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Goals for Lecture 1

Getting started:

A first look at some phenomena involving
- paper
- tension-induced wrinkling
- compressive wrinkling

What kind of math underlies such problems?
- nonconvex variational problems with a small regularization

The elastic energy of a thin sheet
- a fully nonlinear model
- a small-strain, small-slope (von Karman) model
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Paper, deformed smoothly

Paper is (almost) inextensible. So we can describe deformations of a
flat piece of paper using

g : R2 → R3 such that (Dg)T Dg = I.

Explanation:

|Dg · v |2 = 1⇔ 〈v , (Dg)T Dg v〉 = 1;

and this must hold for all unit vectors v in R2.

Facts from geometry:

A surface in R3 has 2 principal curvatures κ1, κ2 (eigenvalues of
quadratic form associated to quadratic approxn).

For image of a smooth isometry, κ1κ2 = 0 pointwise.

Image of a smooth isometry is a developable surface.
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Paper, deformed smoothly
Essential mechanics of paper: it resists bending.

If midline is isometric but image is curved, then lines above/below
middle are stretched/shrunk. If thickness is h and curvature is κ, then

unhappiness =

∫ L

0

∫ h/2

−h/2
z2κ2 dz dx = ch3

∫ L

0
κ2 dx .

Basic model of paper:

min
∫

Ω

κ2
1 + κ2

2 dA

where Ω ⊂ R2, g : Ω→ R3 is an isometry, and κ1, κ2 are the principal
curvatures of the image.

Not necessarily easy to solve (what is the shape of a Mobius band?).
Boundary conditions matter; sometimes gravity matters too.
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Paper, with singularities
Actually: smooth isometries are not sufficient. Depending on loads
and bdry conds, we easily see

formation of point singularities
(“d-cones”)

formation of line singularities
(“crumpling”)

Why? Because there is no isometry with finite bending energy.

Heuristic calculation: consider a “perfectly conical d-cone”: use
Ω = {r < 1} and g(r , θ) = rϕ(θ) where ϕ(θ) is a curve on S2 with the
right length (2π). Then

curvature at radius r ∼ 1
r

so ∫
κ2 dA ∼

∫ 1

0

1
r2 rdr is divergent.
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Paper, with singularities

How to model d-cones and crumpling? Main idea:

Eh = min
∫

Ω

|(Dg)T Dg − I|2 dA + h2
∫

Ω

κ2
1 + κ2

2 dA

First term (“membrane energy”) prefers isometry. It is nonconvex (for
paper: many smooth minimizers).

Second term (“bending energy”) resists bending, but has h2 in front.

If bc permit isometry with curvature in L2 then Eh ∼ h2 as h→ 0.

For d-cone and crumpling, Eh � h2 as h→ 0. (How does Eh behave
as h→ 0? We have conjectures, but few theorems.)
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Digression: the Miura folding pattern
Problem: NYC subway map is difficult to fold “correctly.”

Solution: The Miura map is easy to fold “correctly.”

Is there math here?

folding paper flat⇔ g : R2 → R2 such that Dg ∈ O(2).

So g is locally a rotation (preserving or reversing orientation).

When 4 creases meet, opposite angles
must add to π (to permit folding flat).

For arbitary “creases” (violating angle condition) there is no way
to fold paper flat using them.

For rectangular creases there are many ways. For Miura pattern
there is essentially one way.
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Digression: the Miura folding pattern

Actually, there’s a lot of math here:

To have finite energy, the folds must be smoothed. To minimize
energy

Eh = min
∫
|(Dg)T Dg − I|2 dA + h2

∫
κ2

1 + κ2
2 dA

scale of smoothing should depend on dist from fold-crossings
(Lobkovsky-Witten, Venkataramani, Conti-Maggi). Best possible
(if length scale of folds is of order 1) is Eh ∼ h5/3.

Scaling so that slopes remain fixed and amplitude→ 0 gives an
(asymptotically) piecewise-isometric approximation of uniform
compression with Eh ∼ h5/3−δ for any δ > 0. (Is this the best one
can do? Is it why crumpling induces folds?)
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Tension-induced wrinkling

Paper is special, because it’s almost inextensible. In more elastic thin
sheets, we often see wrinkling. Useful to distinguish between
tension-induced and compressive wrinkling. Some tension-induced
examples:

hanging drapes (Vandeparre et al, PRL
2011)

stretched sheets (Cerda & Mahadevan,
PRL 2003)

water drop on floating sheet (Huang et
al, Science 2007)

Common features: membrane effects induce uniaxial tension.
Wrinkles serve to avoid compression. Wrinkling direction is known.
Scale of wrinkling may depend on location. As h→ 0, scale of
wrinkling→ 0.
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Compressive wrinkling

Some examples of compressive wrinkling:

Compression due to thermal mismatch:
a thin film bonded to a too-short bdry
(Lai et al, J Power Sources 2010)

Metric-driven wrinkling, proposed as a
model for growth-induced wrinkling in
leaves and flowers (numerics, Audoly &
Boudaoud, PRL 2003)

Crumpling is not so different!

More difficult than tension-induced wrinkling:

Should we expect wrinkles or folds?

Direction of wrinkles/folds not clear in advance.

Greater multiplicity of low-energy structures.
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Patterns vs scaling laws

Eh = min
{

membrane energy + h2 bending energy

+ term assoc to loading
}
.

Setting h = 0 leads to infinite bending.

Problem: It is difficult to describe a pattern (even a well-organized
one, as in the figures), let alone explain why it occurs.

Solution: Focus instead on the scaling law of the minimum energy,
i.e. find asymptotics of Eh as h→ 0. For example, do there exist E0
and α such that

E0 + C1hα ≤ Eh ≤ E0 + C2hα?

Upper bound can be obtained by guessing form of solution.

Lower must consider any pattern (even those not seen in nature).

Proving the upper bound involves describing the pattern.

Proving the lower bound involves understanding what drives it.
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The variational perspective

Program: study asymptotics of Eh, for example

E0 + C1hα ≤ Eh ≤ E0 + C2hα.

If α = 2 then curvature is unif bounded in L2, hence no
microstructure.

Simulation is also useful. But:

- increasingly stiff as h→ 0
- hard to explore global min this way
- simulation shows how a pattern forms, not so much why it forms.

Bifurcation is also useful. But min energy state lies deep in the
bifurcation diagram as h→ 0.

Minimization within an ansatz is widely used. But is the ansatz
adequate? Yes, if there’s a matching lower bound.
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The variational perspective – cont’d

Program: study asymptotics of Eh, for example

E0 + C1hα ≤ Eh ≤ E0 + C2hα.

How to approach lower bound? In convex problems, lower
bounds come from duality. But our problems are highly
nonconvex. No universal method yet, but techniques are
beginning to emerge through examples.

What about the pattern? I’ll focus mainly on asymptotics of the
energy. Of course I’m also interested in ptwise details of
energy-min pattern, but rigorous ptwise results are known only in
a few cases.
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Getting started

Now some basic mechanics, laying groundwork for the first TA
Session and our variational analysis of wrinkling. Topics:

a 1D elastic spring (constrained to a line)

a 1D elastic spring (in 3D, but ignoring bending)

a 2D elastic sheet (membrane energy, nonlinear version)

a 2D elastic sheet (membrane energy, von Karman version)

a 2D elastic sheet (the bending energy)
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A 1D elastic spring, constrained to a line

Reference state: [0, L] (Stress-free). Deformation: u : [0, L]→ R with ux > 0.

Elastic energy: If x = 0 is fixed and we pull by force T at RHS,

min
u(0)=0

∫ L

0
W1D(u′) dx − u(L)T

Euler Lagrange eqn expresses force balance:

d
dx
[
W ′1D(u′)

]
= 0, with W ′1D(u′) = T at x = L.

u′ is the “stretch” (string prefers u′ = 1); e = u′ − 1 is the “nonlinear
strain” (string prefers e = 0).

If we expect u′ ≈ 1, then it is reasonable to take W1D(λ) = c|λ− 1|2.

In general: W ′1D is the stress (force) assoc to stretch u′; so W1D(λ)
should be min at λ = 1, and W1D(λ)→∞ as λ ↓ 0 or λ→∞.

Robert V. Kohn Wrinkling – Lecture 1



A 1D elastic spring, constrained to a line

Reference state: [0, L] (Stress-free). Deformation: u : [0, L]→ R with ux > 0.

Elastic energy: If x = 0 is fixed and we pull by force T at RHS,

min
u(0)=0

∫ L

0
W1D(u′) dx − u(L)T

Euler Lagrange eqn expresses force balance:

d
dx
[
W ′1D(u′)

]
= 0, with W ′1D(u′) = T at x = L.

u′ is the “stretch” (string prefers u′ = 1); e = u′ − 1 is the “nonlinear
strain” (string prefers e = 0).

If we expect u′ ≈ 1, then it is reasonable to take W1D(λ) = c|λ− 1|2.

In general: W ′1D is the stress (force) assoc to stretch u′; so W1D(λ)
should be min at λ = 1, and W1D(λ)→∞ as λ ↓ 0 or λ→∞.

Robert V. Kohn Wrinkling – Lecture 1



A 1D elastic spring in R3

Reference state: [0, L] (Stress-free). Deformation: u : [0, L]→ R3.

Elastic energy: If x = 0 is fixed and we pull by force T ∈ R3 at RHS,

min
u(0)=0

∫ L

0
W1D(|u′|) dx − u(L) · T

Euler Lagrange eqn still expresses force balance:

d
dx

[
W ′1D(|u′|) u′

|u′|

]
= 0, with W ′1D(u′) u′

|u′| = T at x = L.

|u′| is the stretch (string prefers |u′| = 1); e = |u′| − 1 is the strain.

W ′1D is the magnitude of the stress (force) assoc to stretch |u′| (negative
for |u′| < 1, positive for |u′| > 1).

When viewed as a function of u′ ∈ R3, W1D(u′) is nonconvex (it is min
on the circle |u′| = 1).

For small strain, reasonable to take W1D(|u′|) = c(|u′| − 1)2 = ce2.

However: since |u′|2 = (1 + e)2 ≈ 1 + 2e, equally reasonable to take
W1D = c

4 (|u′|2 − 1)2.
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The membrane energy of a 2D sheet
Reference state: Ω ⊂ R2 (Stress-free). Deformation: g : Ω→ R3.

Polar decomposition: For any x ∈ Ω, the lin approx Dg(x) can be expressed
as a product: Dg(x) = Q · (DgT Dg)1/2, where Q is an isometry of R2 to R3.

Principal stretches λ1, λ2 are the eigenvalues of (DgT Dg)1/2. Principal
strains are ei = λi − 1. Principal directions are eigenvectors of DgT Dg.

For an isotropic membrane, the membrane energy Wm is a symmetric
function of λ1 and λ2. If it’s quadratic in e1 and e2, then it must be

Wm(Dg) = c1(e1 + e2)2 + c2(e2
1 + e2

2).

To keep things simple, I’ll often take c1 = 0 (“Poisson’s ratio zero”).

My favorite model is slightly different:

Wm(Dg) = |DgT Dg − I|2.

Remembering that

DgT Dg ∼
(
λ2

1 0
0 λ2

2

)
=

(
(1 + e1)2 0

0 (1 + e2)2

)
,

for small strain this is equivalent (at leading order) to 4(e2
1 + e2

2).
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The von Karman viewpoint – warmup

Preceding discussion assumed small strain but allowed arbitrarily large
change of orientation. The von Karman viewpoint is different because it
assumes the sheet is nearly flat.

To see the main idea: consider a horizontal string mapped into R2, with
horizontal displacement w and transverse displacement u. This amounts to
considering considering g : [0, L]→ R2:

g(x) = (x + w(x), u(x)).

We have
|g′| = [(1 + w ′)2 + u′2]1/2 ≈ 1 + w ′ + 1

2 u′2

if w ′ and u′ are both small. So the strain is approx

e = w ′ + 1
2 u′2

and our typical quadratic energy becomes

W = c|w ′ + 1
2 u′2|2.
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The von Karman membrane energy of a 2D sheet
The 2D case is similar to the warmup. Reference state is now Ω ⊂ R2 × {0}.

In describing the deformation we distinguish between the in-plane
displacement w : Ω→ R2 and the out-of-plane displacement u3 : Ω→ R.

Assuming isotropy and Poisson’s ratio zero, von Karman membrane energy is

Wm = c|e(w) + 1
2∇u3 ⊗∇u3|2

where e(w) is the “linear elastic strain"

e(w) =
∇w + (∇w)T

2
=

[
∂1w1

∂1w2+∂2w1
2

∂1w2+∂2w1
2 ∂2w2

]
and ∇u3 ⊗∇u3 denotes the rank-one matrix

∇u3 ⊗∇u3 =

[
(∂1u3)2 ∂1u3 ∂2u3

∂1u3 ∂2u3 (∂2u3)2

]
Notice that our 1D warmup is just the special case where w2 = 0 and w1, u3

depend only on x1.

The correspondence between the 2D nonlinear viewpoint and the 2D von
Karman viewpoint is entirely parallel to our 1D warmup.
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The bending energy

For a 1D string in R2, if W1D = |e|2, then the bending energy per unit
thickness is

1
12 h2

∫
κ2 dx

where h is the thickness. Why 1
12 h2? Because at distance z from the midline,

|e|2 ≈ |κ z|2, and ∫ h/2

−h/2
z2 dz = 1

12 h3.

We drop one power of h, because we want energy per unit thickness.

For a 2D sheet modeled using the von Karman framework, the analogous
bending energy is

1
12 h2

∫
|∇∇u3|2 dx

since in the small-slope, small-deformation limit, the principal curvatures are
the eigenvalues of ∇∇u.

I’ll often drop the factor 1/12 to avoid clutter.
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