The film thickness h was varied
from 31 to 233 nm, as measured by x-ray
reflectivity with a precision of ±0.5 nm (6, 7). A
circle of diameter D = 22.8 mm was scribed
onto the film with a sharp edge. When the sub-
strate was dipped into a petri dish of distilled,
deionized water, a circular piece of the PS film
detached from the substrate. Because PS is hy-
drophobic, the film floated to the surface of
the water where it was stretched flat by the
surface tension g of the air-water interface at
its perimeter.

Wrinkles were induced in the stretched, float-
ing film by placing a drop of water in the center
of the film (Fig. 1), by placing a solid disk in the
center of the film (fig. S1A), or by poking the
film with a sharp point (fig. S1B) to produce a
fixed out-of-plane displacement. All these meth-
ods of loading lead to qualitatively similar wrin-
kling patterns, radiating from the center of the
load. We emphasize a crucial difference between
loading with a solid and a fluid: The wrinkling
induced in Fig. 1 is primarily due not to the
weight of the drop, but to the capillary force

exerted on the film by the surface tension at the
air-water-PS contact line. The radial stress srr
induced at the edge of the drop is dominated by
the surface tension, which for the conditions of
Fig. 1 is about 100 times as great as the radial
stress developed due to the weight of the drop
(mg/2pa), where m is the mass of the drop and a
its radius. Indeed, a solid object of weight and
contact area comparable to those of the drops
shown in Fig. 1 would produce no discernible
wrinkling. The contact angle of the drop on PS
is 88° ± 2°, and thus the geometry of the drop
on the film is approximately that of a hemi-
sphere on a flat surface (with perhaps some de-
formation of the film close to the contact line
itself). In view of this attractively simple geom-
etry and the degree of experimental control af-
forded by loading with a fluid, we focus on
wrinkling induced by fluid capillarity as in Fig. 1.

We observe the wrinkling pattern using a
digital camera mounted on a low-magnification
microscope (Fig. 1). Two obvious quantitative
descriptors of the wrinkling patterns are the num-
ber of wrinkles N and the length of the wrinkle
L as measured from the edge of the droplet. N is
determined by counting. Because the terminus
of the wrinkle is quite sharply defined and not

sensitive to lighting and optical contrast, we are
also able to measure L directly from the image.
The radius of the circle in which the entire wrin-
kle pattern is inscribed (see top left of Fig. 1) is
determined with a precision of 3%.

The central question in understanding this
wrinkling pattern is, how are (N, L) determined
by the elasticity of the sheet (thickness h, Young’s
modulus E, and Poisson ratio L) and the param-
eters of the loading (surface tension g and radius
of the drop a). To study systematically the effect
of loading and elasticity, we placed water drops
at the center of the film using a micropipette,
increasing the mass of the drop in increments of
0.2 mg. As the radius of the drop was increased,
both L and N increased.

We first focus on N, which is found to in-
crease as N º

ffiffiffi
a

p
. However, as is evident in

Fig. 1, N is smaller in thicker films. The com-
bined dependence of N on a and h is correctly
captured by the scaling N e a

1=2h
–3=4, as shown in

Fig. 2. To understand this scaling, the arguments
of Cerda and Mahadevan (2) may be adapted to a
radial geometry (5, 8). Because the number of
wrinkles remains constant at all radial distances r
from the center of the pattern, the wavelength of
wrinkles varies according to l = 2pr/N.

1Department of Physics, University of Massachusetts,
Amherst, MA 31003, USA. 2Polymer Science and Engineer-
ing Department, University of Massachusetts, Amherst, MA
31003, USA. 3FOM Institute for Atomic and Molecular
Physics, Amsterdam, Netherlands. 4Departamento de Física,
Universidad de Santiago de Chile, Santiago, Chile.

*To whom correspondence should be addressed. E-mail:
russell@pse.umail.umass.edu (T.P.R.), menon@physics.
umass.edu (N.M.)

Fig. 1. Four PS films of diameter D =
22.8 mm and of varying thicknesses float-
ing on the surface of water, each wrinkled
by water drops of radius a ≈ 0.5 mm and
mass m ≈ 0.2 mg. As the film is made
thicker, the number of wrinkles N de-
creases (there are 111, 68, 49, and 31
wrinkles in these images), and the length
of wrinkles L increases. L is defined as
shown at top left, measured from the edge
of the water droplet to the white circle.
The scale varies between images, whereas
the water droplets are approximately the
same size.

Fig. 2. The number of wrinkles
N as a function of a scaling
variable, a1/2h–3/4. Data for dif-
ferent film thicknesses h (indi-
cated by symbols in the legend)
collapse onto a single line (the
solid line is a fit: N = 2.50 ×
103a1/2h–3/4). The extent of
reproducibility is indicated by
the open and solid inverted
triangles, which are taken for
two films of the same nominal
thickness.
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Framework for analysis of tensile wrinkling

on the film of cream that floats on warm milk;
or on the skin of fruit as it dries.

This familiar instability occurs because the
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elastic sheet is clamped at its ends and stretched.
Beyond a critical strain, the sheet wrinkles.
Minimization of the total elastic energy leads to
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films form an ideal experimental setting in which
to explore wrinkling phenomena: We study films
with very high aspect ratios (the ratio of diameter
D to thickness h is D/h ~ 5 × 105), which can be
treated accurately in the framework of two-
dimensional elasticity.

We used films of polystyrene (PS; atactic,
number-average molecular weight Mn = 91,000,
weight-average molecular weight Mw = 95,500,
radius of gyration Rg ~ 10 nm) spin-coated onto
glass substrates. The film thickness h was varied
from 31 to 233 nm, as measured by x-ray
reflectivity with a precision of ±0.5 nm (6, 7). A
circle of diameter D = 22.8 mm was scribed
onto the film with a sharp edge. When the sub-
strate was dipped into a petri dish of distilled,
deionized water, a circular piece of the PS film
detached from the substrate. Because PS is hy-
drophobic, the film floated to the surface of
the water where it was stretched flat by the
surface tension g of the air-water interface at
its perimeter.

Wrinkles were induced in the stretched, float-
ing film by placing a drop of water in the center
of the film (Fig. 1), by placing a solid disk in the
center of the film (fig. S1A), or by poking the
film with a sharp point (fig. S1B) to produce a
fixed out-of-plane displacement. All these meth-
ods of loading lead to qualitatively similar wrin-
kling patterns, radiating from the center of the
load. We emphasize a crucial difference between
loading with a solid and a fluid: The wrinkling
induced in Fig. 1 is primarily due not to the
weight of the drop, but to the capillary force

exerted on the film by the surface tension at the
air-water-PS contact line. The radial stress srr
induced at the edge of the drop is dominated by
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formation of the film close to the contact line
itself). In view of this attractively simple geom-
etry and the degree of experimental control af-
forded by loading with a fluid, we focus on
wrinkling induced by fluid capillarity as in Fig. 1.

We observe the wrinkling pattern using a
digital camera mounted on a low-magnification
microscope (Fig. 1). Two obvious quantitative
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L as measured from the edge of the droplet. N is
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determined with a precision of 3%.
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Conjecture: wrinkled configurations resemble the ground state. So
we focus on “energy scaling law,” i.e. how the min of

Eh = (membrane energy) + h2(bending energy) + (loads)

depends on h as h→ 0.

A key advantage: we lack a language to describe the pattern. The
energy scaling law is amenable to rigorous analysis, and we learn a
lot by identifying it.

When conjecture fails – when states seen in nature don’t resemble
energy minimizers – that too is interesting.
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Framework for analysis of tensile wrinkling

on the film of cream that floats on warm milk;
or on the skin of fruit as it dries.

This familiar instability occurs because the
elastic energy required to stretch a sheet is re-
duced by the out-of-plane bending that accom-
panies wrinkling. Cerda and Mahadevan (1, 2)
considered a situation in which a rectangular
elastic sheet is clamped at its ends and stretched.
Beyond a critical strain, the sheet wrinkles.
Minimization of the total elastic energy leads to
scaling relationships between the amplitude and
wavelength of the wrinkles. Their arguments
have been applied to a variety of contexts, in-
cluding the mechanics of artificial skins (3, 4)
and surgical scars (5).

We report on a study of wrinkling of films
under capillary forces, which has thus far re-
mained relatively unexplored. Because thin films
are often immersed in fluid environments, both
in biological and in synthetic soft materials, the
elastic deformation of films under surface ten-
sion is relatively commonplace. Thin polymer
films form an ideal experimental setting in which
to explore wrinkling phenomena: We study films
with very high aspect ratios (the ratio of diameter
D to thickness h is D/h ~ 5 × 105), which can be
treated accurately in the framework of two-
dimensional elasticity.

We used films of polystyrene (PS; atactic,
number-average molecular weight Mn = 91,000,
weight-average molecular weight Mw = 95,500,
radius of gyration Rg ~ 10 nm) spin-coated onto
glass substrates. The film thickness h was varied
from 31 to 233 nm, as measured by x-ray
reflectivity with a precision of ±0.5 nm (6, 7). A
circle of diameter D = 22.8 mm was scribed
onto the film with a sharp edge. When the sub-
strate was dipped into a petri dish of distilled,
deionized water, a circular piece of the PS film
detached from the substrate. Because PS is hy-
drophobic, the film floated to the surface of
the water where it was stretched flat by the
surface tension g of the air-water interface at
its perimeter.

Wrinkles were induced in the stretched, float-
ing film by placing a drop of water in the center
of the film (Fig. 1), by placing a solid disk in the
center of the film (fig. S1A), or by poking the
film with a sharp point (fig. S1B) to produce a
fixed out-of-plane displacement. All these meth-
ods of loading lead to qualitatively similar wrin-
kling patterns, radiating from the center of the
load. We emphasize a crucial difference between
loading with a solid and a fluid: The wrinkling
induced in Fig. 1 is primarily due not to the
weight of the drop, but to the capillary force

exerted on the film by the surface tension at the
air-water-PS contact line. The radial stress srr
induced at the edge of the drop is dominated by
the surface tension, which for the conditions of
Fig. 1 is about 100 times as great as the radial
stress developed due to the weight of the drop
(mg/2pa), where m is the mass of the drop and a
its radius. Indeed, a solid object of weight and
contact area comparable to those of the drops
shown in Fig. 1 would produce no discernible
wrinkling. The contact angle of the drop on PS
is 88° ± 2°, and thus the geometry of the drop
on the film is approximately that of a hemi-
sphere on a flat surface (with perhaps some de-
formation of the film close to the contact line
itself). In view of this attractively simple geom-
etry and the degree of experimental control af-
forded by loading with a fluid, we focus on
wrinkling induced by fluid capillarity as in Fig. 1.

We observe the wrinkling pattern using a
digital camera mounted on a low-magnification
microscope (Fig. 1). Two obvious quantitative
descriptors of the wrinkling patterns are the num-
ber of wrinkles N and the length of the wrinkle
L as measured from the edge of the droplet. N is
determined by counting. Because the terminus
of the wrinkle is quite sharply defined and not

sensitive to lighting and optical contrast, we are
also able to measure L directly from the image.
The radius of the circle in which the entire wrin-
kle pattern is inscribed (see top left of Fig. 1) is
determined with a precision of 3%.

The central question in understanding this
wrinkling pattern is, how are (N, L) determined
by the elasticity of the sheet (thickness h, Young’s
modulus E, and Poisson ratio L) and the param-
eters of the loading (surface tension g and radius
of the drop a). To study systematically the effect
of loading and elasticity, we placed water drops
at the center of the film using a micropipette,
increasing the mass of the drop in increments of
0.2 mg. As the radius of the drop was increased,
both L and N increased.

We first focus on N, which is found to in-
crease as N º

ffiffiffi
a

p
. However, as is evident in

Fig. 1, N is smaller in thicker films. The com-
bined dependence of N on a and h is correctly
captured by the scaling N e a

1=2h
–3=4, as shown in

Fig. 2. To understand this scaling, the arguments
of Cerda and Mahadevan (2) may be adapted to a
radial geometry (5, 8). Because the number of
wrinkles remains constant at all radial distances r
from the center of the pattern, the wavelength of
wrinkles varies according to l = 2pr/N.
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Fig. 1. Four PS films of diameter D =
22.8 mm and of varying thicknesses float-
ing on the surface of water, each wrinkled
by water drops of radius a ≈ 0.5 mm and
mass m ≈ 0.2 mg. As the film is made
thicker, the number of wrinkles N de-
creases (there are 111, 68, 49, and 31
wrinkles in these images), and the length
of wrinkles L increases. L is defined as
shown at top left, measured from the edge
of the water droplet to the white circle.
The scale varies between images, whereas
the water droplets are approximately the
same size.

Fig. 2. The number of wrinkles
N as a function of a scaling
variable, a1/2h–3/4. Data for dif-
ferent film thicknesses h (indi-
cated by symbols in the legend)
collapse onto a single line (the
solid line is a fit: N = 2.50 ×
103a1/2h–3/4). The extent of
reproducibility is indicated by
the open and solid inverted
triangles, which are taken for
two films of the same nominal
thickness.
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Eh = (membrane energy) + h2(bending energy) + (loads)

STEP 1: As h→ 0, energy min requires infinitesimal wrinkling.
Analysis via relaxed variational problem, obtained by replacing
membrane term by the elastic energy of an infinitesimally wrinkled
sheet and dropping the bending term. (An old idea.)

Relaxed problem determines macroscopic features, including the
tension, the wrinkled region, and “how much arclength must be
wasted by wrinkling.” Its min value is the limiting energy
E0 = limh→0 min Eh.

Robert V. Kohn Wrinkles and Folds



Framework for analysis of tensile wrinkling

on the film of cream that floats on warm milk;
or on the skin of fruit as it dries.

This familiar instability occurs because the
elastic energy required to stretch a sheet is re-
duced by the out-of-plane bending that accom-
panies wrinkling. Cerda and Mahadevan (1, 2)
considered a situation in which a rectangular
elastic sheet is clamped at its ends and stretched.
Beyond a critical strain, the sheet wrinkles.
Minimization of the total elastic energy leads to
scaling relationships between the amplitude and
wavelength of the wrinkles. Their arguments
have been applied to a variety of contexts, in-
cluding the mechanics of artificial skins (3, 4)
and surgical scars (5).

We report on a study of wrinkling of films
under capillary forces, which has thus far re-
mained relatively unexplored. Because thin films
are often immersed in fluid environments, both
in biological and in synthetic soft materials, the
elastic deformation of films under surface ten-
sion is relatively commonplace. Thin polymer
films form an ideal experimental setting in which
to explore wrinkling phenomena: We study films
with very high aspect ratios (the ratio of diameter
D to thickness h is D/h ~ 5 × 105), which can be
treated accurately in the framework of two-
dimensional elasticity.

We used films of polystyrene (PS; atactic,
number-average molecular weight Mn = 91,000,
weight-average molecular weight Mw = 95,500,
radius of gyration Rg ~ 10 nm) spin-coated onto
glass substrates. The film thickness h was varied
from 31 to 233 nm, as measured by x-ray
reflectivity with a precision of ±0.5 nm (6, 7). A
circle of diameter D = 22.8 mm was scribed
onto the film with a sharp edge. When the sub-
strate was dipped into a petri dish of distilled,
deionized water, a circular piece of the PS film
detached from the substrate. Because PS is hy-
drophobic, the film floated to the surface of
the water where it was stretched flat by the
surface tension g of the air-water interface at
its perimeter.

Wrinkles were induced in the stretched, float-
ing film by placing a drop of water in the center
of the film (Fig. 1), by placing a solid disk in the
center of the film (fig. S1A), or by poking the
film with a sharp point (fig. S1B) to produce a
fixed out-of-plane displacement. All these meth-
ods of loading lead to qualitatively similar wrin-
kling patterns, radiating from the center of the
load. We emphasize a crucial difference between
loading with a solid and a fluid: The wrinkling
induced in Fig. 1 is primarily due not to the
weight of the drop, but to the capillary force

exerted on the film by the surface tension at the
air-water-PS contact line. The radial stress srr
induced at the edge of the drop is dominated by
the surface tension, which for the conditions of
Fig. 1 is about 100 times as great as the radial
stress developed due to the weight of the drop
(mg/2pa), where m is the mass of the drop and a
its radius. Indeed, a solid object of weight and
contact area comparable to those of the drops
shown in Fig. 1 would produce no discernible
wrinkling. The contact angle of the drop on PS
is 88° ± 2°, and thus the geometry of the drop
on the film is approximately that of a hemi-
sphere on a flat surface (with perhaps some de-
formation of the film close to the contact line
itself). In view of this attractively simple geom-
etry and the degree of experimental control af-
forded by loading with a fluid, we focus on
wrinkling induced by fluid capillarity as in Fig. 1.

We observe the wrinkling pattern using a
digital camera mounted on a low-magnification
microscope (Fig. 1). Two obvious quantitative
descriptors of the wrinkling patterns are the num-
ber of wrinkles N and the length of the wrinkle
L as measured from the edge of the droplet. N is
determined by counting. Because the terminus
of the wrinkle is quite sharply defined and not

sensitive to lighting and optical contrast, we are
also able to measure L directly from the image.
The radius of the circle in which the entire wrin-
kle pattern is inscribed (see top left of Fig. 1) is
determined with a precision of 3%.

The central question in understanding this
wrinkling pattern is, how are (N, L) determined
by the elasticity of the sheet (thickness h, Young’s
modulus E, and Poisson ratio L) and the param-
eters of the loading (surface tension g and radius
of the drop a). To study systematically the effect
of loading and elasticity, we placed water drops
at the center of the film using a micropipette,
increasing the mass of the drop in increments of
0.2 mg. As the radius of the drop was increased,
both L and N increased.

We first focus on N, which is found to in-
crease as N º

ffiffiffi
a

p
. However, as is evident in

Fig. 1, N is smaller in thicker films. The com-
bined dependence of N on a and h is correctly
captured by the scaling N e a

1=2h
–3=4, as shown in

Fig. 2. To understand this scaling, the arguments
of Cerda and Mahadevan (2) may be adapted to a
radial geometry (5, 8). Because the number of
wrinkles remains constant at all radial distances r
from the center of the pattern, the wavelength of
wrinkles varies according to l = 2pr/N.
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Fig. 1. Four PS films of diameter D =
22.8 mm and of varying thicknesses float-
ing on the surface of water, each wrinkled
by water drops of radius a ≈ 0.5 mm and
mass m ≈ 0.2 mg. As the film is made
thicker, the number of wrinkles N de-
creases (there are 111, 68, 49, and 31
wrinkles in these images), and the length
of wrinkles L increases. L is defined as
shown at top left, measured from the edge
of the water droplet to the white circle.
The scale varies between images, whereas
the water droplets are approximately the
same size.

Fig. 2. The number of wrinkles
N as a function of a scaling
variable, a1/2h–3/4. Data for dif-
ferent film thicknesses h (indi-
cated by symbols in the legend)
collapse onto a single line (the
solid line is a fit: N = 2.50 ×
103a1/2h–3/4). The extent of
reproducibility is indicated by
the open and solid inverted
triangles, which are taken for
two films of the same nominal
thickness.
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Eh = (membrane energy) + h2(bending energy) + (loads)

Step 2: When h > 0 scale of wrinkling must be positive, to keep
bending energy finite. Wrinkling produces out-of-plane displacement,
increasing membrane term. Local length scale of wrinkling is
determined by competition between bending & membrane effects.
(Recognized by Cerda & Mahadevan, 15 years ago).

Let Eh = min Eh be the min energy at fixed h > 0, and define

Eh = E0 + excess energy.

An ansatz for the wrinkling gives an upper bound on the excess
energy. Ansatz-free lower bounds assess the quality of upper bound.
Since excess energy is linked to the length scale of wrinkling, such
results – and their proofs – provide insight and intuition.

Robert V. Kohn Wrinkles and Folds



Framework for analysis of tensile wrinkling

on the film of cream that floats on warm milk;
or on the skin of fruit as it dries.

This familiar instability occurs because the
elastic energy required to stretch a sheet is re-
duced by the out-of-plane bending that accom-
panies wrinkling. Cerda and Mahadevan (1, 2)
considered a situation in which a rectangular
elastic sheet is clamped at its ends and stretched.
Beyond a critical strain, the sheet wrinkles.
Minimization of the total elastic energy leads to
scaling relationships between the amplitude and
wavelength of the wrinkles. Their arguments
have been applied to a variety of contexts, in-
cluding the mechanics of artificial skins (3, 4)
and surgical scars (5).

We report on a study of wrinkling of films
under capillary forces, which has thus far re-
mained relatively unexplored. Because thin films
are often immersed in fluid environments, both
in biological and in synthetic soft materials, the
elastic deformation of films under surface ten-
sion is relatively commonplace. Thin polymer
films form an ideal experimental setting in which
to explore wrinkling phenomena: We study films
with very high aspect ratios (the ratio of diameter
D to thickness h is D/h ~ 5 × 105), which can be
treated accurately in the framework of two-
dimensional elasticity.

We used films of polystyrene (PS; atactic,
number-average molecular weight Mn = 91,000,
weight-average molecular weight Mw = 95,500,
radius of gyration Rg ~ 10 nm) spin-coated onto
glass substrates. The film thickness h was varied
from 31 to 233 nm, as measured by x-ray
reflectivity with a precision of ±0.5 nm (6, 7). A
circle of diameter D = 22.8 mm was scribed
onto the film with a sharp edge. When the sub-
strate was dipped into a petri dish of distilled,
deionized water, a circular piece of the PS film
detached from the substrate. Because PS is hy-
drophobic, the film floated to the surface of
the water where it was stretched flat by the
surface tension g of the air-water interface at
its perimeter.

Wrinkles were induced in the stretched, float-
ing film by placing a drop of water in the center
of the film (Fig. 1), by placing a solid disk in the
center of the film (fig. S1A), or by poking the
film with a sharp point (fig. S1B) to produce a
fixed out-of-plane displacement. All these meth-
ods of loading lead to qualitatively similar wrin-
kling patterns, radiating from the center of the
load. We emphasize a crucial difference between
loading with a solid and a fluid: The wrinkling
induced in Fig. 1 is primarily due not to the
weight of the drop, but to the capillary force

exerted on the film by the surface tension at the
air-water-PS contact line. The radial stress srr
induced at the edge of the drop is dominated by
the surface tension, which for the conditions of
Fig. 1 is about 100 times as great as the radial
stress developed due to the weight of the drop
(mg/2pa), where m is the mass of the drop and a
its radius. Indeed, a solid object of weight and
contact area comparable to those of the drops
shown in Fig. 1 would produce no discernible
wrinkling. The contact angle of the drop on PS
is 88° ± 2°, and thus the geometry of the drop
on the film is approximately that of a hemi-
sphere on a flat surface (with perhaps some de-
formation of the film close to the contact line
itself). In view of this attractively simple geom-
etry and the degree of experimental control af-
forded by loading with a fluid, we focus on
wrinkling induced by fluid capillarity as in Fig. 1.

We observe the wrinkling pattern using a
digital camera mounted on a low-magnification
microscope (Fig. 1). Two obvious quantitative
descriptors of the wrinkling patterns are the num-
ber of wrinkles N and the length of the wrinkle
L as measured from the edge of the droplet. N is
determined by counting. Because the terminus
of the wrinkle is quite sharply defined and not

sensitive to lighting and optical contrast, we are
also able to measure L directly from the image.
The radius of the circle in which the entire wrin-
kle pattern is inscribed (see top left of Fig. 1) is
determined with a precision of 3%.

The central question in understanding this
wrinkling pattern is, how are (N, L) determined
by the elasticity of the sheet (thickness h, Young’s
modulus E, and Poisson ratio L) and the param-
eters of the loading (surface tension g and radius
of the drop a). To study systematically the effect
of loading and elasticity, we placed water drops
at the center of the film using a micropipette,
increasing the mass of the drop in increments of
0.2 mg. As the radius of the drop was increased,
both L and N increased.

We first focus on N, which is found to in-
crease as N º

ffiffiffi
a

p
. However, as is evident in

Fig. 1, N is smaller in thicker films. The com-
bined dependence of N on a and h is correctly
captured by the scaling N e a

1=2h
–3=4, as shown in

Fig. 2. To understand this scaling, the arguments
of Cerda and Mahadevan (2) may be adapted to a
radial geometry (5, 8). Because the number of
wrinkles remains constant at all radial distances r
from the center of the pattern, the wavelength of
wrinkles varies according to l = 2pr/N.
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Fig. 1. Four PS films of diameter D =
22.8 mm and of varying thicknesses float-
ing on the surface of water, each wrinkled
by water drops of radius a ≈ 0.5 mm and
mass m ≈ 0.2 mg. As the film is made
thicker, the number of wrinkles N de-
creases (there are 111, 68, 49, and 31
wrinkles in these images), and the length
of wrinkles L increases. L is defined as
shown at top left, measured from the edge
of the water droplet to the white circle.
The scale varies between images, whereas
the water droplets are approximately the
same size.

Fig. 2. The number of wrinkles
N as a function of a scaling
variable, a1/2h–3/4. Data for dif-
ferent film thicknesses h (indi-
cated by symbols in the legend)
collapse onto a single line (the
solid line is a fit: N = 2.50 ×
103a1/2h–3/4). The extent of
reproducibility is indicated by
the open and solid inverted
triangles, which are taken for
two films of the same nominal
thickness.
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Eh = (membrane energy) + h2(bending energy) + (loads)

Step 2: When h > 0 scale of wrinkling must be positive, to keep
bending energy finite. Wrinkling produces out-of-plane displacement,
increasing membrane term. Local length scale of wrinkling is
determined by competition between bending & membrane effects.
(Recognized by Cerda & Mahadevan, 15 years ago).

Let Eh = min Eh be the min energy at fixed h > 0, and define

Eh = E0 + excess energy.

An ansatz for the wrinkling gives an upper bound on the excess
energy. Ansatz-free lower bounds assess the quality of upper bound.
Since excess energy is linked to the length scale of wrinkling, such
results – and their proofs – provide insight and intuition.

Robert V. Kohn Wrinkles and Folds



An example: the annulus problem

Annulus-shaped sheet, loaded by uniform tension at both boundaries.
Captures essential physics of the “sheet-on-drop” experiment
(Davidovitch et al, PNAS 2011).

No wrinkling at larger radii;
lots of wrinkling at smaller
radii, to avoid compression.
Free boundary at r = r0.

on the film of cream that floats on warm milk;
or on the skin of fruit as it dries.

This familiar instability occurs because the
elastic energy required to stretch a sheet is re-
duced by the out-of-plane bending that accom-
panies wrinkling. Cerda and Mahadevan (1, 2)
considered a situation in which a rectangular
elastic sheet is clamped at its ends and stretched.
Beyond a critical strain, the sheet wrinkles.
Minimization of the total elastic energy leads to
scaling relationships between the amplitude and
wavelength of the wrinkles. Their arguments
have been applied to a variety of contexts, in-
cluding the mechanics of artificial skins (3, 4)
and surgical scars (5).

We report on a study of wrinkling of films
under capillary forces, which has thus far re-
mained relatively unexplored. Because thin films
are often immersed in fluid environments, both
in biological and in synthetic soft materials, the
elastic deformation of films under surface ten-
sion is relatively commonplace. Thin polymer
films form an ideal experimental setting in which
to explore wrinkling phenomena: We study films
with very high aspect ratios (the ratio of diameter
D to thickness h is D/h ~ 5 × 105), which can be
treated accurately in the framework of two-
dimensional elasticity.

We used films of polystyrene (PS; atactic,
number-average molecular weight Mn = 91,000,
weight-average molecular weight Mw = 95,500,
radius of gyration Rg ~ 10 nm) spin-coated onto
glass substrates. The film thickness h was varied
from 31 to 233 nm, as measured by x-ray
reflectivity with a precision of ±0.5 nm (6, 7). A
circle of diameter D = 22.8 mm was scribed
onto the film with a sharp edge. When the sub-
strate was dipped into a petri dish of distilled,
deionized water, a circular piece of the PS film
detached from the substrate. Because PS is hy-
drophobic, the film floated to the surface of
the water where it was stretched flat by the
surface tension g of the air-water interface at
its perimeter.

Wrinkles were induced in the stretched, float-
ing film by placing a drop of water in the center
of the film (Fig. 1), by placing a solid disk in the
center of the film (fig. S1A), or by poking the
film with a sharp point (fig. S1B) to produce a
fixed out-of-plane displacement. All these meth-
ods of loading lead to qualitatively similar wrin-
kling patterns, radiating from the center of the
load. We emphasize a crucial difference between
loading with a solid and a fluid: The wrinkling
induced in Fig. 1 is primarily due not to the
weight of the drop, but to the capillary force

exerted on the film by the surface tension at the
air-water-PS contact line. The radial stress srr
induced at the edge of the drop is dominated by
the surface tension, which for the conditions of
Fig. 1 is about 100 times as great as the radial
stress developed due to the weight of the drop
(mg/2pa), where m is the mass of the drop and a
its radius. Indeed, a solid object of weight and
contact area comparable to those of the drops
shown in Fig. 1 would produce no discernible
wrinkling. The contact angle of the drop on PS
is 88° ± 2°, and thus the geometry of the drop
on the film is approximately that of a hemi-
sphere on a flat surface (with perhaps some de-
formation of the film close to the contact line
itself). In view of this attractively simple geom-
etry and the degree of experimental control af-
forded by loading with a fluid, we focus on
wrinkling induced by fluid capillarity as in Fig. 1.

We observe the wrinkling pattern using a
digital camera mounted on a low-magnification
microscope (Fig. 1). Two obvious quantitative
descriptors of the wrinkling patterns are the num-
ber of wrinkles N and the length of the wrinkle
L as measured from the edge of the droplet. N is
determined by counting. Because the terminus
of the wrinkle is quite sharply defined and not

sensitive to lighting and optical contrast, we are
also able to measure L directly from the image.
The radius of the circle in which the entire wrin-
kle pattern is inscribed (see top left of Fig. 1) is
determined with a precision of 3%.

The central question in understanding this
wrinkling pattern is, how are (N, L) determined
by the elasticity of the sheet (thickness h, Young’s
modulus E, and Poisson ratio L) and the param-
eters of the loading (surface tension g and radius
of the drop a). To study systematically the effect
of loading and elasticity, we placed water drops
at the center of the film using a micropipette,
increasing the mass of the drop in increments of
0.2 mg. As the radius of the drop was increased,
both L and N increased.

We first focus on N, which is found to in-
crease as N º

ffiffiffi
a

p
. However, as is evident in

Fig. 1, N is smaller in thicker films. The com-
bined dependence of N on a and h is correctly
captured by the scaling N e a

1=2h
–3=4, as shown in

Fig. 2. To understand this scaling, the arguments
of Cerda and Mahadevan (2) may be adapted to a
radial geometry (5, 8). Because the number of
wrinkles remains constant at all radial distances r
from the center of the pattern, the wavelength of
wrinkles varies according to l = 2pr/N.
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Fig. 1. Four PS films of diameter D =
22.8 mm and of varying thicknesses float-
ing on the surface of water, each wrinkled
by water drops of radius a ≈ 0.5 mm and
mass m ≈ 0.2 mg. As the film is made
thicker, the number of wrinkles N de-
creases (there are 111, 68, 49, and 31
wrinkles in these images), and the length
of wrinkles L increases. L is defined as
shown at top left, measured from the edge
of the water droplet to the white circle.
The scale varies between images, whereas
the water droplets are approximately the
same size.

Fig. 2. The number of wrinkles
N as a function of a scaling
variable, a1/2h–3/4. Data for dif-
ferent film thicknesses h (indi-
cated by symbols in the legend)
collapse onto a single line (the
solid line is a fit: N = 2.50 ×
103a1/2h–3/4). The extent of
reproducibility is indicated by
the open and solid inverted
triangles, which are taken for
two films of the same nominal
thickness.
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Energy scaling law studied with Peter Bella (CPAM 2014). Main
conclusion: excess energy is linear in h,

E0 + C1h ≤ min Eh ≤ E0 + C2h

Really two assertions:

upper bound (requires a good ansatz)

lower bound (ansatz-free!)

Robert V. Kohn Wrinkles and Folds



An example: the annulus problem
Recall intuition: h > 0 forces finite-scale
wrinkling, hence nontrivial out-of-plane
displacement. Larger length scale reduces the
bending energy but increases membrane term.

Let w be the out-of-plane displacement of the sheet.

Upper bound min Eh ≤ E0 + C2h is not entirely trivial:

Ansatz of form w = f (r) sin(θ/h1/2) works near the center, but
not near edge of wrinkled region. Its membrane term is too large
there, giving excess energy of order h | log h|.

The log can be eliminated by being more careful:
(a) keep length scale of order h1/2 near edge of wrinkled region, but

let the profile of the wrinkling depend on r ; or
(b) introduce a “cascade of wrinkles,” changing the length scale near

the edge of the wrinkled region (as seen in the hanging drape).

The upper bound requires care near the edge of the wrinkled
region. Is nature so careful? (Maybe not.)

Robert V. Kohn Wrinkles and Folds



An example: the annulus problem

Lower bound min Eh ≥ E0 + C1h has an
interpolation inequality at its heart.

Argue by contradiction. Suppose a configuration exists with excess
energy less than δh; show δ cannot be too small.

Excess energy includes bending term, so out-of-plane
displacement w has h2

∫
|∇∇w |2 dx ≤ Cδh.

Radial tension⇒ rays from origin are like stretched rubber
bands; out-of-plane displacement makes them stretch more,
increasing the membrane term. Thus out-of-plane displacement
is controlled by excess energy:

∫
w2 dx ≤ δh.

Inequality ‖∇w‖L2 ≤ C‖w‖1/2
L2 ‖∇∇w‖1/2

L2 shows that
‖∇w‖L2 ≤ Cδ1/2.

But: small slope⇒ no room to wrinkle⇒ configuration is
essentially planar. This requires in-plane compression, hence
large membrane energy – a contradiction.

Robert V. Kohn Wrinkles and Folds



A word about the hanging drape

Drape gathered at the top, hanging due to gravity.
(Expt and ansatz-based analysis: Vandeparre et al,
PRL 2011. Energy scaling law: Bella & Kohn, CPAM
2017.)

To save bending energy, wrinkles coarsen and/or sides spread.
Scaling law of excess energy identifies # generations of
coarsening, and whether spreading is significant.

Coarsening of wrinkles cannot proceed too quickly, since it
costs membrane energy. Analysis relies on a lemma estimating
this cost.
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An example without tension in the wrinkled region
Tension may control the direction of wrinkling even if there’s no
tension in the wrinkled region.

A recent example, with Ethan O’Brien: wrinkling in the center of a
stretched, twisted ribbon (J Nonlin Sci 2018, building on modeling by
Chopin et al J Elast 2015).

Expts (Chopin & Kudrolli, PRL
2013) show several regimes; my
focus is on leftmost figure.

Introduction
Upper and lower bounds

Conclusions

The physical system
Our goals
The mathematical model

The experiment

Twist a ribbon and hold it with small tension. It should form
wrinkles in the center.

Figure: Left: A.E. Green, Proc. R. Soc. 1937[Gre37]. Right: Chopin and
Kudrolli, PRL 2013[CK13] and Chopin et al, J. Elasticity 2015[CDD15]

Ethan O’Brien and Robert V. Kohn Wrinkling of a twisted ribbon

In regime of the leftmost figure: lines parallel to ribbon midline form
helices. Arclength of helix is longest for lines at outer edge. In regime
of interest, those are stretched while midline is in compression.
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An example without tension in the wrinkled region

Outer edges have little freedom, due to
tension. As a result, relaxed problem
predicts uniaxial compression in center,
uniaxial tension near outer edges.
Horizontal lines have strain 0.

Wrinkling requires transverse deflection,
costing excess membrane energy.

Scaling of excess energy is h4/3. (Different
from annulus problem, since horizontal
lines are not in tension.)

For more detail: go to Ethan O’Brien’s talk in MS15 (Mon 4:30pm)
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Taking stock
Lessons wrt tensile wrinkling:

Relaxed problem predicts leading-order energy and
macroscopic features, including extent of the wrinkled region
and the uniaxial compression that is avoided by wrinkling.

Scale of wrinkling is linked to scaling law of excess energy.

Upper bound requires care at the edge of the wrinkled region
(with features not typically seen in expts).

Ansatz-free lower bound displays mechanism of competition
between membrane and bending terms.

Talk plan:

(1) Getting started

(2) Tensile wrinkling

(3) Compressive wrinkling

(4) Wrinkling and geometry
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Compressive wrinkling

In the absence of tension, the situation is different. One example:

Compression due to thermal mismatch:
a thin film bonded to a too-short bdry
(Lai et al, J Power Sources 2010)

Relaxed energy is 0, providing no information at all.

Greater multiplicity of low-energy structures.

Energy scaling law: C1h ≤ min Eh ≤ C2h (Ben Belgacem et al
2000, Jin & Sternberg 2001). Carries little info on bulk pattern,
since energy of layer near bdry must have energy of order h.

In general: in the absence of tension even the direction of
wrinkling is unclear.
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An example: the herringbone pattern
Work with Hoai-Minh Nguyen, concerning a thin, stiff layer bonded to
a thick, compliant substrate (J Nonlin Sci 2013)

stretch a polymer layer (biaxially)
deposit the film
release the polymer
film buckles to avoid compression

Commonly seen: a
herringbone pattern.

gold on pdms
Chen & Hutchinson, Scripta Mater 2004
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An example: the herringbone pattern

We use a “small-slope” (von Karman) version
of elasticity, writing (u1, u2,w) for the elastic
displacement. Periodicity is assumed on
some (large) scale L. The energy per unit
area Eh has three terms:

(1) Membrane term captures fact that film’s natural length is larger than that
of the substrate:

h
L2

∫
[0,L]2
|e(u) + 1

2∇w ⊗∇w − ηI|2 dx

(2) Bending term captures resistance to bending:

h3

L2

∫
[0,L]2
|∇∇w |2 dx

(3) Substrate energy captures fact that substrate acts as a “spring”, tending
to keep film flat:

αs

L2

(
‖w‖2

H1/2 + ‖u‖2
H1/2

)
where ‖φ‖2

H1/2 =
∑ |k ||φ̂(k)|2
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An example: the herringbone pattern

A brief explanation of the small-slope (von Karman) membrane
energy

h
∫
|e(u) + 1

2∇w ⊗∇w − ηI|2 dx dy

where (u1,u2,w) is the elastic displacement, and η is the misfit (both
assumed small). Notation: e(u) is the linear strain 1

2 (Du + DuT ).

1D analogue:
∫
|∂xu1 + 1

2 (∂xw)2 − η|2 dx

Explanation: if (x ,0) 7→ (x + u1(x),w(x)) then local stretching is√
(1 + ∂x u1)2 + (∂x w)2 − 1 ≈ ∂x u1 +

1
2 (∂x w)2
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An example: the herringbone pattern

Eh =
h
L2

∫
[0,L]2
|e(u) + 1

2∇w ⊗∇w − ηI|2 dx

+
h3

L2

∫
[0,L]2
|∇∇w |2 dx +

αs

L2

(
‖w‖2

H1/2 + ‖u‖2
H1/2

)

Summary of main results:

energy of unbuckled state
w = u = 0 is η2h;

energy of herringbone pattern has
order α2/3

s ηh;

min Eh ∼ min{η2h, α2/3
s ηh}, so

herringbone achieves the energy
scaling law when α2/3

s � η.
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An example: the herringbone pattern
Essence of upper bound: good understanding of the pattern.

Film wants to expand (isotropically) relative to substrate.

1D wrinkling expands only transverse to the wrinkles
a simple shear expands one diag dirn, compresses the other
shear combined with wrinkling achieves isotropic expansion

Substrate prohibits large deformation; therefore the film mixes the two
shear-combined-with-wrinkling variants. Thus, the herringbone
pattern has two length scales:

The smaller (the scale of the wrinkling) is set by
competition between bending term and
substrate energy of w .

The larger one (scale of the phase mixture) must
be s.t. the substrate energy of u is insignificant.
(It is not fully determined.)
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An example: the herringbone pattern

Lower bound has, at its heart, another interpoln ineq.

Claim: For any periodic (u1, u2,w), Eh ≥ C min{η2h, α2/3
s ηh}. Take L = 1 for

simplicity. Recall that

membrane term = h
∫
|e(u) + 1

2∇w ⊗∇w − ηI|2 dx ,

bending term = h3‖∇∇w‖2
L2 , and substrate term ≥ αs‖w‖2

H1/2 .

CASE 1: If
∫
|∇w |2 � η then membrane & η2h, since e(u) has mean 0.

CASE 2: If
∫
|∇w |2 & η use the interpolation inequality

‖∇w‖L2 . ‖∇∇w‖1/3
L2 ‖w‖2/3

H1/2

to see (using arith mean/geom mean ineq) that

Bending + substrate terms = h3‖∇∇w‖2 + 1
2αs‖w‖2

H1/2 +
1
2αs‖w‖2

H1/2

&
(

h3‖∇∇w‖2α2
s‖w‖4

H1/2

)1/3

& hα2/3
s ‖∇w‖2

L2 & hα2/3
s η
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An example: the herringbone pattern
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Taking stock
Lessons wrt compressive wrinkling:

Relaxed problem is completely degenerate (no longer useful).

We nevertheless understood the herringbone, as a mechanism
for achieving the min energy scaling law.

Uniqueness is not asserted! Indeed, less ordered patterns are
also seen (“labyrinths”); do they achieve same scaling law?

Lower bounds always rely on interpolation. How else to use
knowledge that

∫
|∇∇w |2 dx scales like a neg power of h?

Talk plan:

(1) Getting started

(2) Tensile wrinkling

(3) Compressive wrinkling

(4) Wrinkling and geometry
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Geometry and wrinkling

The interaction of geometry and wrinkling is a current frontier. Too
rich and too new for a synthesis; instead, three snapshots:

an indented sheet, floating on water;

a flat circular sheet, strongly attracted to a sphere;

a naturally-spherical thin sheet, floating on water.

Common features: membrane and bending effects interact with
geometry, producing effects not seen in examples discussed earlier.
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An indented sheet, floating on water

Flat film floating on water, poked from below
(relaxed problem: Vella et al, PRL 2015;
wrinkling scale: Paulsen et al, PNAS 2016).

shell’s resistance (19), has not been noted before. We will show
that it can have a dramatic effect on the wrinkle’s wavelength.
Before proceeding to discuss specific examples, let us note that

although the tension-induced stiffness Ktens may be negligible in
comparison with Ksub or Kcurv, wrinkle patterns that are described
by a local λ law are often characterized by the existence of a
tensile direction (σjjðxÞ � jσ⊥⊥ðxÞj), whose spatial variation oc-
curs over a much larger scale than λ. Although Eq. 1 may be
relevant also for more complex types of wrinkle patterns [e.g.,
under biaxial compression (20) or depressurizing a shell with a
stiff core (21)], confinement of sheets in the absence of an im-
posed tension often leads to patterns with deep folds or stress-
focusing zones (22–24), rather than to the oscillatory wrinkles
described by Eqs. 1 and 2 and manifested in the following
experimental examples.

Indentation of a Floating Sheet
To test the local λ law, we study the indentation of a thin poly-
styrene (PS) sheet (thickness 40  nm< t< 400  nm) floating on a
deionized water bath. The sheet has Young’s modulus E= 3.4
GPa and Poisson’s ratio Λ= 0.34, and the bath has surface ten-
sion γ = 72 mN/m and density 1,000 kg/m3. The sheet is poked
from beneath by a rod with a spherical tip of radius 0.79 mm. The
deformation is observed by two cameras that capture the side
and top views of the sheet. The indentation height δ is changed
by a translation stage and is measured with an accuracy of 50 μm.
The combination of loads due to the indentation height δ at

the center (r= 0), the liquid–vapor surface tension γ that pulls
the edge of the sheet (r=Rfilm), and the liquid gravity ρg leads to
azimuthal compression that is released by radial wrinkles (Fig. 2
A–D). In ref. 11, tension-field theory was used to predict the
macroscale axially symmetric shape ζ0ðrÞ. (There, the sheet was
poked from above, but the same predictions apply here, because
the gravitational potential energy of the liquid is quadratic in ζ.)
The wrinkle pattern is governed by the dimensionless in-
dentation height, eδ= ffiffiffiffiffiffiffiffiffi

Y=γ
p

· ðδ=ℓcÞ, where ℓc =
ffiffiffiffiffiffiffiffiffiffi
γ=ρg

p
is the cap-

illary length. For sufficiently large eδ, wrinkles cover the whole sheet
(except in a small tensile core at the center), and the tension-field
prediction for the shape ζ0ðrÞ becomes ζ0ðrÞ≈ δAiðr=ℓcurvÞ=Aið0Þ,
where ℓcurv =R1=3

filmℓ
2=3
c , and AiðxÞ is the Airy function (11). Our

measurements of the radial profile show excellent agreement with
this prediction, for a wide range of thickness t and a factor of 2 in
Rfilm, as shown in Fig. 2 E and F. The sheet returns to being flat
over the scale ℓcurv, as predicted.
The shape ζ0ðrÞ predicted in ref. 11 allows us to compute the

curvature RjjðrÞ−1 ≈ ζ0″ along the wrinkles and hence the curvature-
induced stiffness KcurvðrÞ=Y=R2

jj. Furthermore, the tension-field
calculation also yields the stress σjjðrÞ≈ γRfilm=r and thence the
value of Φ=

�
πr=λ

�
f in this polar geometry, from which we

compute the tension-induced stiffness KtensðrÞ= σjjjΦ′=Φj2 (details
in Supporting Information). These stiffnesses, together with
Ksub = ρg due to the liquid gravity, yield predictions for the wrinkle
wavelength, via Eqs. 1 and 2.
For eδJ 15, theory predicts that KcurvðrÞ � KtensðrÞ,Ksub in

most of the wrinkled zone. Hence, Eq. 1 yields

λðrÞ≈ 2π
�
BRjjðrÞ2

.
Y
�1=4

=ZðrÞ ·
ffiffiffiffiffiffi
t=δ

p
, [10]

where ZðrÞ= 2π
ffiffiffiffiffiffiffiffiffiffiffiffi
Aið0Þp

=½12ð1−Λ2Þ�1=4ðℓ3curv=rAiðr=ℓcurvÞÞ1=2 is in-
dependent of t. Fig. 3A shows the experimentally measured wrin-
kle wavelength at a fixed radial distance r= ℓcurv (safely in the
middle of the wrinkled zone), as a function of indentation height,
for a wide range of sheet thickness. For eδJ 15, Fig. 3B shows not
only a collapse of the data with the predicted (curvature-domi-
nated) scaling relation, λðr= ℓcurvÞ∼

ffiffiffiffiffiffi
t=δ

p
, but also a quantitative

agreement with the predicted t-independent prefactor ZðrÞ in
Eq. 10.

For smaller values of indentation height, the data deviate from
curvature-dominated behavior. This is in agreement with the local λ
law, which predicts that Ktens becomes appreciable here as shown by
the solid black curves in Fig. 3B that include all three terms in Keff
(and exhibit also a weak dependence on sheet size through Rfilm=ℓc).
In Fig. 4 we plot the number of wrinkles, mðrÞ= 2πr=λðrÞ.

[Plotting mðrÞ, rather than λðrÞ, emphasizes that the number of
wrinkles changes with radial distance r.] Results are shown for a
wide range of t and eδ and for two film radii: Rfilm = 11.1 cm (Fig.
4 A and B) and Rfilm = 22.2 cm (Fig. 4C). The colored curves
show the prediction from Eqs. 1 and 2, whereas the black curve
is obtained by approximating Keff ≈Kcurv and is valid only if
Kcurv � Ktens,Ksub.
As we saw in Fig. 3, Kcurv dominates the other stiffnesses (Ktens

and Ksub) for r∼ ℓcurv; here we see that Kcurv is dominant also for

A

B

C D

E

F

Fig. 2. Axisymmetric deformations of an indented polymer film. (A and B)
Side and top views of a polystyrene (PS) film of thickness t = 113 nm and radius
Rfilm = 11.1 mm, floating on water and indented to height δ= 0.59 mm at its
center. A pattern of radial wrinkles emerges. (C and D) Filtered image in-
tensity, I, vs. polar angle θ at radii r = 0.2Rfilm and r = 0.7Rfilm. Within an angular
sector (here, 20° wide) there are more wrinkles at the larger radius. Thus, the
wrinkle number, mðrÞ= 2πr=λðrÞ, varies spatially. (E) Side profiles: height of
sheet, z, vs. horizontal coordinate, x. The t = 197-nm sheet corresponds to
Rfilm = 17.5 mm, and t = 198 nm corresponds to Rfilm = 22.2 mm; the rest have
Rfilm = 11.1 mm. (The z scale is stretched to show detail.) (F) The same data
scaled by δ and ℓcurv. The data over a wide range of thicknesses, radii, and
poking amplitudes all follow the predicted Airy function shape (dotted curve).

1146 | www.pnas.org/cgi/doi/10.1073/pnas.1521520113 Paulsen et al.

Recall from our discussion of tension-driven wrinkling (eg the annulus
problem) that

(a) relaxed pbm gave leading-order energy and macroscopic
features;

(b) excess energy is from competition btwn bending & membrane
terms.

When geometry requires wrinkles to bend, this framework persists
but the nature of the competition is different.

Wrinkles don’t like to bend (same reason corrugated cardboard is
stiff). This effect is was absent in annulus problem, but dominates in
the indentation example. Analysis by Paulsen et al is compelling but
ansatz-based (we do not yet have an ansatz-free understanding).
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A flat circular sheet, strongly attracted to a sphere
The situation changes if the geometric constraint is strong enough.

A flat circular sheet, strongly attracted to a sphere
(Bella & Kohn, Phil Trans Roy Soc 2017)

2 PETER BELLA AND ROBERT V. KOHN

effects (which prefer less stretching) and the energetic cost of wrinkling (which prefers more
stretching).

Figure 1. Circular sheet on a ball

The behavior of thin elastic sheets experiencing
compression due to geometric effects has recently re-
ceived a lot of attention. Without attempting a com-
prehensive review, let us mention studies concerning
a sheet on a deformable sphere [11, 16, 17]; indenta-
tion of a pressurized ball [20]; indentation of a float-
ing sheet [21, 16]; wrinkling of a stamped plate [12];
and crystalline sheets on curved surfaces [10, 15].
Among these references the paper [11] deserves spe-
cial note, since (as we explain in Section 2) our model
is particularly close to the one considered there.

It is well known that with increasing compression
a thin elastic sheet undergoes an instability (like Eu-
ler buckling), the onset of which is well-understood
using linear analysis (this is the so called “near-
threshold” (NT) regime). As the compression in-
creases one enters a different, “far-from-threshold”
(FT) regime (see e.g. [9]), in which predictions from
the linear theory cease to be valid. In contrast with
the NT regime, in the FT regime the sheet (almost)
completely releases the compressive stresses by de-
forming out-of-plane (e.g. by wrinkling). The wrin-
kling wavelength is then set by a competition be-
tween the bending resistance (which prefers long

wavelengths) and mechanisms favoring short wavelengths (e.g. tension, curvature along
the wrinkles, and adhesion to a substrate). The natural goals in the FT regime are to
predict the wavelength of wrinkles (by deriving a so called “local λ-law” [6, 16]) and/or
to predict the macroscopic deformation of the sheet. These goals are the primary focus of
many of the papers cited above [9, 10, 11, 16, 20, 21].

While our goal in the present paper is very similar, there is an unexpected twist com-
pared to the aforementioned work. There the energy consists of a dominant part which
decides the macroscopic deformation, and a subdominant part which controls the scale of
the wrinkling. Put differently: in the limit of vanishing thickness the wrinkling does not
cost any energy (since the energetic contribution from wrinkling is subdominant), and the
macroscopic deformation of the sheet can be obtained via tension-field theory (in math-
ematical language: by minimizing a relaxed functional). In contrast, in the problem we
consider the cost of wrinkling is comparable to other terms in the dominant energy; as a
result one cannot use tension-field theory or solve a relaxed problem to predict the macro-
scopic deformation of the sheet. Instead, one must minimize an effective functional, in
which the elastic energy of radial tension competes with the (substrate + bending) en-
ergy of circumferential wrinkling. Since the energetic cost of wrinkling contributes to the

Eh =

∫ ∣∣e(u) + 1
2∇w ⊗∇w

∣∣2 dx + h2
∫
|∇∇w |2 dx + h−2

∫ ∣∣∣∣w +
|x |2
2R

∣∣∣∣2 dx

Each circle r = const in sheet avoids compression by wrinkling.

Optimization of substrate and bending sets length scale; assoc energy
is order one.

Sheet stretches radially, to reduce cost of wrinkling; optimization of
radial stretching determines leading-order energy.

Scale of wrinkling is fixed, so number of wrinkles changes with r . This
effect dominates next-order asymptotics in h.
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A naturally-spherical thin sheet, floating on water

Breaking news: talks by Eleni Katifori (MS55, Wed 5:00) and
Ian Tobasco (MS66, Thurs 9:30).

Sheets cut from spherical shells and placed on water
(Albarrán et al, arxiv:1806.03718)

2

FIG. 1. Wrinkling configurations in floating shells. (a) The wrinkle wavelength, λ, normalized by the deformation length scale

Γ =
√
Rt (main plot) and Λ = (KB/Kg)

1/4 (inset), versus the specific thickness of the shell, τ = Et/R2Kg. Representative
error bars are shown on a subset of the experimental results. The dashed lines indicate the elastica model for the different
normalizations, λ/Γ = 2π(τ/9)1/4 (red dashed line) and λ/Λ = 2π (black dashed line). The upper inset shows a schematic of the
floating shell setup. (b) The in-plane principal stress profiles (along the red lines drawn in the insets) in: (b1) an axisymmetric
configuration of a spherical cup (τ = 0.85, R = 6 cm) and (b2) an anisotropic configuration of a spherical strip (τ = 5.0, R = 3.8
cm). The theoretical trends are given by Eqs. 4 and 6. (c) A constellation of patterns in floating shells of various geometries
are shown, drawn from (left) experiments and (right) simulations, on the range 0.1 < τ < 20. Experimentally, shells have been
imaged by a shadowgraph (see Methods); simulation images depict surface displacement, using a similar colour scheme. We
can observe patterns comprising single (7, 17) and multiple (e.g. 1-3) domains of straight wrinkles (7, 17, 21), curved wrinkles
(4,16,19), axisymmetric wrinkles (b1, inset), folds (8, 10, 11, 20), flattened boundaries (19), dislocations (4, 16) amongst other
configurations. The top row compares experimental and simulated patterns for similar geometries and material properties.

are cut out of hemispheres, and thus have a constant
Gaussian curvature. When floated on a liquid surface
the shells assume a stunning variety of patterns by har-
vesting diverse instabilities (see Fig.1). The patterns typ-
ically show well-defined wrinkles of constant wavelength,
λ. The scaling of this wavelength is demonstrated in
Fig. 1(a). Depending on their configuration, they may
also exhibit a spatially varying amplitude, as reflected

by variations in colour intensity of the top-view images
provided in Fig.1(b,c).

Apart from their wavelength and amplitude, the topo-
logical characteristics of wrinkles can be described in
terms of ridge lines. These continuous curves trace along
the set of locally maximal points that define the crest
of each wrinkle, and appear as bright lines in the images
shown in Fig.1(c). When seen from above, as there, these

Sheets with the same natural curvature but different shapes show
very different wrinkling patterns.
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configuration of a spherical cup (τ = 0.85, R = 6 cm) and (b2) an anisotropic configuration of a spherical strip (τ = 5.0, R = 3.8
cm). The theoretical trends are given by Eqs. 4 and 6. (c) A constellation of patterns in floating shells of various geometries
are shown, drawn from (left) experiments and (right) simulations, on the range 0.1 < τ < 20. Experimentally, shells have been
imaged by a shadowgraph (see Methods); simulation images depict surface displacement, using a similar colour scheme. We
can observe patterns comprising single (7, 17) and multiple (e.g. 1-3) domains of straight wrinkles (7, 17, 21), curved wrinkles
(4,16,19), axisymmetric wrinkles (b1, inset), folds (8, 10, 11, 20), flattened boundaries (19), dislocations (4, 16) amongst other
configurations. The top row compares experimental and simulated patterns for similar geometries and material properties.

are cut out of hemispheres, and thus have a constant
Gaussian curvature. When floated on a liquid surface
the shells assume a stunning variety of patterns by har-
vesting diverse instabilities (see Fig.1). The patterns typ-
ically show well-defined wrinkles of constant wavelength,
λ. The scaling of this wavelength is demonstrated in
Fig. 1(a). Depending on their configuration, they may
also exhibit a spatially varying amplitude, as reflected

by variations in colour intensity of the top-view images
provided in Fig.1(b,c).

Apart from their wavelength and amplitude, the topo-
logical characteristics of wrinkles can be described in
terms of ridge lines. These continuous curves trace along
the set of locally maximal points that define the crest
of each wrinkle, and appear as bright lines in the images
shown in Fig.1(c). When seen from above, as there, these

This is geometrically-driven compressive wrinkling.

What sets dirn of wrinkling? Is there a variational pbm that
determines the leading order energy? (An elegant answer is just
now emerging.)

Robert V. Kohn Wrinkles and Folds



Stepping back

Variational viewpoint, with thickness as a small parameter: the
elastic energy of a sheet is like a Landau theory from physics: a
nonconvex membrane energy, regularized by a higher order
term (bending) with a small coefficient.

We’re interested in h→ 0. Bifurcation diagrams are difficult in
this regime. Energy scaling laws provide an alternative.

Focus on energy scaling law permits rigorous analysis.

We also get insight about patterns, e.g. whether they achieve
the optimal scaling. (But note: patterns in nature can be local
minima.)

Analysis is useful, as a complement to simulation. Simulation
shows how patterns form; ansatz-free lower bounds explain why
patterns form.

Robert V. Kohn Wrinkles and Folds
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effects (which prefer less stretching) and the energetic cost of wrinkling (which prefers more
stretching).

Figure 1. Circular sheet on a ball

The behavior of thin elastic sheets experiencing
compression due to geometric effects has recently re-
ceived a lot of attention. Without attempting a com-
prehensive review, let us mention studies concerning
a sheet on a deformable sphere [11, 16, 17]; indenta-
tion of a pressurized ball [20]; indentation of a float-
ing sheet [21, 16]; wrinkling of a stamped plate [12];
and crystalline sheets on curved surfaces [10, 15].
Among these references the paper [11] deserves spe-
cial note, since (as we explain in Section 2) our model
is particularly close to the one considered there.

It is well known that with increasing compression
a thin elastic sheet undergoes an instability (like Eu-
ler buckling), the onset of which is well-understood
using linear analysis (this is the so called “near-
threshold” (NT) regime). As the compression in-
creases one enters a different, “far-from-threshold”
(FT) regime (see e.g. [9]), in which predictions from
the linear theory cease to be valid. In contrast with
the NT regime, in the FT regime the sheet (almost)
completely releases the compressive stresses by de-
forming out-of-plane (e.g. by wrinkling). The wrin-
kling wavelength is then set by a competition be-
tween the bending resistance (which prefers long

wavelengths) and mechanisms favoring short wavelengths (e.g. tension, curvature along
the wrinkles, and adhesion to a substrate). The natural goals in the FT regime are to
predict the wavelength of wrinkles (by deriving a so called “local λ-law” [6, 16]) and/or
to predict the macroscopic deformation of the sheet. These goals are the primary focus of
many of the papers cited above [9, 10, 11, 16, 20, 21].

While our goal in the present paper is very similar, there is an unexpected twist com-
pared to the aforementioned work. There the energy consists of a dominant part which
decides the macroscopic deformation, and a subdominant part which controls the scale of
the wrinkling. Put differently: in the limit of vanishing thickness the wrinkling does not
cost any energy (since the energetic contribution from wrinkling is subdominant), and the
macroscopic deformation of the sheet can be obtained via tension-field theory (in math-
ematical language: by minimizing a relaxed functional). In contrast, in the problem we
consider the cost of wrinkling is comparable to other terms in the dominant energy; as a
result one cannot use tension-field theory or solve a relaxed problem to predict the macro-
scopic deformation of the sheet. Instead, one must minimize an effective functional, in
which the elastic energy of radial tension competes with the (substrate + bending) en-
ergy of circumferential wrinkling. Since the energetic cost of wrinkling contributes to the

P. Bella & R. Kohn, Phil Trans Roy Soc A 375 (2017)
20160157

E. Cerda and L. Mahadevan, Proc R Soc A 461
(2005) 671-700

E. Cerda and L. Mahadevan, Phys Rev Lett 90 (2003)
074302

on the film of cream that floats on warm milk;
or on the skin of fruit as it dries.

This familiar instability occurs because the
elastic energy required to stretch a sheet is re-
duced by the out-of-plane bending that accom-
panies wrinkling. Cerda and Mahadevan (1, 2)
considered a situation in which a rectangular
elastic sheet is clamped at its ends and stretched.
Beyond a critical strain, the sheet wrinkles.
Minimization of the total elastic energy leads to
scaling relationships between the amplitude and
wavelength of the wrinkles. Their arguments
have been applied to a variety of contexts, in-
cluding the mechanics of artificial skins (3, 4)
and surgical scars (5).

We report on a study of wrinkling of films
under capillary forces, which has thus far re-
mained relatively unexplored. Because thin films
are often immersed in fluid environments, both
in biological and in synthetic soft materials, the
elastic deformation of films under surface ten-
sion is relatively commonplace. Thin polymer
films form an ideal experimental setting in which
to explore wrinkling phenomena: We study films
with very high aspect ratios (the ratio of diameter
D to thickness h is D/h ~ 5 × 105), which can be
treated accurately in the framework of two-
dimensional elasticity.

We used films of polystyrene (PS; atactic,
number-average molecular weight Mn = 91,000,
weight-average molecular weight Mw = 95,500,
radius of gyration Rg ~ 10 nm) spin-coated onto
glass substrates. The film thickness h was varied
from 31 to 233 nm, as measured by x-ray
reflectivity with a precision of ±0.5 nm (6, 7). A
circle of diameter D = 22.8 mm was scribed
onto the film with a sharp edge. When the sub-
strate was dipped into a petri dish of distilled,
deionized water, a circular piece of the PS film
detached from the substrate. Because PS is hy-
drophobic, the film floated to the surface of
the water where it was stretched flat by the
surface tension g of the air-water interface at
its perimeter.

Wrinkles were induced in the stretched, float-
ing film by placing a drop of water in the center
of the film (Fig. 1), by placing a solid disk in the
center of the film (fig. S1A), or by poking the
film with a sharp point (fig. S1B) to produce a
fixed out-of-plane displacement. All these meth-
ods of loading lead to qualitatively similar wrin-
kling patterns, radiating from the center of the
load. We emphasize a crucial difference between
loading with a solid and a fluid: The wrinkling
induced in Fig. 1 is primarily due not to the
weight of the drop, but to the capillary force

exerted on the film by the surface tension at the
air-water-PS contact line. The radial stress srr
induced at the edge of the drop is dominated by
the surface tension, which for the conditions of
Fig. 1 is about 100 times as great as the radial
stress developed due to the weight of the drop
(mg/2pa), where m is the mass of the drop and a
its radius. Indeed, a solid object of weight and
contact area comparable to those of the drops
shown in Fig. 1 would produce no discernible
wrinkling. The contact angle of the drop on PS
is 88° ± 2°, and thus the geometry of the drop
on the film is approximately that of a hemi-
sphere on a flat surface (with perhaps some de-
formation of the film close to the contact line
itself). In view of this attractively simple geom-
etry and the degree of experimental control af-
forded by loading with a fluid, we focus on
wrinkling induced by fluid capillarity as in Fig. 1.

We observe the wrinkling pattern using a
digital camera mounted on a low-magnification
microscope (Fig. 1). Two obvious quantitative
descriptors of the wrinkling patterns are the num-
ber of wrinkles N and the length of the wrinkle
L as measured from the edge of the droplet. N is
determined by counting. Because the terminus
of the wrinkle is quite sharply defined and not

sensitive to lighting and optical contrast, we are
also able to measure L directly from the image.
The radius of the circle in which the entire wrin-
kle pattern is inscribed (see top left of Fig. 1) is
determined with a precision of 3%.

The central question in understanding this
wrinkling pattern is, how are (N, L) determined
by the elasticity of the sheet (thickness h, Young’s
modulus E, and Poisson ratio L) and the param-
eters of the loading (surface tension g and radius
of the drop a). To study systematically the effect
of loading and elasticity, we placed water drops
at the center of the film using a micropipette,
increasing the mass of the drop in increments of
0.2 mg. As the radius of the drop was increased,
both L and N increased.

We first focus on N, which is found to in-
crease as N º

ffiffiffi
a

p
. However, as is evident in

Fig. 1, N is smaller in thicker films. The com-
bined dependence of N on a and h is correctly
captured by the scaling N e a

1=2h
–3=4, as shown in

Fig. 2. To understand this scaling, the arguments
of Cerda and Mahadevan (2) may be adapted to a
radial geometry (5, 8). Because the number of
wrinkles remains constant at all radial distances r
from the center of the pattern, the wavelength of
wrinkles varies according to l = 2pr/N.
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Fig. 1. Four PS films of diameter D =
22.8 mm and of varying thicknesses float-
ing on the surface of water, each wrinkled
by water drops of radius a ≈ 0.5 mm and
mass m ≈ 0.2 mg. As the film is made
thicker, the number of wrinkles N de-
creases (there are 111, 68, 49, and 31
wrinkles in these images), and the length
of wrinkles L increases. L is defined as
shown at top left, measured from the edge
of the water droplet to the white circle.
The scale varies between images, whereas
the water droplets are approximately the
same size.

Fig. 2. The number of wrinkles
N as a function of a scaling
variable, a1/2h–3/4. Data for dif-
ferent film thicknesses h (indi-
cated by symbols in the legend)
collapse onto a single line (the
solid line is a fit: N = 2.50 ×
103a1/2h–3/4). The extent of
reproducibility is indicated by
the open and solid inverted
triangles, which are taken for
two films of the same nominal
thickness.
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Credits, cont’d
Introduction

Upper and lower bounds
Conclusions

The physical system
Our goals
The mathematical model

The experiment

Twist a ribbon and hold it with small tension. It should form
wrinkles in the center.

Figure: Left: A.E. Green, Proc. R. Soc. 1937[Gre37]. Right: Chopin and
Kudrolli, PRL 2013[CK13] and Chopin et al, J. Elasticity 2015[CDD15]

Ethan O’Brien and Robert V. Kohn Wrinkling of a twisted ribbon

J. Chopin & A. Kudrolli, Phys Rev Lett 111 (2013)
174302

B.-K. Lai et al, J Power Sources 195 (2010)
5185-5196

X. Chen and J. Hutchinson, Scripta Materialia 50
(2004) 797–801

shell’s resistance (19), has not been noted before. We will show
that it can have a dramatic effect on the wrinkle’s wavelength.
Before proceeding to discuss specific examples, let us note that

although the tension-induced stiffness Ktens may be negligible in
comparison with Ksub or Kcurv, wrinkle patterns that are described
by a local λ law are often characterized by the existence of a
tensile direction (σjjðxÞ � jσ⊥⊥ðxÞj), whose spatial variation oc-
curs over a much larger scale than λ. Although Eq. 1 may be
relevant also for more complex types of wrinkle patterns [e.g.,
under biaxial compression (20) or depressurizing a shell with a
stiff core (21)], confinement of sheets in the absence of an im-
posed tension often leads to patterns with deep folds or stress-
focusing zones (22–24), rather than to the oscillatory wrinkles
described by Eqs. 1 and 2 and manifested in the following
experimental examples.

Indentation of a Floating Sheet
To test the local λ law, we study the indentation of a thin poly-
styrene (PS) sheet (thickness 40  nm< t< 400  nm) floating on a
deionized water bath. The sheet has Young’s modulus E= 3.4
GPa and Poisson’s ratio Λ= 0.34, and the bath has surface ten-
sion γ = 72 mN/m and density 1,000 kg/m3. The sheet is poked
from beneath by a rod with a spherical tip of radius 0.79 mm. The
deformation is observed by two cameras that capture the side
and top views of the sheet. The indentation height δ is changed
by a translation stage and is measured with an accuracy of 50 μm.
The combination of loads due to the indentation height δ at

the center (r= 0), the liquid–vapor surface tension γ that pulls
the edge of the sheet (r=Rfilm), and the liquid gravity ρg leads to
azimuthal compression that is released by radial wrinkles (Fig. 2
A–D). In ref. 11, tension-field theory was used to predict the
macroscale axially symmetric shape ζ0ðrÞ. (There, the sheet was
poked from above, but the same predictions apply here, because
the gravitational potential energy of the liquid is quadratic in ζ.)
The wrinkle pattern is governed by the dimensionless in-
dentation height, eδ= ffiffiffiffiffiffiffiffiffi

Y=γ
p

· ðδ=ℓcÞ, where ℓc =
ffiffiffiffiffiffiffiffiffiffi
γ=ρg

p
is the cap-

illary length. For sufficiently large eδ, wrinkles cover the whole sheet
(except in a small tensile core at the center), and the tension-field
prediction for the shape ζ0ðrÞ becomes ζ0ðrÞ≈ δAiðr=ℓcurvÞ=Aið0Þ,
where ℓcurv =R1=3

filmℓ
2=3
c , and AiðxÞ is the Airy function (11). Our

measurements of the radial profile show excellent agreement with
this prediction, for a wide range of thickness t and a factor of 2 in
Rfilm, as shown in Fig. 2 E and F. The sheet returns to being flat
over the scale ℓcurv, as predicted.
The shape ζ0ðrÞ predicted in ref. 11 allows us to compute the

curvature RjjðrÞ−1 ≈ ζ0″ along the wrinkles and hence the curvature-
induced stiffness KcurvðrÞ=Y=R2

jj. Furthermore, the tension-field
calculation also yields the stress σjjðrÞ≈ γRfilm=r and thence the
value of Φ=

�
πr=λ

�
f in this polar geometry, from which we

compute the tension-induced stiffness KtensðrÞ= σjjjΦ′=Φj2 (details
in Supporting Information). These stiffnesses, together with
Ksub = ρg due to the liquid gravity, yield predictions for the wrinkle
wavelength, via Eqs. 1 and 2.
For eδJ 15, theory predicts that KcurvðrÞ � KtensðrÞ,Ksub in

most of the wrinkled zone. Hence, Eq. 1 yields

λðrÞ≈ 2π
�
BRjjðrÞ2

.
Y
�1=4

=ZðrÞ ·
ffiffiffiffiffiffi
t=δ

p
, [10]

where ZðrÞ= 2π
ffiffiffiffiffiffiffiffiffiffiffiffi
Aið0Þp

=½12ð1−Λ2Þ�1=4ðℓ3curv=rAiðr=ℓcurvÞÞ1=2 is in-
dependent of t. Fig. 3A shows the experimentally measured wrin-
kle wavelength at a fixed radial distance r= ℓcurv (safely in the
middle of the wrinkled zone), as a function of indentation height,
for a wide range of sheet thickness. For eδJ 15, Fig. 3B shows not
only a collapse of the data with the predicted (curvature-domi-
nated) scaling relation, λðr= ℓcurvÞ∼

ffiffiffiffiffiffi
t=δ

p
, but also a quantitative

agreement with the predicted t-independent prefactor ZðrÞ in
Eq. 10.

For smaller values of indentation height, the data deviate from
curvature-dominated behavior. This is in agreement with the local λ
law, which predicts that Ktens becomes appreciable here as shown by
the solid black curves in Fig. 3B that include all three terms in Keff
(and exhibit also a weak dependence on sheet size through Rfilm=ℓc).
In Fig. 4 we plot the number of wrinkles, mðrÞ= 2πr=λðrÞ.

[Plotting mðrÞ, rather than λðrÞ, emphasizes that the number of
wrinkles changes with radial distance r.] Results are shown for a
wide range of t and eδ and for two film radii: Rfilm = 11.1 cm (Fig.
4 A and B) and Rfilm = 22.2 cm (Fig. 4C). The colored curves
show the prediction from Eqs. 1 and 2, whereas the black curve
is obtained by approximating Keff ≈Kcurv and is valid only if
Kcurv � Ktens,Ksub.
As we saw in Fig. 3, Kcurv dominates the other stiffnesses (Ktens

and Ksub) for r∼ ℓcurv; here we see that Kcurv is dominant also for

A

B

C D

E

F

Fig. 2. Axisymmetric deformations of an indented polymer film. (A and B)
Side and top views of a polystyrene (PS) film of thickness t = 113 nm and radius
Rfilm = 11.1 mm, floating on water and indented to height δ= 0.59 mm at its
center. A pattern of radial wrinkles emerges. (C and D) Filtered image in-
tensity, I, vs. polar angle θ at radii r = 0.2Rfilm and r = 0.7Rfilm. Within an angular
sector (here, 20° wide) there are more wrinkles at the larger radius. Thus, the
wrinkle number, mðrÞ= 2πr=λðrÞ, varies spatially. (E) Side profiles: height of
sheet, z, vs. horizontal coordinate, x. The t = 197-nm sheet corresponds to
Rfilm = 17.5 mm, and t = 198 nm corresponds to Rfilm = 22.2 mm; the rest have
Rfilm = 11.1 mm. (The z scale is stretched to show detail.) (F) The same data
scaled by δ and ℓcurv. The data over a wide range of thicknesses, radii, and
poking amplitudes all follow the predicted Airy function shape (dotted curve).
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FIG. 1. Wrinkling configurations in floating shells. (a) The wrinkle wavelength, λ, normalized by the deformation length scale

Γ =
√
Rt (main plot) and Λ = (KB/Kg)

1/4 (inset), versus the specific thickness of the shell, τ = Et/R2Kg. Representative
error bars are shown on a subset of the experimental results. The dashed lines indicate the elastica model for the different
normalizations, λ/Γ = 2π(τ/9)1/4 (red dashed line) and λ/Λ = 2π (black dashed line). The upper inset shows a schematic of the
floating shell setup. (b) The in-plane principal stress profiles (along the red lines drawn in the insets) in: (b1) an axisymmetric
configuration of a spherical cup (τ = 0.85, R = 6 cm) and (b2) an anisotropic configuration of a spherical strip (τ = 5.0, R = 3.8
cm). The theoretical trends are given by Eqs. 4 and 6. (c) A constellation of patterns in floating shells of various geometries
are shown, drawn from (left) experiments and (right) simulations, on the range 0.1 < τ < 20. Experimentally, shells have been
imaged by a shadowgraph (see Methods); simulation images depict surface displacement, using a similar colour scheme. We
can observe patterns comprising single (7, 17) and multiple (e.g. 1-3) domains of straight wrinkles (7, 17, 21), curved wrinkles
(4,16,19), axisymmetric wrinkles (b1, inset), folds (8, 10, 11, 20), flattened boundaries (19), dislocations (4, 16) amongst other
configurations. The top row compares experimental and simulated patterns for similar geometries and material properties.

are cut out of hemispheres, and thus have a constant
Gaussian curvature. When floated on a liquid surface
the shells assume a stunning variety of patterns by har-
vesting diverse instabilities (see Fig.1). The patterns typ-
ically show well-defined wrinkles of constant wavelength,
λ. The scaling of this wavelength is demonstrated in
Fig. 1(a). Depending on their configuration, they may
also exhibit a spatially varying amplitude, as reflected

by variations in colour intensity of the top-view images
provided in Fig.1(b,c).

Apart from their wavelength and amplitude, the topo-
logical characteristics of wrinkles can be described in
terms of ridge lines. These continuous curves trace along
the set of locally maximal points that define the crest
of each wrinkle, and appear as bright lines in the images
shown in Fig.1(c). When seen from above, as there, these
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