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@ Recall from Lecture 1: tension-induced wrinkling and
compression-induced wrinkling are very different.

@ We understand from Lecture 2 that for tension-induced wrinkling the
relaxed problem is nontrivial; it determines the wrinkled region and the
direction of the wrinkles. Lecture 3 explored an example.

@ For compression-induced wrinkling, the relaxed problem is trivial and it
provides no guidance. Today’s lecture presents work with Hoai-Minh
Nguyen on an example of this type.

@ For more detail see: R.V. Kohn & H.-M. Nguyen, J Nonlin Sci 23 (2013)
343-362.
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Phenomenology

Wrinkling of thin films compressed by thick, compliant substrates:

@ deposit film at high temp then cool; or

. N \ o\ N
@ deposit on stretched substrate then release; I?// /////A

@ film buckles to avoid compression

Commonly seen pattern: herringbone

silicon on pdms gold on pdms
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Phenomenology - con

Herringbone pattern when film has some anisotropy, or for specific
release histories. Otherwise a less ordered “labyrinth” pattern.

silicon on pdms gold on pdms
Song et al, J Appl Phys 103 (2008) 014303 Chen & Hutchinson, Scripta Mat 50 (2004) 797-801

different release histories
Lin & Yang, App! Phys Lett 90 (2007) 241903
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The elastic energy

Using the von Karman framework, the energy
has three terms:

(1) Membrane energy captures fact that film’s natural length is larger than
that of the substrate:

amh/ le(w) + 1Vus ® Vus — nlf? dx dy
(2) Bending energy captures resistance to bending:
I / V'V s 2 dx diy

(3) Substrate energy captures fact that substrate acts as a “spring”, tending
to keep film flat:
as (IWl/e + usllf/e)
where [|gZ:/2 = 3 |kI1g(k)I?
Membrane energy is proportional to h, and bending to h®, since substrate
energy is proportional to area.
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The membrane energy

Enembrane = Oémh/ ‘e(W) + %VU:; ®@Vus — ’I7I|2 ax dy

where (wq, s, U3) is the elastic displacement, and n > 0 is the misfit
(nondimensional but small). Keeping a, as a parameter permits us to see
when the membrane term is important.

@ For membrane term to be small, expect |e(w)| ~ n and [Vus| ~ /7.

@ For 1D analogue [ [0xws + 3(dxus)? — n|? dx, integrand vanishes eg if
wrinkling profile is sinusoidal,

wy = 77% sin(4x/X), us = \/nAcos(2x/A) N ‘
@ Our problem is 2D, with isotropic misfit n/;

membrane term would vanish for

piecewise-linear “Miura ori” pattern.

@ The herringbone pattern uses sinusoidal wrinkling in two distinct
orientations. It does better than the Miura-ori pattern.
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The substrate energy

Equbstrae = Qs (HWH/2-11/2 + ||u3||?—l1/2)

where (w;, wa, u3) are assumed periodic (on some large scale L),

lglEs 2 =D Ikllg(k)I?

and
as = substrate stiffness/film stiffness.

@ Treat substrate as semi-infinite isotropic elastic halfspace.

@ Given surface displacement (wy, ws, u3), solve 3D linear
elasticity problem in substrate by separation of variables.

@ Substrate energy is the result (modulo constants).

pZZZ
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Total energy = membrane + bending + substrate

To permit spatial averaging, we assume periodicity on some (large)
scale L, and we focus on the energy per unit area:

E, = QLLZh le(w) + $Vus ® Vus — nl|? dx dy (membrane)
(0,12
h3
+55 / |VVus|? dx dy (bending)
L2 Jio,upe
+75 (W2 + el e) (substrate)

where h is the thickness of the film.

@ We have already normalized by stiffness of the film, so am, as,n
are dimensionless parameters:

- am (order 1) comes from mechanics of bending;
- as (small) is the ratio (substrate stiffness)/(film stiffness);
- 7 (small, pos) is the misfit.

@ Unwrinkled state (wy, ws, u3) = 0 has energy amn?h.
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The energy scaling law

If h/L and n are small enough, the minimum energy satisfies
min E, ~ min{amn?h, ai/anh};

moreover

@ the first alternative corresponds to the unwrinkled state; it is

better when amn < o2/3.

@ the second alternative is achieved by a herringbone pattern
using wrinkles with length scale a;1/ 8 h, whose direction
oscillates on a suitable scale (longer but not fully determined).

The smallness conditions are explicit:
ama;4/3(h/L)2 <1 and 72 <ap’ a§/3.

Perhaps other, less-ordered patterns could also be optimal (e.g.
“labyrinths”).
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The energy scaling law — cont'd

min E, ~ min{amn?h, a§/3nh};

One consequence: the Miura-ori pattern is not optimal:

@ lts scaling law is aj/®a3/8,17/16p,

@ If film prefers not to be flat (amn > o2/%) then
Miura-ori energy >> herringbone energy.

Intuition:
@ Bending energy requires folds of Miura-ori pattern to be rounded.
@ Where folds intersect this costs significant membrane energy.

@ In herringbone pattern the membrane term isn’t identically zero,
but it does not contribute at leading order.

i
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Tasks for analysis

Our assertion is:

Cr min{am2h, o?*nh} and
Co min{amn?h, ai/th}

minE, >

min E, <

with Cy, C, independent of h, as, and o, provided
ama;4/3(h/L)2 <1 and 7°<ap,’ ai/e’.

Our tasks are thus

@ to prove an upper bound, by describing and optimizing the
herringbone pattern; and

@ to prove a “matching” ansatz-free lower bound.
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The upper bound — overview

@ Energy of unbuckled state is amn®h

@ Energy of herringbone is Ca2/®nh

@ So min E, < min{amn?h, Ca?*nh}

h

E, = O‘LLZ le(w) + 1Vus ® Vus — nl|? dx dy
[0,

h3

gz [, 19l dxay+ 5 (1wl + sy )

Key features of herringbone:

@ membrane term is negligible

@ typical slope is |Vus| ~ /1

@ typical in-plane strain is |e(w)| ~ n (smaller!)
<]

scale of wrinkling set by competition between bending term and us part
of substrate term

@ two types of wrinkling must mix for e(w) to have average 0; but the
longer length scale is not fully determined.
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More detail on the herringbone pattern

Film wants to expand (isotropically) relative to substrate.
@ 1D wrinkling expands only transverse to the wrinkles
@ a simple shear expands one diag dirn, compresses the other
@ shear combined with wrinkling achieves isotropic expansion

~ 2\

Substrate prohibits large deformation; therefore the film mixes the two
shear-combined-with-wrinkling variants. Thus, the herringbone
pattern has two length scales:

@ The smaller one (the scale of the wrinkling)
is set by competition between bending term
and substrate energy of us.

@ The larger one (scale of the phase mixture)
must be s.t. the substrate energy of w is
insignificant. (It is not fully determined.)
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Another perspective

@ Mixture of two symmetry-related “phases” NN

@ “Phase 1” uses sinusoidal wrinkles perp to
(1,1), superimposed on an in-plane shear.

@ “Phase 2" uses wrinkles perp to (1, —1),
superimposed on a different shear. NN

Inphase 1: e(w) + 3Vus @ Vus = (° ") + (0 7) =nl;

In phase 2: e(w) + sVus @ Vus = (0 0) + (%, ) =nl;
Membrane term vanishes (except in transition layers between the phases)!
Since avg in-plane shear is 0, in-plane displacement w can be periodic.

Scale of shear oscillation can be much longer than scale of wrinkling, since
e(w) ~ n while us ~ \/n, and n < 1.

Scale of shear oscillation must be small enough: substrate energy of shear
osc < substrate energy of wrinkling.

Scale of shear oscillation must be large enough: membrane energy of
transition layers should be < other energy assoc with wrinkling.
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Phenomenology - review

silicon on pdms gold on pdms
Song et al, J Appl Phys 103 (2008) 014303 Chen & Hutchinson, Scripta Mat 50 (2004) 797-801

S
different release histories

Lin & Yang, App! Phys Lett 90 (2007) 241903
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No other pattern can do better

Want to show: For any periodic (w1, Ws, Us), En > Cmin{amn?h, o2/*nh}.

The proof is surprisingly easy. To simplify notation, take the period to be
L =1. We’'ll use only that

membrane term > amh/ |01wr + 1191 us|® — nf® dx dy,

bending term = h®||VVus||%, and substrate term > as||us||% .
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No other pattern can do better

Want to show: For any periodic (w1, Ws, Us), En > Cmin{amn?h, o2/*nh}.

The proof is surprisingly easy. To simplify notation, take the period to be
L =1. We’'ll use only that

membrane term > amh/ |01wr + 1191 us|® — nf® dx dy,

bending term = h®||VVus||%, and substrate term > as||us||% .

CASE 1, FIRST PASS: If [(01u3)? < n then membrane > amn®h, since dxw
has mean 0.
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No other pattern can do better

Want to show: For any periodic (w1, Ws, Us), En > Cmin{amn?h, o2/*nh}.

The proof is surprisingly easy. To simplify notation, take the period to be
L =1. We’'ll use only that

membrane term > amh/ |01wr + 1191 us|® — nf® dx dy,

bending term = h®||VVus||%, and substrate term > as||us||% .

CASE 1, FIRST PASS: If [(01u3)? < n then membrane > amn®h, since dxw
has mean 0.

CASE 2, FIRST PASS: If [(01us)? = n use the interpolation inequality
IVwslle S IV Vsl sl

12 H1/2
to see that
Bending + substrate terms = B®||VVus|® + Jas||us|Z/2 + Sasl|us| e
1/3
2 (PIVVslPedliuslie)
z haZP|Vus|E 2 hall®n
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More detail on case 1

CASE 1, SECOND PASS: Suppose [ 3(91u3)? < 7. Use the inequality

1/2
/31 wi + 3(O1Us)® — 1 < (/ 01wy + (01u3)? — 77|2>

(recall that we took L = 1 to simplify the notation). Since w; is
periodic,

LHS = / %(31 U3)2 -n > %77.

So
ham/ 01wy + 3(D1U3)? — n* > ham(3n)?
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More detail on case 2

CASE 2, SECOND PASS: Suppose [ 3|91us|? > 1n. Then evidently

/|VU3|2 > 1.

Our first pass argument combined the inequality &2+¢ > (abc)!/?
with an interpolation inequality, which can be written

I (/|vw2>”3 </|V1/2u2)2/3

using the suggestive notation 3" |k||G(k)|2 = [ |V'/2ul?. Proof of this
ineq is easy in Fourier space:

DoIkPlatk)P =Y kM Rak) PR - kPR a(k) |

< (SamE) " (X kiawE)
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Stepping back

Main accomplishment: scaling law of the minimum energy, based on
@ upper bound, corresponding to the herringbone pattern, and
@ lower bound, using little more than interpolation.
@ Key point: they agree (up to a factor indep of h, n, and ay).
Open question: what about those labyrinth patterns?

@ Why are they seen in some numerical and physical experiments
(but not in others)? Do they achieve the same scaling law, or are
they higher-energy local minima?
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A closely related problem

What if the film can relieve the misfit by blistering?

FeNi on salt
(from Gioia & Ortiz, 1997)

Very different from perfectly-bonded case, since substrate feels only
in-plane displacement of bonded region.

Recent joint work with Jacob Bedrossian (CPAM in press, and
preprint at arxiv): there is a regime where a lattice-like blistering
pattern is energetically preferred over a few large blisters (if the area
fraction of blistering is fixed).
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Image credits

P.-C. Lin & S. Yang, App! Phys Lett 90 (2007) 241903

X. Chen and J. Hutchinson, Scripta Materialia 50
(2004) 797-801

J. Song et al, J Appl Phys 103 (2008) 014303
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G. Gioia & M. Ortiz, Adv Appl Mech 33 (1997)
119-192
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