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A variational perspective on wrinkling

2 PETER BELLA AND ROBERT V. KOHN

effects (which prefer less stretching) and the energetic cost of wrinkling (which prefers more
stretching).

Figure 1. Circular sheet on a ball

The behavior of thin elastic sheets experiencing
compression due to geometric effects has recently re-
ceived a lot of attention. Without attempting a com-
prehensive review, let us mention studies concerning
a sheet on a deformable sphere [11, 16, 17]; indenta-
tion of a pressurized ball [20]; indentation of a float-
ing sheet [21, 16]; wrinkling of a stamped plate [12];
and crystalline sheets on curved surfaces [10, 15].
Among these references the paper [11] deserves spe-
cial note, since (as we explain in Section 2) our model
is particularly close to the one considered there.

It is well known that with increasing compression
a thin elastic sheet undergoes an instability (like Eu-
ler buckling), the onset of which is well-understood
using linear analysis (this is the so called “near-
threshold” (NT) regime). As the compression in-
creases one enters a different, “far-from-threshold”
(FT) regime (see e.g. [9]), in which predictions from
the linear theory cease to be valid. In contrast with
the NT regime, in the FT regime the sheet (almost)
completely releases the compressive stresses by de-
forming out-of-plane (e.g. by wrinkling). The wrin-
kling wavelength is then set by a competition be-
tween the bending resistance (which prefers long

wavelengths) and mechanisms favoring short wavelengths (e.g. tension, curvature along
the wrinkles, and adhesion to a substrate). The natural goals in the FT regime are to
predict the wavelength of wrinkles (by deriving a so called “local λ-law” [6, 16]) and/or
to predict the macroscopic deformation of the sheet. These goals are the primary focus of
many of the papers cited above [9, 10, 11, 16, 20, 21].

While our goal in the present paper is very similar, there is an unexpected twist com-
pared to the aforementioned work. There the energy consists of a dominant part which
decides the macroscopic deformation, and a subdominant part which controls the scale of
the wrinkling. Put differently: in the limit of vanishing thickness the wrinkling does not
cost any energy (since the energetic contribution from wrinkling is subdominant), and the
macroscopic deformation of the sheet can be obtained via tension-field theory (in math-
ematical language: by minimizing a relaxed functional). In contrast, in the problem we
consider the cost of wrinkling is comparable to other terms in the dominant energy; as a
result one cannot use tension-field theory or solve a relaxed problem to predict the macro-
scopic deformation of the sheet. Instead, one must minimize an effective functional, in
which the elastic energy of radial tension competes with the (substrate + bending) en-
ergy of circumferential wrinkling. Since the energetic cost of wrinkling contributes to the

Recall that the calculus of variations has always been driven by
challenges from mechanics and geometry

1D calculus of variations⇔ action minimization, geodesics

minimal surfaces⇔ soap films

harmonic maps⇔ liquid crystals

Wrinkling is similar, but also different:

similar: patterns come from energy minimization

similar: there’s a rich body of physics literature

different: there’s a small parameter h, and the scale of wrinkling
tends to 0 as h→ 0. Weak rather than strong convergence.
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Why study wrinkling?
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scopic deformation of the sheet. Instead, one must minimize an effective functional, in
which the elastic energy of radial tension competes with the (substrate + bending) en-
ergy of circumferential wrinkling. Since the energetic cost of wrinkling contributes to the

Physical context: rich phenomenology, readily observed; potential
applications eg to metrology and device design; provocative
analogies to other physical systems where defects and patterns form
(eg liquid crystals, ferromagnets, martensitic phase transformation).

Mathematical context: elastic energy is very nonconvex, resembling a
Landau theory from condensed matter physics; we see patterns – but
how to describe and analyze them? A developing chapter in the calc
of varns: “energy-driven pattern formation.”
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The big picture

Wrinkling patterns can be complex. What
determines their character? How should
we even describe them?
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Energy minimization as an approach:

Stable equilibria are local minima of a variational problem
(elastic energy plus terms assoc to loads).

Do the patterns we see achieve (more or less) the global min?
(If not – that too would be interesting.)

To proceed, we need to know: how does min energy depend on
the problem’s parameters? What is required of a wrinkling
pattern, to approach the min energy?

Minimization within an ansatz is familiar; it gives an upper bound
on the minimum energy.

To complete the story, we need matching lower bounds. They
demonstrate the adequacy of the ansatz, and help us
understand what drives the patterns.
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Talk plan

Not a survey – rather, a story – about wrinkling due to
biaxial compression or geometric incompatibility.

(1) Background

the energy of a thin sheet as a Landau theory

(2) Compression-induced wrinkling

herringbones and labyrinths
(K & Hoai-Minh Nguyen, JNLS 2013)

(3) Geometry-induced wrinkling with tension

flat sheet conforming to a round surface
(Peter Bella & K, Phil Trans Roy Soc 2017)

(4) Geometry-induced wrinkling with asymptotic isometry

a curved shell conforming to a flat surface
(dramatic progress by Ian Tobasco, arXiv:1906.02153)
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Background: thin elastic sheets (fully nonlinear)

Paper is familiar, but
already interesting.

Fully nonlinear viewpoint: Configuration of a sheet of paper is a map
g : Ω→ R3, where Ω ⊂ R2 is the (undeformed) sheet’s shape.

Elastic energy consists of membrane energy and bending energy
(plus terms assoc to loads or bdry conds).

Membrane energy reflects in-plane stretching or compression of
sheet; hence proportional to sheet thickness h. Integrand depends on
“principal stretches” (eigenvalues of 2× 2 matrix (DgT Dg)1/2),
derivable from 3D elastic law. Key feature: it prefers isometry. Simple
example:

Membrane energy = h
∫

Ω

‖(DgT Dg)1/2 − I‖2 dx
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Backround: thin elastic sheets (fully nonlinear)
Bending energy reflects effect of
curvature: if midplane is isometric,
parallel surfaces won’t be!

Lack of isometry grows linearly with distance to midplane. So

Bending energy = ch3
∫

Ω

κ2
1 + κ2

2 dx

where κ1, κ2 are principal curvatures of (deformed) sheet.

The energy per unit thickness

Eh =

∫
Ω

‖(DgT Dg)1/2 − I‖2 dx + ch2
∫

Ω

κ2
1 + κ2

2 dx

is like a Landau theory from condensed matter physics: a nonconvex
term regularized by a higher-order singular perturbation.

After non-dimensionalization: for a sheet with extent L and thickness
t , Ω is its normalized shape and h is the eccentricity t/L.
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Background: thin elastic sheets (weakly nonlinear)
Some problems involve large rotations (eg the Mobius strip); such
problems require a (geometrically) nonlinear treatment. However, for
wrinkling a weakly nonlinear (Föppl-von Kármán) model is adequate.

In the simplest setting – wrinkling of a macroscopically flat sheet with
Poisson’s ratio zero – the weakly nonlinear theory uses

w = out-of-plane displacement and u = in-plane displacement.

The membrane and bending energies are

h
∫ ∣∣e(u) + 1

2∇w ⊗∇w
∣∣2 dx + h3

∫
|∇∇w |2 dx

where eij (u) = 1
2 (∂iuj + ∂jui ) is the linear strain assoc to u, and

(∇w ⊗∇w)ij = ∂iw ∂jw .
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Background: thin elastic sheets (weakly nonlinear)

membrane+bending = h
∫

Ω

‖e(u)+ 1
2∇w⊗∇w‖2 dx+h3

∫
Ω

‖∇∇w‖2 dx

The bending term is natural: in small-slope approxn, principal
curvatures of graph of w are eigenvalues of ∇∇w .

The membrane term is obtained by substituting

g(x1, x2) = [x1 + u1(x1, x2), x2 + u2(x1, x2),w(x1, x2)]

into the fully nonlinear theory, then expanding to leading order
(assuming ∇u and ∇w are small).
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Explaining the membrane term
To see why the membrane term is

h
∫ ∣∣e(u) + 1

2∇w ⊗∇w
∣∣2 dx ,

consider the simpler case of a 1D elastic string in the plane.

Then reference domain is a line segment, elastic displacement is
u1(x1), and out-of-plane displacement is w(x1). Assoc nonlinear map

g(x1) = [x1 + u1(x1),w(x1)]

has arclength element

|g′| = [(1 + ∂1u1)2 + (∂1w)2]1/2

≈ 1 + ∂1u1 + 1
2 (∂1w)2

so the square of the strain is

(|g′| − 1)2 ≈
∣∣∂1u1 + 1

2 (∂1w)2
∣∣2
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Talk plan

(1) Background

(2) Compression-induced wrinkling: herringbones and labyrinths
(work with Hoai-Minh Nguyen, JNLS 2013)

(3) Geometry-induced wrinkling with tension

(4) Geometry-induced wrinkling with asymptotic isometry
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Herringbones and labyrinths

stretch a polymer layer (biaxially)
deposit the film
release the polymer
film buckles to avoid compression

film

substrate

Commonly seen patterns: herringbones and labyrinths

gold on pdms
Chen & Hutchinson, Scripta Mat 2004

amorphous
Lin & Yang, Appl Phys Lett 2007

Herringbone for crystalline films; labyrinth for amorphous ones.

Robert V. Kohn Wrinkling due to Geometric Incompatiblity



The herringbone – Eh and the scaling law
Main result: herringbone achieves
optimal energy scaling law. (Status of
labyrinth is unclear.)

Energy per unit area is

Eh =
h
L2

∫
[0,L]2
|e(u) + 1

2∇w ⊗∇w − ηI|2 dx dy

+
h3

L2

∫
[0,L]2
|∇∇w |2 dx dy +

αs

L2

(
‖u‖2

H1/2 + ‖w‖2
H1/2

)
where

ηI = compression of unwrinkled film
αs = ratio of substrate vs film stiffness

final term = elastic energy of substrate

Energy scaling law:

min Eh ∼min{η2h, α2/3
s ηh}

∼min{flat state, herringbone}
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The herringbone – sketch of the upper bound
Film wants to expand (isotropically) relative to substrate.

1D wrinkling expands only transverse to the wrinkles

a simple shear expands one diag dirn, compresses the other

shear combined with wrinkling achieves isotropic expansion

Substrate prohibits large deformation; therefore film mixes the
shear-combined-with-wrinkling variants. (Bdry layers introduce some
membrane energy, not significant.) Pattern has two length scales:

The smaller one (the scale of the wrinkling)
is set by competition between the bending
term and the substrate energy of w .

The larger one (scale of the phase mixture)
must be s.t. substrate energy of u is
insignificant. (It is not fully determined.)
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The herringbone – sketch of the lower bound
Claim: For any L-periodic u and w , Eh ≥ C min{η2h, α2/3

s ηh}.

Let’s take L = 1 for simplicity. We’ll use only that

membrane term ≥ h
∫ ∣∣∣∂1u1 + 1

2 (∂1w)2 − η
∣∣∣2 dx

bending term = h3‖∇∇w‖2
L2 , and substrate term ≥ αs‖w‖2

H1/2 .

CASE 1: If
∫
|∇w |2 � η then membrane energy is & η2h, since ∂1u1 has

mean 0.

CASE 2: If
∫
|∇w |2 & η use the interpolation inequality

‖∇w‖L2 . ‖∇∇w‖1/3
L2 ‖w‖2/3

H1/2

to see that

Bending + substrate terms = h3‖∇∇w‖2 + 1
2αs‖w‖2

H1/2 + 1
2αs‖w‖2

H1/2

&
(

h3‖∇∇w‖2α2
s‖w‖4

H1/2

)1/3

& hα2/3
s ‖∇w‖2

L2 & hα2/3
s η

using arith mean/geom mean inequality.
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Talk plan

(1) Background and context

(2) Compression-induced wrinkling

(3) Geometry-induced wrinkling with tension:
a flat sheet conforming to a round surface
(work with Peter Bella, Phil Trans Roy Soc 2017, building on
Hohlfeld & Davidovitch, PRE 2015)

(4) Geometry-induced wrinkling with asymptotic isometry

Robert V. Kohn Wrinkling due to Geometric Incompatiblity



A flat sheet conforming to a round surface

A flat circular sheet, wrapped around a sphere;
energy per unit thickness is
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effects (which prefer less stretching) and the energetic cost of wrinkling (which prefers more
stretching).

Figure 1. Circular sheet on a ball

The behavior of thin elastic sheets experiencing
compression due to geometric effects has recently re-
ceived a lot of attention. Without attempting a com-
prehensive review, let us mention studies concerning
a sheet on a deformable sphere [11, 16, 17]; indenta-
tion of a pressurized ball [20]; indentation of a float-
ing sheet [21, 16]; wrinkling of a stamped plate [12];
and crystalline sheets on curved surfaces [10, 15].
Among these references the paper [11] deserves spe-
cial note, since (as we explain in Section 2) our model
is particularly close to the one considered there.

It is well known that with increasing compression
a thin elastic sheet undergoes an instability (like Eu-
ler buckling), the onset of which is well-understood
using linear analysis (this is the so called “near-
threshold” (NT) regime). As the compression in-
creases one enters a different, “far-from-threshold”
(FT) regime (see e.g. [9]), in which predictions from
the linear theory cease to be valid. In contrast with
the NT regime, in the FT regime the sheet (almost)
completely releases the compressive stresses by de-
forming out-of-plane (e.g. by wrinkling). The wrin-
kling wavelength is then set by a competition be-
tween the bending resistance (which prefers long

wavelengths) and mechanisms favoring short wavelengths (e.g. tension, curvature along
the wrinkles, and adhesion to a substrate). The natural goals in the FT regime are to
predict the wavelength of wrinkles (by deriving a so called “local λ-law” [6, 16]) and/or
to predict the macroscopic deformation of the sheet. These goals are the primary focus of
many of the papers cited above [9, 10, 11, 16, 20, 21].

While our goal in the present paper is very similar, there is an unexpected twist com-
pared to the aforementioned work. There the energy consists of a dominant part which
decides the macroscopic deformation, and a subdominant part which controls the scale of
the wrinkling. Put differently: in the limit of vanishing thickness the wrinkling does not
cost any energy (since the energetic contribution from wrinkling is subdominant), and the
macroscopic deformation of the sheet can be obtained via tension-field theory (in math-
ematical language: by minimizing a relaxed functional). In contrast, in the problem we
consider the cost of wrinkling is comparable to other terms in the dominant energy; as a
result one cannot use tension-field theory or solve a relaxed problem to predict the macro-
scopic deformation of the sheet. Instead, one must minimize an effective functional, in
which the elastic energy of radial tension competes with the (substrate + bending) en-
ergy of circumferential wrinkling. Since the energetic cost of wrinkling contributes to the

Eh =

∫ ∣∣e(u) + 1
2∇w ⊗∇w

∣∣2 dx+h2
∫
|∇∇w |2 dx+αsh−2

∫ ∣∣∣∣w +
|x |2
2R

∣∣∣∣2 dx

Modeling choices:

Substrate is strong: αsh−2 →∞ as h→ 0.

Slip is permitted: substrate term requires w ≈ − 1
2 |x |

2/R (small
slope approx to sphere), but doesn’t constrain u.

Expected behavior: since sheet is not isometric to sphere, each circle
r = const wrinkles to avoid compression.

Main result: we found the leading-order energy E0 and estimated the
next-order correction:

E0 + Ch ≤ min Eh ≤ E0 + C′h|log h|
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The leading-order energy

Eh =

∫ ∣∣e(u) + 1
2∇w ⊗∇w

∣∣2 dx+h2
∫
|∇∇w |2 dx+αsh−2

∫ ∣∣∣∣w +
|x |2
2R

∣∣∣∣2 dx

(1) Expect circle |x | = r to map to a circle
on the sphere. It must wrinkle, since
image circle has smaller arclength.
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The behavior of thin elastic sheets experiencing
compression due to geometric effects has recently re-
ceived a lot of attention. Without attempting a com-
prehensive review, let us mention studies concerning
a sheet on a deformable sphere [11, 16, 17]; indenta-
tion of a pressurized ball [20]; indentation of a float-
ing sheet [21, 16]; wrinkling of a stamped plate [12];
and crystalline sheets on curved surfaces [10, 15].
Among these references the paper [11] deserves spe-
cial note, since (as we explain in Section 2) our model
is particularly close to the one considered there.

It is well known that with increasing compression
a thin elastic sheet undergoes an instability (like Eu-
ler buckling), the onset of which is well-understood
using linear analysis (this is the so called “near-
threshold” (NT) regime). As the compression in-
creases one enters a different, “far-from-threshold”
(FT) regime (see e.g. [9]), in which predictions from
the linear theory cease to be valid. In contrast with
the NT regime, in the FT regime the sheet (almost)
completely releases the compressive stresses by de-
forming out-of-plane (e.g. by wrinkling). The wrin-
kling wavelength is then set by a competition be-
tween the bending resistance (which prefers long

wavelengths) and mechanisms favoring short wavelengths (e.g. tension, curvature along
the wrinkles, and adhesion to a substrate). The natural goals in the FT regime are to
predict the wavelength of wrinkles (by deriving a so called “local λ-law” [6, 16]) and/or
to predict the macroscopic deformation of the sheet. These goals are the primary focus of
many of the papers cited above [9, 10, 11, 16, 20, 21].

While our goal in the present paper is very similar, there is an unexpected twist com-
pared to the aforementioned work. There the energy consists of a dominant part which
decides the macroscopic deformation, and a subdominant part which controls the scale of
the wrinkling. Put differently: in the limit of vanishing thickness the wrinkling does not
cost any energy (since the energetic contribution from wrinkling is subdominant), and the
macroscopic deformation of the sheet can be obtained via tension-field theory (in math-
ematical language: by minimizing a relaxed functional). In contrast, in the problem we
consider the cost of wrinkling is comparable to other terms in the dominant energy; as a
result one cannot use tension-field theory or solve a relaxed problem to predict the macro-
scopic deformation of the sheet. Instead, one must minimize an effective functional, in
which the elastic energy of radial tension competes with the (substrate + bending) en-
ergy of circumferential wrinkling. Since the energetic cost of wrinkling contributes to the

(2) Optimization of substrate and bending sets length scale; assoc
energy is of order one (assuming αs is fixed as h→ 0).
Magnitude depends on amount of arclength to be “wasted by
wrinkling”.

(3) Sheet stretches radially, to reduce cost of wrinkling. Tradeoff
btwn membrane term (cost of radial stretching) and
substrate+bending (cost of wrinkling) sets leading-order energy.
Optimization of tradeoff leads to 1D variational problem for the
radial stretch ur .
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Flat sheet on a sphere – the order-h correction

What controls the correction min Eh − E0?

2 PETER BELLA AND ROBERT V. KOHN

effects (which prefer less stretching) and the energetic cost of wrinkling (which prefers more
stretching).
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ing sheet [21, 16]; wrinkling of a stamped plate [12];
and crystalline sheets on curved surfaces [10, 15].
Among these references the paper [11] deserves spe-
cial note, since (as we explain in Section 2) our model
is particularly close to the one considered there.

It is well known that with increasing compression
a thin elastic sheet undergoes an instability (like Eu-
ler buckling), the onset of which is well-understood
using linear analysis (this is the so called “near-
threshold” (NT) regime). As the compression in-
creases one enters a different, “far-from-threshold”
(FT) regime (see e.g. [9]), in which predictions from
the linear theory cease to be valid. In contrast with
the NT regime, in the FT regime the sheet (almost)
completely releases the compressive stresses by de-
forming out-of-plane (e.g. by wrinkling). The wrin-
kling wavelength is then set by a competition be-
tween the bending resistance (which prefers long

wavelengths) and mechanisms favoring short wavelengths (e.g. tension, curvature along
the wrinkles, and adhesion to a substrate). The natural goals in the FT regime are to
predict the wavelength of wrinkles (by deriving a so called “local λ-law” [6, 16]) and/or
to predict the macroscopic deformation of the sheet. These goals are the primary focus of
many of the papers cited above [9, 10, 11, 16, 20, 21].

While our goal in the present paper is very similar, there is an unexpected twist com-
pared to the aforementioned work. There the energy consists of a dominant part which
decides the macroscopic deformation, and a subdominant part which controls the scale of
the wrinkling. Put differently: in the limit of vanishing thickness the wrinkling does not
cost any energy (since the energetic contribution from wrinkling is subdominant), and the
macroscopic deformation of the sheet can be obtained via tension-field theory (in math-
ematical language: by minimizing a relaxed functional). In contrast, in the problem we
consider the cost of wrinkling is comparable to other terms in the dominant energy; as a
result one cannot use tension-field theory or solve a relaxed problem to predict the macro-
scopic deformation of the sheet. Instead, one must minimize an effective functional, in
which the elastic energy of radial tension competes with the (substrate + bending) en-
ergy of circumferential wrinkling. Since the energetic cost of wrinkling contributes to the

Optimal scale of wrinkling depends only on h and αs (not on r ).

This means that wrinkles must branch! (As r increases, the
number of wrinkles at radius r must grow linearly with r .) Cost of
branching is at heart of correction.

Rough idea: scale of wrinkling need not be exactly optimal;
since we expect excess energy of order h, it has to change only
when cost of suboptimality is of order h.

After analysis (and simplifying a bit): number of wrinkles at
radius r is a piecewise-const approx to a linear function, taking
values that are integer multiples of h−1/2.
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Talk plan

(1) Background and context

(2) Compression-induced wrinkling

(3) Geometry-induced wrinkling with tension

(4) Geometry-induced wrinkling with asymptotic isometry:
a curved shell conforming to a flat surface
(Ian Tobasco, arXiv:1906.02153)

Robert V. Kohn Wrinkling due to Geometric Incompatiblity



A curved shell conforming to a flat surface
A piece of a spherical shell is placed on water
(Aharoni et al, Nature Commun 2017; Albarrán et al,
arXiv:1806.03718)

2

FIG. 1. Wrinkling configurations in floating shells. (a) The wrinkle wavelength, λ, normalized by the deformation length scale

Γ =
√
Rt (main plot) and Λ = (KB/Kg)

1/4 (inset), versus the specific thickness of the shell, τ = Et/R2Kg. Representative
error bars are shown on a subset of the experimental results. The dashed lines indicate the elastica model for the different
normalizations, λ/Γ = 2π(τ/9)1/4 (red dashed line) and λ/Λ = 2π (black dashed line). The upper inset shows a schematic of the
floating shell setup. (b) The in-plane principal stress profiles (along the red lines drawn in the insets) in: (b1) an axisymmetric
configuration of a spherical cup (τ = 0.85, R = 6 cm) and (b2) an anisotropic configuration of a spherical strip (τ = 5.0, R = 3.8
cm). The theoretical trends are given by Eqs. 4 and 6. (c) A constellation of patterns in floating shells of various geometries
are shown, drawn from (left) experiments and (right) simulations, on the range 0.1 < τ < 20. Experimentally, shells have been
imaged by a shadowgraph (see Methods); simulation images depict surface displacement, using a similar colour scheme. We
can observe patterns comprising single (7, 17) and multiple (e.g. 1-3) domains of straight wrinkles (7, 17, 21), curved wrinkles
(4,16,19), axisymmetric wrinkles (b1, inset), folds (8, 10, 11, 20), flattened boundaries (19), dislocations (4, 16) amongst other
configurations. The top row compares experimental and simulated patterns for similar geometries and material properties.

are cut out of hemispheres, and thus have a constant
Gaussian curvature. When floated on a liquid surface
the shells assume a stunning variety of patterns by har-
vesting diverse instabilities (see Fig.1). The patterns typ-
ically show well-defined wrinkles of constant wavelength,
λ. The scaling of this wavelength is demonstrated in
Fig. 1(a). Depending on their configuration, they may
also exhibit a spatially varying amplitude, as reflected

by variations in colour intensity of the top-view images
provided in Fig.1(b,c).

Apart from their wavelength and amplitude, the topo-
logical characteristics of wrinkles can be described in
terms of ridge lines. These continuous curves trace along
the set of locally maximal points that define the crest
of each wrinkle, and appear as bright lines in the images
shown in Fig.1(c). When seen from above, as there, these

Different shapes develop very different wrinkling patterns. Unlike
previous example, tension seems to play no role.
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FIG. 1. Wrinkling configurations in floating shells. (a) The wrinkle wavelength, λ, normalized by the deformation length scale

Γ =
√
Rt (main plot) and Λ = (KB/Kg)

1/4 (inset), versus the specific thickness of the shell, τ = Et/R2Kg. Representative
error bars are shown on a subset of the experimental results. The dashed lines indicate the elastica model for the different
normalizations, λ/Γ = 2π(τ/9)1/4 (red dashed line) and λ/Λ = 2π (black dashed line). The upper inset shows a schematic of the
floating shell setup. (b) The in-plane principal stress profiles (along the red lines drawn in the insets) in: (b1) an axisymmetric
configuration of a spherical cup (τ = 0.85, R = 6 cm) and (b2) an anisotropic configuration of a spherical strip (τ = 5.0, R = 3.8
cm). The theoretical trends are given by Eqs. 4 and 6. (c) A constellation of patterns in floating shells of various geometries
are shown, drawn from (left) experiments and (right) simulations, on the range 0.1 < τ < 20. Experimentally, shells have been
imaged by a shadowgraph (see Methods); simulation images depict surface displacement, using a similar colour scheme. We
can observe patterns comprising single (7, 17) and multiple (e.g. 1-3) domains of straight wrinkles (7, 17, 21), curved wrinkles
(4,16,19), axisymmetric wrinkles (b1, inset), folds (8, 10, 11, 20), flattened boundaries (19), dislocations (4, 16) amongst other
configurations. The top row compares experimental and simulated patterns for similar geometries and material properties.

are cut out of hemispheres, and thus have a constant
Gaussian curvature. When floated on a liquid surface
the shells assume a stunning variety of patterns by har-
vesting diverse instabilities (see Fig.1). The patterns typ-
ically show well-defined wrinkles of constant wavelength,
λ. The scaling of this wavelength is demonstrated in
Fig. 1(a). Depending on their configuration, they may
also exhibit a spatially varying amplitude, as reflected

by variations in colour intensity of the top-view images
provided in Fig.1(b,c).

Apart from their wavelength and amplitude, the topo-
logical characteristics of wrinkles can be described in
terms of ridge lines. These continuous curves trace along
the set of locally maximal points that define the crest
of each wrinkle, and appear as bright lines in the images
shown in Fig.1(c). When seen from above, as there, these

Expts and some ansatz-based theory: groups of E. Katifori (Penn), J.
Paulsen (Syracuse), B. Davidovitch (U Mass). Recently,
striking progress by Ian Tobasco:

(1) Identification of min energy, in a suitable parameter regime.

(2) An asymptotic var’l pbm for the macroscopic displacement u.

(3) The asymptotic pbm is convex, and its dual is explicitly solvable
in many cases. Optimality conds⇒ predictions about wrinkling.
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A curved shell conforming to a flat surface
Tobasco’s starting point:

Eb,k =

∫
Ω

|e(u) + 1
2∇w ⊗∇w − 1

2∇p ⊗∇p|2 + b
∫

Ω

|∇∇w |2 + k
∫

Ω

w2;

here the graph of p is the natural shape of the shell, Ω is geometry of
cutout, b = h2, and k reflects strength of substrate term (which for
water is gravitational energy).

We expect asymptotic isometry, so the substrate term should not be
too strong:

b → 0, k →∞, with bk → 0
(different from our sheet-on-sphere example, where bk = αs was held
constant, leading to order-one tension.) Actually, one needs a little
more: b−2/3 � k � b−1.

Theorem: In this regime, Eb,k

4
√

bk
Γ-converges to∫

Ω

1
2 |∇p|2 dx −

∫
∂Ω

u · ν dσ

subject to the constraint e(u) ≤ 1
2∇p ⊗∇p.
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Convex duality and wrinkling
The limit problem

min
e(u)≤ 1

2∇p⊗∇p

∫
Ω

1
2 |∇p|2 dx −

∫
∂Ω

u · ν dσ

has an intuitive interpretation: membrane term is strongest, so
extension is prohibited; when wrinkling occurs, interaction of bending
and substrate terms produces an effective surface tension.

Limit is convex, so it has a convex dual. When det∇∇p > 0 (shell
has pos curvature) or det∇∇p < 0 (shell has neg curvature), the dual
has a unique solution σ, which depends only on Ω and can be made
explicit in many cases.

Solution of dual is, roughly speaking, Lagrange multiplier for the
constraint. So: where σ has rank one, it tells us dirn of wrinkling.
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are cut out of hemispheres, and thus have a constant
Gaussian curvature. When floated on a liquid surface
the shells assume a stunning variety of patterns by har-
vesting diverse instabilities (see Fig.1). The patterns typ-
ically show well-defined wrinkles of constant wavelength,
λ. The scaling of this wavelength is demonstrated in
Fig. 1(a). Depending on their configuration, they may
also exhibit a spatially varying amplitude, as reflected

by variations in colour intensity of the top-view images
provided in Fig.1(b,c).

Apart from their wavelength and amplitude, the topo-
logical characteristics of wrinkles can be described in
terms of ridge lines. These continuous curves trace along
the set of locally maximal points that define the crest
of each wrinkle, and appear as bright lines in the images
shown in Fig.1(c). When seen from above, as there, these
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The herringbone revisited
To understand idea of Tobasco’s asymptotic variational problem,
consider the herringbone in his regime:

Eb,k =

∫
[0,1]2
|e(u) + 1

2∇w ⊗∇w − ηI|2 + b
∫

[0,1]2
|∇∇w |2 + k

∫
[0,1]2

w2;

Claim: In Tobasco’s limit (with η held fixed, and with periodic bc),
min Eb,k

4
√

bk
→ 2η.

Proof – Part 1: membrane term→ 0 in this limit.
In fact, a herringbone construction (with just two
stripes) shows Eb,k/4

√
bk is bounded above.

Since
√

bk → 0, this means membrane term must vanish in the limit,

e(u) + 1
2∇w ⊗∇w − ηI → 0 in L2,

so (taking the trace)

div u + 1
2 |∇w |2 − 2η → 0.
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The herringbone revisited
Proof – Step 2: bending and substrate terms of E/4

√
bk tend to 2η.

In fact, bending and substrate terms of E/4
√

bk are

1
4

√
b/k

∫
[0,1]2
|∇∇w |2 + 1

4

√
k/b

∫
[0,1]2

w2.

Since w is periodic,
∫
|∇∇w |2 =

∫
(∆w)2; so integrating the identity√

b/k (∆w)2+
√

k/b (w)2 = 2|∇w |2+
∣∣∣(b/k)1/4∆w + (k/b)1/4w

∣∣∣2−2 div (w∇w)

gives

1
4

√
b/k

∫
|∇∇w |2 + 1

4

√
k/b

∫
w2

= 1
2

∫
|∇w |2 + 1

4

∫ ∣∣∣(b/k)1/4∆w + (k/b)1/4w
∣∣∣2

≥ 1
2

∫
|∇w |2,

with asymptotic equality for wrinkling at proper scale.

Finally, using Step 1 (div u + 1
2 |∇w |2 − 2η → 0) and periodicity of u,

lower bound becomes ∫
2η − div u = 2η.
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Floating shells vs the herringbone problem

2

FIG. 1. Wrinkling configurations in floating shells. (a) The wrinkle wavelength, λ, normalized by the deformation length scale

Γ =
√
Rt (main plot) and Λ = (KB/Kg)

1/4 (inset), versus the specific thickness of the shell, τ = Et/R2Kg. Representative
error bars are shown on a subset of the experimental results. The dashed lines indicate the elastica model for the different
normalizations, λ/Γ = 2π(τ/9)1/4 (red dashed line) and λ/Λ = 2π (black dashed line). The upper inset shows a schematic of the
floating shell setup. (b) The in-plane principal stress profiles (along the red lines drawn in the insets) in: (b1) an axisymmetric
configuration of a spherical cup (τ = 0.85, R = 6 cm) and (b2) an anisotropic configuration of a spherical strip (τ = 5.0, R = 3.8
cm). The theoretical trends are given by Eqs. 4 and 6. (c) A constellation of patterns in floating shells of various geometries
are shown, drawn from (left) experiments and (right) simulations, on the range 0.1 < τ < 20. Experimentally, shells have been
imaged by a shadowgraph (see Methods); simulation images depict surface displacement, using a similar colour scheme. We
can observe patterns comprising single (7, 17) and multiple (e.g. 1-3) domains of straight wrinkles (7, 17, 21), curved wrinkles
(4,16,19), axisymmetric wrinkles (b1, inset), folds (8, 10, 11, 20), flattened boundaries (19), dislocations (4, 16) amongst other
configurations. The top row compares experimental and simulated patterns for similar geometries and material properties.

are cut out of hemispheres, and thus have a constant
Gaussian curvature. When floated on a liquid surface
the shells assume a stunning variety of patterns by har-
vesting diverse instabilities (see Fig.1). The patterns typ-
ically show well-defined wrinkles of constant wavelength,
λ. The scaling of this wavelength is demonstrated in
Fig. 1(a). Depending on their configuration, they may
also exhibit a spatially varying amplitude, as reflected

by variations in colour intensity of the top-view images
provided in Fig.1(b,c).

Apart from their wavelength and amplitude, the topo-
logical characteristics of wrinkles can be described in
terms of ridge lines. These continuous curves trace along
the set of locally maximal points that define the crest
of each wrinkle, and appear as bright lines in the images
shown in Fig.1(c). When seen from above, as there, these

For Tobasco, pbm has natural bc (not periodic), and the
pre-strain is 1

2∇p ⊗∇p (not ηI). So his lower bound is∫
Ω

1
2 |∇p|2 − div u =

∫
Ω

1
2 |∇p|2 −

∫
∂Ω

u · ν.

Local compression can be uniaxial or
biaxial. In biaxial region, upper-bound
ansatz uses piecewise-constant approxn
then herringbone-like construction.

Extra condition b−2/3 � k � b−1 is needed
so “boundary layers” of the herringbones
introduce negligible additional energy.

Regions with uniaxial compression (1D wrinkling) are
experimentally robust. Those with biaxial compression are not.
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How does Tobasco predict 1D wrinkling domains?

2

FIG. 1. Wrinkling configurations in floating shells. (a) The wrinkle wavelength, λ, normalized by the deformation length scale
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1/4 (inset), versus the specific thickness of the shell, τ = Et/R2Kg. Representative
error bars are shown on a subset of the experimental results. The dashed lines indicate the elastica model for the different
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are shown, drawn from (left) experiments and (right) simulations, on the range 0.1 < τ < 20. Experimentally, shells have been
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(4,16,19), axisymmetric wrinkles (b1, inset), folds (8, 10, 11, 20), flattened boundaries (19), dislocations (4, 16) amongst other
configurations. The top row compares experimental and simulated patterns for similar geometries and material properties.

are cut out of hemispheres, and thus have a constant
Gaussian curvature. When floated on a liquid surface
the shells assume a stunning variety of patterns by har-
vesting diverse instabilities (see Fig.1). The patterns typ-
ically show well-defined wrinkles of constant wavelength,
λ. The scaling of this wavelength is demonstrated in
Fig. 1(a). Depending on their configuration, they may
also exhibit a spatially varying amplitude, as reflected

by variations in colour intensity of the top-view images
provided in Fig.1(b,c).

Apart from their wavelength and amplitude, the topo-
logical characteristics of wrinkles can be described in
terms of ridge lines. These continuous curves trace along
the set of locally maximal points that define the crest
of each wrinkle, and appear as bright lines in the images
shown in Fig.1(c). When seen from above, as there, these

Tobasco predicts regions of 1D wrinkling. How?

Limiting variational problem is convex:

min
e(u)≤ 1

2∇p⊗∇p

∫
Ω

1
2 |∇p|2 − div u

Its dual involves a divergence-free vector field σ, which can be viewed
as a Lagrange multiplier for the constraint. Surprisingly, the dual can
be solved explicitly in many cases.

- Where σ has rank one, only 1D wrinkling is possible (normal to
null direction of σ).

- Where σ = 0 we get no prediction (expect 2D wrinkling and/or
nonuniqueness).

Note: If det∇∇p 6= 0 then σ cannot have rank two on an open set,
since elastic compatibility rules out e(u) = 1

2∇p ⊗∇p.
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Formal duality

inf
e(u)≤ 1

2∇p⊗∇p

∫
Ω

1
2 |∇p|2 − div u

= inf
e(u)

sup
σ≥0

∫
Ω

〈σ, e(u)− 1
2∇p ⊗∇p〉+ 1

2 |∇p|2 − div u

= sup
σ≥0

inf
e(u)

∫
Ω

〈σ − I,e(u)〉 − 1
2 〈σ,∇p ⊗∇p〉+ 1

2 |∇p|2

= sup
σ≥0

divσ=0 in Ω
σ·ν=ν at ∂Ω

∫
Ω

〈I − σ, 1
2∇p ⊗∇p〉

Some issues: σ can be discontinuous; σ · ν is only defined weakly at
∂Ω; explicit solvability is not yet clear.

Key to resolution: represent σ by an Airy stress function,

σ =

(
∂22φ −∂12φ
−∂12φ ∂11φ

)
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Duality, cont’d

When σ =
(

∂22φ −∂12φ
−∂12φ ∂11φ

)
we have:

(a) divσ = 0 and σ ≥ 0 iff φ is continuous and convex.

(b) Bdry condition σ · ν = ν can be imposed by taking φ = 1
2 |x |

2

outside Ω (and asking that the extension be cont’s & convex).

(c) Integration by parts: if ψ = 1
2 |x |

2 − φ is Airy stress fn for I − σ
then for any symmetric-matrix-valued ξ(x),∫

Ω

〈
(

∂22ψ −∂12ψ
−∂12ψ ∂11ψ

)
, ξ〉 =

∫
Ω

ψ(∂22ξ11 + ∂11ξ22 − 2∂12ξ12)

Applying this to ξ = 1
2∇p ⊗∇p puts the dual problem in the

convenient form:

sup
σ≥0

divσ=0 in Ω
σ·ν=ν at ∂Ω

∫
Ω

〈I − σ, 1
2∇p ⊗∇p〉 = sup

φ conts and convex

φ=
1
2 |x|

2 outside Ω

∫
Ω

(φ− 1
2 |x |

2) det∇∇p.
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Explicit solutions
When the Gaussian curvature of the shell is pointwise positive
(det∇∇p > 0), the optimal φ for the dual problem

sup
φ conts and convex

φ=
1
2 |x|

2 outside Ω

∫
Ω

(φ− 1
2 |x |

2) det∇∇p

is the largest convex function that equals 1
2 |x |

2 outside Ω. Examples:

Warmup: in 1D, consider 1
2 x2 off

Ω = (−c, c): the largest convex extension
is constant on the interval.

An ellipse: In 2D, let
Ω = {x2

1/a
2 + x2

2/b
2 < 1} with b < a.

Apply warmup to each slice x1 = const to
see that best φ is a function of x1 only:
φ = 1

2 [b2 + (1− b2

a2 )x2
1 ]. Evidently σ22 6= 0,

so wrinkling is in the x1 direction.
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Explicit solutions, cont’d

A circle is a degenerate ellipse. Evidently,
when Ω is a circle the wrinkling pattern is
not unique. In fact σ = 0 in this case (φ is
constant). Besides the 1D wrinkling
patterns obtained by taking limits of
ellipses, there are other patterns as well,
including axially-symmetric 1D wrinkling.

For a triangle, choose coords so x = 0 is
the center of the inscribed circle. Then
warmup calculation (on slices) shows that
φ is a function of one variable in a triangle
near each vertex. In the inner triangle φ is
constant, σ = 0, and the theory makes no
prediction. (Experimentally, the patterns
there are not robust).
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Another look at the pictures

2

FIG. 1. Wrinkling configurations in floating shells. (a) The wrinkle wavelength, λ, normalized by the deformation length scale

Γ =
√
Rt (main plot) and Λ = (KB/Kg)

1/4 (inset), versus the specific thickness of the shell, τ = Et/R2Kg. Representative
error bars are shown on a subset of the experimental results. The dashed lines indicate the elastica model for the different
normalizations, λ/Γ = 2π(τ/9)1/4 (red dashed line) and λ/Λ = 2π (black dashed line). The upper inset shows a schematic of the
floating shell setup. (b) The in-plane principal stress profiles (along the red lines drawn in the insets) in: (b1) an axisymmetric
configuration of a spherical cup (τ = 0.85, R = 6 cm) and (b2) an anisotropic configuration of a spherical strip (τ = 5.0, R = 3.8
cm). The theoretical trends are given by Eqs. 4 and 6. (c) A constellation of patterns in floating shells of various geometries
are shown, drawn from (left) experiments and (right) simulations, on the range 0.1 < τ < 20. Experimentally, shells have been
imaged by a shadowgraph (see Methods); simulation images depict surface displacement, using a similar colour scheme. We
can observe patterns comprising single (7, 17) and multiple (e.g. 1-3) domains of straight wrinkles (7, 17, 21), curved wrinkles
(4,16,19), axisymmetric wrinkles (b1, inset), folds (8, 10, 11, 20), flattened boundaries (19), dislocations (4, 16) amongst other
configurations. The top row compares experimental and simulated patterns for similar geometries and material properties.

are cut out of hemispheres, and thus have a constant
Gaussian curvature. When floated on a liquid surface
the shells assume a stunning variety of patterns by har-
vesting diverse instabilities (see Fig.1). The patterns typ-
ically show well-defined wrinkles of constant wavelength,
λ. The scaling of this wavelength is demonstrated in
Fig. 1(a). Depending on their configuration, they may
also exhibit a spatially varying amplitude, as reflected

by variations in colour intensity of the top-view images
provided in Fig.1(b,c).

Apart from their wavelength and amplitude, the topo-
logical characteristics of wrinkles can be described in
terms of ridge lines. These continuous curves trace along
the set of locally maximal points that define the crest
of each wrinkle, and appear as bright lines in the images
shown in Fig.1(c). When seen from above, as there, these
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Stepping back

Variational viewpoint, with thickness as a small parameter: the
elastic energy of a sheet is like a Landau theory – a nonconvex
membrane energy, regularized by a higher order term (bending)
with a small coefficient.

Problems with biaxial compression or geometric incompatibility
are especially interesting, because even the direction of
wrinkling is unclear.

We’re interested wrinkling patterns. Bifurcation diagrams are
difficult in this regime. Energy minimization provides an
alternative (though nature may find local minima.)

Analysis is useful, as a complement to simulation. Simulation
shows how patterns form; ansatz-free lower bounds explain why
they form.

Tobasco’s work especially striking, because it explains wrinkling
patterns that were previously mysterious.
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2 PETER BELLA AND ROBERT V. KOHN

effects (which prefer less stretching) and the energetic cost of wrinkling (which prefers more
stretching).

Figure 1. Circular sheet on a ball

The behavior of thin elastic sheets experiencing
compression due to geometric effects has recently re-
ceived a lot of attention. Without attempting a com-
prehensive review, let us mention studies concerning
a sheet on a deformable sphere [11, 16, 17]; indenta-
tion of a pressurized ball [20]; indentation of a float-
ing sheet [21, 16]; wrinkling of a stamped plate [12];
and crystalline sheets on curved surfaces [10, 15].
Among these references the paper [11] deserves spe-
cial note, since (as we explain in Section 2) our model
is particularly close to the one considered there.

It is well known that with increasing compression
a thin elastic sheet undergoes an instability (like Eu-
ler buckling), the onset of which is well-understood
using linear analysis (this is the so called “near-
threshold” (NT) regime). As the compression in-
creases one enters a different, “far-from-threshold”
(FT) regime (see e.g. [9]), in which predictions from
the linear theory cease to be valid. In contrast with
the NT regime, in the FT regime the sheet (almost)
completely releases the compressive stresses by de-
forming out-of-plane (e.g. by wrinkling). The wrin-
kling wavelength is then set by a competition be-
tween the bending resistance (which prefers long

wavelengths) and mechanisms favoring short wavelengths (e.g. tension, curvature along
the wrinkles, and adhesion to a substrate). The natural goals in the FT regime are to
predict the wavelength of wrinkles (by deriving a so called “local λ-law” [6, 16]) and/or
to predict the macroscopic deformation of the sheet. These goals are the primary focus of
many of the papers cited above [9, 10, 11, 16, 20, 21].

While our goal in the present paper is very similar, there is an unexpected twist com-
pared to the aforementioned work. There the energy consists of a dominant part which
decides the macroscopic deformation, and a subdominant part which controls the scale of
the wrinkling. Put differently: in the limit of vanishing thickness the wrinkling does not
cost any energy (since the energetic contribution from wrinkling is subdominant), and the
macroscopic deformation of the sheet can be obtained via tension-field theory (in math-
ematical language: by minimizing a relaxed functional). In contrast, in the problem we
consider the cost of wrinkling is comparable to other terms in the dominant energy; as a
result one cannot use tension-field theory or solve a relaxed problem to predict the macro-
scopic deformation of the sheet. Instead, one must minimize an effective functional, in
which the elastic energy of radial tension competes with the (substrate + bending) en-
ergy of circumferential wrinkling. Since the energetic cost of wrinkling contributes to the

P. Bella & R. Kohn, Phil Trans Roy Soc A 375 (2017)
20160157

E. Cerda and L. Mahadevan, Phys Rev Lett 90 (2003)
074302

X. Chen and J. Hutchinson, Scripta Materialia 50
(2004) 797–801
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FIG. 1. Wrinkling configurations in floating shells. (a) The wrinkle wavelength, λ, normalized by the deformation length scale

Γ =
√
Rt (main plot) and Λ = (KB/Kg)

1/4 (inset), versus the specific thickness of the shell, τ = Et/R2Kg. Representative
error bars are shown on a subset of the experimental results. The dashed lines indicate the elastica model for the different
normalizations, λ/Γ = 2π(τ/9)1/4 (red dashed line) and λ/Λ = 2π (black dashed line). The upper inset shows a schematic of the
floating shell setup. (b) The in-plane principal stress profiles (along the red lines drawn in the insets) in: (b1) an axisymmetric
configuration of a spherical cup (τ = 0.85, R = 6 cm) and (b2) an anisotropic configuration of a spherical strip (τ = 5.0, R = 3.8
cm). The theoretical trends are given by Eqs. 4 and 6. (c) A constellation of patterns in floating shells of various geometries
are shown, drawn from (left) experiments and (right) simulations, on the range 0.1 < τ < 20. Experimentally, shells have been
imaged by a shadowgraph (see Methods); simulation images depict surface displacement, using a similar colour scheme. We
can observe patterns comprising single (7, 17) and multiple (e.g. 1-3) domains of straight wrinkles (7, 17, 21), curved wrinkles
(4,16,19), axisymmetric wrinkles (b1, inset), folds (8, 10, 11, 20), flattened boundaries (19), dislocations (4, 16) amongst other
configurations. The top row compares experimental and simulated patterns for similar geometries and material properties.

are cut out of hemispheres, and thus have a constant
Gaussian curvature. When floated on a liquid surface
the shells assume a stunning variety of patterns by har-
vesting diverse instabilities (see Fig.1). The patterns typ-
ically show well-defined wrinkles of constant wavelength,
λ. The scaling of this wavelength is demonstrated in
Fig. 1(a). Depending on their configuration, they may
also exhibit a spatially varying amplitude, as reflected

by variations in colour intensity of the top-view images
provided in Fig.1(b,c).

Apart from their wavelength and amplitude, the topo-
logical characteristics of wrinkles can be described in
terms of ridge lines. These continuous curves trace along
the set of locally maximal points that define the crest
of each wrinkle, and appear as bright lines in the images
shown in Fig.1(c). When seen from above, as there, these
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