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Orientation

Recall from Lecture 1: tension-induced wrinkling and
compression-induced wrinkling are very different.

We understand from Lecture 2 that for tension-induced wrinkling the
relaxed problem is nontrivial; it determines the wrinkled region and the
direction of the wrinkles. Lecture 3 explored an example.

For compression-induced wrinkling, the relaxed problem is trivial and it
provides no guidance. Today’s lecture presents work with Hoai-Minh
Nguyen on an example of this type.

For more detail see: R.V. Kohn & H.-M. Nguyen, J Nonlin Sci 23 (2013)
343-362.
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Phenomenology

Wrinkling of thin films compressed by thick, compliant substrates:

deposit film at high temp then cool; or

deposit on stretched substrate then release;

film buckles to avoid compression

Commonly seen pattern: herringbone

silicon on pdms gold on pdms
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Phenomenology - cont’d
Herringbone pattern when film has some anisotropy, or for specific
release histories. Otherwise a less ordered “labyrinth” pattern.

silicon on pdms
Song et al, J Appl Phys 103 (2008) 014303

gold on pdms
Chen & Hutchinson, Scripta Mat 50 (2004) 797–801

different release histories
Lin & Yang, Appl Phys Lett 90 (2007) 241903
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The elastic energy

Using the von Karman framework, the energy
has three terms:

(1) Membrane energy captures fact that film’s natural length is larger than
that of the substrate:

αmh
∫
|e(w) + 1

2∇u3 ⊗∇u3 − ηI|2 dx dy

(2) Bending energy captures resistance to bending:

h3
∫
|∇∇u3|2 dx dy

(3) Substrate energy captures fact that substrate acts as a “spring”, tending
to keep film flat:

αs

(
‖w‖2

H1/2 + ‖u3‖2
H1/2

)
where ‖g‖2

H1/2 =
∑
|k ||ĝ(k)|2

Membrane energy is proportional to h, and bending to h3, since substrate
energy is proportional to area.
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The membrane energy

Emembrane = αmh
∫
|e(w) + 1

2∇u3 ⊗∇u3 − ηI|2 dx dy

where (w1,w2, u3) is the elastic displacement, and η > 0 is the misfit
(nondimensional but small). Keeping αm as a parameter permits us to see
when the membrane term is important.

For membrane term to be small, expect |e(w)| ∼ η and |∇u3| ∼
√
η.

For 1D analogue
∫
|∂x w1 +

1
2 (∂x u3)

2 − η|2 dx , integrand vanishes eg if
wrinkling profile is sinusoidal,

w1 = η
λ

4
sin(4x/λ), u3 =

√
ηλ cos(2x/λ)

Our problem is 2D, with isotropic misfit ηI;

membrane term would vanish for
piecewise-linear “Miura ori” pattern.

The herringbone pattern uses sinusoidal wrinkling in two distinct
orientations. It does better than the Miura-ori pattern.
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The substrate energy

Esubstrate = αs
(
‖w‖2

H1/2 + ‖u3‖2
H1/2

)
where (w1,w2,u3) are assumed periodic (on some large scale L),

‖g‖2
H1/2 =

∑
|k ||ĝ(k)|2

and
αs = substrate stiffness/film stiffness.

Treat substrate as semi-infinite isotropic elastic halfspace.

Given surface displacement (w1,w2,u3), solve 3D linear
elasticity problem in substrate by separation of variables.

Substrate energy is the result (modulo constants).
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Total energy = membrane + bending + substrate

To permit spatial averaging, we assume periodicity on some (large)
scale L, and we focus on the energy per unit area:

Eh =
αmh
L2

∫
[0,L]2
|e(w) + 1

2∇u3 ⊗∇u3 − ηI|2 dx dy (membrane)

+
h3

L2

∫
[0,L]2
|∇∇u3|2 dx dy (bending)

+
αs

L2

(
‖w‖2

H1/2 + ‖u3‖2
H1/2

)
(substrate)

where h is the thickness of the film.

We have already normalized by stiffness of the film, so αm, αs, η
are dimensionless parameters:

- αm (order 1) comes from mechanics of bending;
- αs (small) is the ratio (substrate stiffness)/(film stiffness);
- η (small, pos) is the misfit.

Unwrinkled state (w1,w2,u3) = 0 has energy αmη
2h.
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The energy scaling law

Theorem

If h/L and η are small enough, the minimum energy satisfies

min Eh ∼ min{αmη
2h, α2/3

s ηh};

moreover

the first alternative corresponds to the unwrinkled state; it is
better when αmη < α

2/3
s .

the second alternative is achieved by a herringbone pattern
using wrinkles with length scale α−1/3

s h, whose direction
oscillates on a suitable scale (longer but not fully determined).

The smallness conditions are explicit:

αmα
−4/3
s (h/L)2 ≤ 1 and η2 ≤ α−1

m α
2/3
s .

Perhaps other, less-ordered patterns could also be optimal (e.g.
“labyrinths”).
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The energy scaling law – cont’d

min Eh ∼ min{αmη
2h, α2/3

s ηh};

One consequence: the Miura-ori pattern is not optimal:

Its scaling law is α1/6
m α

5/8
s η17/16h.

If film prefers not to be flat (αmη � α
2/3
s ) then

Miura-ori energy� herringbone energy.

Intuition:

Bending energy requires folds of Miura-ori pattern to be rounded.

Where folds intersect this costs significant membrane energy.

In herringbone pattern the membrane term isn’t identically zero,
but it does not contribute at leading order.
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Tasks for analysis

Our assertion is:

min Eh ≥ C1 min{αmη
2h, α2/3

s ηh} and

min Eh ≤ C2 min{αmη
2h, α2/3

s ηh}

with C1,C2 independent of h, αs, and αm, provided

αmα
−4/3
s (h/L)2 ≤ 1 and η2 ≤ α−1

m α
2/3
s .

Our tasks are thus

to prove an upper bound, by describing and optimizing the
herringbone pattern; and

to prove a “matching” ansatz-free lower bound.
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The upper bound – overview

Energy of unbuckled state is αmη
2h

Energy of herringbone is Cα2/3
s ηh

So min Eh ≤ min{αmη
2h,Cα2/3

s ηh}

Eh =
αmh
L2

∫
[0,L]2
|e(w) + 1

2∇u3 ⊗∇u3 − ηI|2 dx dy

+
h3

L2

∫
[0,L]2
|∇∇u3|2 dx dy +

αs

L2

(
‖w‖2

H1/2 + ‖u3‖2
H1/2

)
Key features of herringbone:

membrane term is negligible

typical slope is |∇u3| ∼
√
η

typical in-plane strain is |e(w)| ∼ η (smaller!)

scale of wrinkling set by competition between bending term and u3 part
of substrate term

two types of wrinkling must mix for e(w) to have average 0; but the
longer length scale is not fully determined.

Wrinkling – Lecture 4



More detail on the herringbone pattern
Film wants to expand (isotropically) relative to substrate.

1D wrinkling expands only transverse to the wrinkles

a simple shear expands one diag dirn, compresses the other

shear combined with wrinkling achieves isotropic expansion

Substrate prohibits large deformation; therefore the film mixes the two
shear-combined-with-wrinkling variants. Thus, the herringbone
pattern has two length scales:

The smaller one (the scale of the wrinkling)
is set by competition between bending term
and substrate energy of u3.

The larger one (scale of the phase mixture)
must be s.t. the substrate energy of w is
insignificant. (It is not fully determined.)
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Another perspective

Mixture of two symmetry-related “phases”

“Phase 1” uses sinusoidal wrinkles perp to
(1, 1), superimposed on an in-plane shear.

“Phase 2” uses wrinkles perp to (1,−1),
superimposed on a different shear.

In phase 1: e(w) + 1
2∇u3 ⊗∇u3 =

( 0 −η
−η 0

)
+
( η η
η η

)
= ηI;

In phase 2: e(w) + 1
2∇u3 ⊗∇u3 =

( 0 η
η 0

)
+
(
η −η
−η η

)
= ηI;

Membrane term vanishes (except in transition layers between the phases)!
Since avg in-plane shear is 0, in-plane displacement w can be periodic.

Scale of shear oscillation can be much longer than scale of wrinkling, since
e(w) ∼ η while u3 ∼

√
η, and η � 1.

Scale of shear oscillation must be small enough: substrate energy of shear
osc ≤ substrate energy of wrinkling.

Scale of shear oscillation must be large enough: membrane energy of
transition layers should be ≤ other energy assoc with wrinkling.
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Phenomenology - review

silicon on pdms
Song et al, J Appl Phys 103 (2008) 014303

gold on pdms
Chen & Hutchinson, Scripta Mat 50 (2004) 797–801

different release histories
Lin & Yang, Appl Phys Lett 90 (2007) 241903
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No other pattern can do better
Want to show: For any periodic (w1,w2, u3), Eh ≥ C min{αmη

2h, α2/3
s ηh}.

The proof is surprisingly easy. To simplify notation, take the period to be
L = 1. We’ll use only that

membrane term ≥ αmh
∫
|∂1w1 +

1
2 |∂1u3|2 − η|2 dx dy ,

bending term = h3‖∇∇u3‖2
L2 , and substrate term ≥ αs‖u3‖2

H1/2 .

CASE 1, FIRST PASS: If
∫
(∂1u3)

2 � η then membrane & αmη
2h, since ∂x w1

has mean 0.

CASE 2, FIRST PASS: If
∫
(∂1u3)

2 & η use the interpolation inequality

‖∇u3‖L2 . ‖∇∇u3‖1/3
L2 ‖u3‖2/3

H1/2

to see that

Bending + substrate terms = h3‖∇∇u3‖2 + 1
2αs‖u3‖2

H1/2 +
1
2αs‖u3‖2

H1/2

&
(

h3‖∇∇u3‖2α2
s‖u3‖4

H1/2

)1/3

& hα2/3
s ‖∇u3‖2

L2 & hα2/3
s η

using arith mean/geom mean inequality. Wrinkling – Lecture 4
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More detail on case 1

CASE 1, SECOND PASS: Suppose
∫ 1

2 (∂1u3)
2 ≤ 1

2η. Use the inequality∫
∂1w1 +

1
2 (∂1u3)

2 − η ≤
(∫
|∂1w1 +

1
2 (∂1u3)

2 − η|2
)1/2

(recall that we took L = 1 to simplify the notation). Since w1 is
periodic,

LHS =

∫
1
2 (∂1u3)

2 − η ≥ 1
2η.

So
hαm

∫
|∂1w1 +

1
2 (∂1u3)

2 − η|2 ≥ hαm(
1
2η)

2
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More detail on case 2

CASE 2, SECOND PASS: Suppose
∫ 1

2 |∂1u3|2 ≥ 1
2η. Then evidently∫

|∇u3|2 ≥ η.

Our first pass argument combined the inequality a+b+c
3 ≥ (abc)1/3

with an interpolation inequality, which can be written∫
|∇u|2 ≤

(∫
|∇∇u|2

)1/3(∫
|∇1/2u|2

)2/3

using the suggestive notation
∑
|k ||û(k)|2 =

∫
|∇1/2u|2. Proof of this

ineq is easy in Fourier space:∑
|k |2|û(k)|2 =

∑
|k |4/3|û(k)|2/3 · |k |2/3|û(k)|4/3

≤
(∑

|k |4|û(k)|2
)1/3 (∑

|k ||û(k)|2
)2/3
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Stepping back

Main accomplishment: scaling law of the minimum energy, based on

upper bound, corresponding to the herringbone pattern, and

lower bound, using little more than interpolation.

Key point: they agree (up to a factor indep of h, η, and αs).

Open question: what about those labyrinth patterns?

Why are they seen in some numerical and physical experiments
(but not in others)? Do they achieve the same scaling law, or are
they higher-energy local minima?
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A closely related problem

What if the film can relieve the misfit by blistering?

FeNi on salt
(from Gioia & Ortiz, 1997)

Very different from perfectly-bonded case, since substrate feels only
in-plane displacement of bonded region.

Recent joint work with Jacob Bedrossian (CPAM in press, and
preprint at arxiv): there is a regime where a lattice-like blistering
pattern is energetically preferred over a few large blisters (if the area
fraction of blistering is fixed).
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