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Goals for Lecture 2

Mathematical perspective on nonconvex variational problems
with regularizing singular perturbations

- A transparent 1D warmup
- Some 2D and 3D examples

Wrinkling as microstructure: the relaxed membrane energy

- The meaning of “relaxation”
- Implementation for our membrane energies
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The big picture
The elastic energy of a thin sheet has form

Eh =

[
nonconvex membrane energy

(prefers isometry)

]
+ h2

[
bending energy

(penalizes change in slope)

]
We have argued (just handwaving so far) that the patterns we see are often
due to competition between these two terms (“frustration”).

This idea is not unique to thin sheets. Many systems are described by
“Landau theories” with similar structure, eg liquid crystals, magnetic
materials, shape-memory materials. Past studies in the spirit of these
lectures include:

Branching of twins near an interface between
austenite and twinned martensite Figure: R.
James. Theory: Kohn & Müller, CPAM, 1994.

Branching of magnetic domains in a uniaxial
ferromagnet. Figure: Hubert and Schäfer.
Theory: Choksi, Kohn, Otto, CMP, 1999.
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A transparent 1D warmup

min
u(0)=u(1)=0

∫ 1

0
(u2

x − 1)2 + ε2u2
xx + αu2 dx

When ε = 0, α > 0, min value is 0, not attained. Min sequence has
“ux = ±1 with prob 1/2 each.”

When ε > 0, min scales like ε2/3α1/3, since for sawtooth with N teeth,
value is about ∼ εN + αN−2. Best N ∼ (α/ε)1/3.

Case ε > 0, α = 0 is different: just one tooth; min value is c0ε.

Optimal profile of “tooth” (which determines c0) found by minimizing∫
ε−1(w2 − 1)2 + εw2

x subject to w → ±1 as x → ±∞. Exactly solvable.

Singular perturbation induces defects and organizes microstructure.
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Relaxation in the 1D setting
Now consider the less homogeneous problem

min
∫ 1

0
(u2

x − 1)2 + |u − g(x)|2 + ε2u2
xx dx

An approx soln can be obtained in two steps:

STEP 1: Solve the relaxed problem:

min
∫ 2

0
f (ux ) + |u − g|2 dx

where f is “convexification” of (u2
x − 1)2

This gives the ε→ 0 limit of min energy. Being (strictly) convex, the relaxed
problem has a (unique) solution.

STEP 2: Put back the oscillations, by making ux = ±1 in regions where soln
of relaxed problem has |slope| < 1.
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2D is richer than 1D

A favorite example:

min
u=0 at x=0

∫
(u2

y − 1)2 + u2
x + ε2|∇∇u|2

or
min

u=0 at x=0
uy =±1

∫
u2

x + c0ε|uyy |

Simple model for branching of twins near austenite interface

Like 1D example (in y ), but microstructure is required by bdry cond
rather than a lower-order term

Relaxed problem is (essentially) min
∫

u2
x subject to u = 0 at x = 0.

Unique soln is u = 0.

Microstructural length scale depends on x (finer near x = 0)

Much is known (Kohn-Müller, Conti), esp for the sharp-interface version

See TA session 2, problem 3.
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2D is richer than 1D, cont’d

Two more favorite examples:

The Aviles-Giga functional

min
u=0 at ∂Ω

∫
Ω

ε−1(|∇u|2 − 1)2 + ε|∇∇u|2 dx

where Ω ⊂ R2 and u : Ω→ R. Nonconvex term prefers |∇u| = 1. Minimizers
have walls (graph of u has folds). No microstructure. Connections to
magnetic thin films and smectic liquid crystals, see eg my article in Proc ICM
2006.

Ginzburg-Landau vortices

min
bc

∫
Ω

ε−1(|v |2 − 1)2 + ε|∇v |2 dx

where Ω ⊂ R2 and v : Ω→ R2. More freedom than Aviles-Giga, since v need
not be curl-free. Minimizers have point defects at which deg (v) = ±1.
Connections to type-II superconductors, see eg books by Bethuel, Brezis, &
Helein and Sandier & Serfaty.
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Turning now to thin elastic sheets
Recall our warmup problem:

min
∫ 1

0
(u2

x − 1)2 + |u − g(x)|2 + ε2u2
xx dx

and our 2-step approach to understanding its limiting behavior as ε→ 0.

What is the analogue for a thin elastic sheet, described by the var’l problem

min (membrane energy) + h2(bending energy) + (loads)?

Conceptual answer:

Step 1: Identify the relaxed membrane energy, ie the min energy achievable
using (if necessary) “infinitesimal wrinkling”. (Ignore bending).

Step 2: Keeping the loads and bc the same, replace the membrane energy
by its relaxation, set h = 0, and solve.

Step 3: To account for h > 0, start with the result of Step 2 and “put back the
wrinkles.”

Easy to visualize, eg for

• hanging drapes, pulled by gravity • sheet pulled down over a sphere
• sheet pulled at two opposite sides • mylar balloon, wrinkled at seams
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Relaxation, continued

Step 1: Identify the relaxed membrane energy, ie the min energy achievable
using (if necessary) “infinitesimal wrinkling”. (Ignore bending).

Step 2: Keeping the loads and bc the same, replace the membrane energy
by its relaxation, set h = 0, and solve.

Step 3: To account for h > 0, start with the result of Step 2 and “put back the
wrinkles.”

Steps 1 & 2 are useful by themselves: if solution is unique, it tells us the
extent and direction of wrinkling (though not the scale).

Not a new idea: steps 1 & 2 are equivalent to “tension field theory.”

Step 3 is not so simple – it is more or less the focus of my lectures.

Program is mainly useful for tension-driven wrinkling, since relaxed
membrane energy vanishes for biaxial compression.
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A characterization of the relaxed energy

For u : Rm → Rn, the relaxation of W (Du) is its quasiconvexification,

QW (ξ) = min
u=ξ·x at∂D

1
|D|

∫
D

W (Dg)

= min avg energy consistent with avg gradient ξ

There’s a well-developed theory (see eg Dacorogna, Direct Methods in
the Calculus of Variations; or sec 2 of Kohn & Vogelius, CPAM 40
(1987) 745-777).

Well-defined: value doesn’t depend on choice of domain D.

In 1D example, relaxation was the convexification (and was therefore
explicit). For our membrane energy, the relaxation is again the
convexification. But QW is not always convex, and not always easy to
find explicitly.
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The relaxed membrane energy – nonlinear version

Consider our simple model membrane energy

W = |DgT Dg − I|2 = (λ2
1 − 1)2 + (λ2

2 − 1)2.

where g : R2 → R3 and λi are its principal stretches.

Claim: its relaxation QW is

f = (λ2
1 − 1)2

+ + (λ2
2 − 1)2

+

with the notation t+ = max{t , 0}.

The function f is actually the convexification of W , though this is not so easy
to see. I’ll prove the claim without proving convexity, by working directly with
the definition of the relaxation. Need to show two inequalities:

(1) QW ≤ f : requires identifying oscillations whose average membrane
energy is at most f .

(2) QW ≥ f : requires showing that regardless of oscillation, average
membrane energy is at least f .
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QW ≤ f

Recall: W = (λ2
1 − 1)2 + (λ2

2 − 1)2 and f = (λ2
1 − 1)2

+ + (λ2
2 − 1)2

+.

We must identify oscillations st average membrane energy is f .

Case 1: λ1 > 1 and λ2 > 1: nothing to do (no oscillation needed).

Case 2: λ1 > 1 and λ2 ≤ 1: use a 1D pattern of folds, with a transition layer
near the boundary. (Note: folds need not be sharp; they could eg be
sinusoidal).

Case 3: λ1 < 1 and λ2 < 1: repeat this calculation with two distinct length
scales. (Other constructions are also possible, eg using the Miura origami
pattern.)
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QW ≥ f

Recall: W = (λ2
1 − 1)2 + (λ2

2 − 1)2 and f = (λ2
1 − 1)2

+ + (λ2
2 − 1)2

+.

Must show that regardless of oscillation, avg membrane energy is at least f .
Sufficient to consider domain D = [0, 1]2 and maps g : D → R3 st
g = (λ1x1, λ2x2, 0) at ∂D.

Idea: when λ1 > 1, horizontal lines
must be stretched; when λ2 > 1,
vertical lines must be stretched.

Implementation uses just Jensen’s inequality and fundamental theorem of
calculus.
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QW ≥ f cont’d

Idea: when λ1 > 1, horizontal lines
must be stretched; when λ2 > 1,
vertical lines must be stretched.

Since (|∂1g1|2 − 1)2
+ is a convex function of ∂1g1, Jensen gives

(λ2
1 − 1)2

+ ≤
∫ 1

0
(|∂1g1|2 − 1)2

+ dx1 for each x2

and integration in x2 gives

(λ2
1 − 1)2

+ ≤
∫

D
(|∂1g1|2 − 1)2

+

But since |∂1g1|2 − 1 = (DgT Dg − I)11 we have

(|∂1g1|2 − 1)2
+ ≤ (DgT Dg − I)2

11

so
(λ2

1 − 1)2
+ ≤

∫
D

(DgT Dg − I)2
11.
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QW ≥ f cont’d

Idea: when λ1 > 1, horizontal lines
must be stretched; when λ2 > 1,
vertical lines must be stretched.

Similarly (integrating along vertical lines)

(λ2
2 − 1)2

+ ≤
∫

D
(DgT Dg − I)2

22.

Adding, we get

f ≤
∫

D
|DgT Dg − I|2 =

∫
D

W (Dg).

Minimizing RHS over all g with the given bc, we get f ≤ QW .
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The relaxed membrane energy – von Karman version

In the von Karman setting the situation is similar, though the algebraic details
are different. The membrane energy is

W = |e(w) + 1
2∇u3 ⊗∇u3|2 = µ2

1 + µ2
2

where µ1, µ2 are the eigenvalues of e(w) + 1
2∇u3 ⊗∇u3.

Claim: Its relaxation QW is

f = (µ1)2
+ + (µ2)2

+.

The proof is parallel to the nonlinear case. (But: the convexity of f is
somewhat easier in this setting – see TA Session 2 problem 2. This gives
alternative proof that QW ≥ f , using Jensen).
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Stepping back

Connection to Lecture 1: for tension-driven wrinkling, relaxed problem tells us
where the wrinkling occurs, and even the “arclength that must be wasted by
wrinkling” to avoid compression. Results about the length scale of wrinkling
when h > 0 are in some sense perturbative around this.

hanging drapes (Vandeparre et al, PRL
2011)

stretched sheets (Cerda & Mahadevan,
PRL 2003)

water drop on floating sheet (Huang et
al, Science 2007)
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Stepping back – cont’d

For compressive problems, however, the relaxed problem is typically of less
use, due to its extreme degeneracy.

Compression due to thermal mismatch:
a thin film bonded to a too-short bdry
(Lai et al, J Power Sources 2010)
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Some comments

These methods are not limited to these examples. I have focused on
my favorite model membrane energies, but a similar discussion applies
for any (isotropic) membrane energy (Pipkin, IMA J Appl Math 36, 1986,
85-99)

In general, relaxation is different from convexification. The fact that our
relaxed problems have all been convex is a bit misleading. In general,
for problems of type W (Du) with u : Rn → Rn with m, n ≥ 2, the relaxed
energy need not be convex. A simple example is W (Du) = det Du,
which is its own relaxation (though it is not convex).

Martensitic microstructure can be viewed in these terms. In martensitic
transformation, it is natural to ask which macroscopic deformations are
achieved by (approximately) stress-free mixtures of the different
phases. This is equivalent to asking: suppose W (Du) ≥ 0 and W = 0
at selected sets of the form SO(3)Ui , 1 ≤ i ≤ N; where is QW equal to
0? In such problems the relaxed energy QW is never convex.
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