
Wrinkling of thin elastic sheets – Lecture 5:
The floating elastic sheet

Robert V. Kohn
Courant Institute, NYU

PCMI, July 2014

Wrinkling – Lecture 4



Orientation

Recall: tension-induced and compressive wrinkling are rather
different. The annulus problem (Lecture 3) was tension-driven;
the herringbone problem (Lecture 4) was compressive.

Also recall the classic model problem

min
u=0 at x=0

uy =±1

∫
u2

x + ε|uyy |

where the length scale of the microstructure depends on dist to
bdry (Lecture 2, and problem 3 of TA Session 2).

Today’s discussion concerns an example of tension-induced
wrinkling that’s analogous to that model problem.

Joint work with Hoai-Minh Nguyen (preprint to come soon).
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The floating elastic sheet

sheet floats on water

confined on 2 sides

surface tension pulls free edges

wrinkles form, refining at free
edges

Experiment and some theory: Huang, Davidovitch, Santangelo, Russell,
Menon (PRL 2010); also Davidovitch (PRE 2009)

Focus of today’s discussion:

Identify analogue of the relaxed problem and its solution.

Estimate the energetic cost of changing the wrinkling length scale.
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Heuristics

sheet floats on water

confined on 2 sides

surface tension pulls free edges

wrinkles form, refining at free
edges

In the center: If length is large enough, end effects become irrelevant near
center. Confinement requires wrinkling. Surface tension makes it
tension-driven. Scale set by gravitational effects (prefers small amplitude)
and bending (prefers few wrinkles).

At ends: Surface tension (miniscus effects) demand much smaller length
scale.

Near ends: Refinement of wrinkling scale costs energy. A major goal of
today’s discussion: how to quantify this.
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The energy

Von Karman theory: displacement (w1,w2, u3)

Confinement: w2(x , 0) = 0,w2(x , 1) = −∆/2

Domain Ω = [0, L]× [0, 1], with L ≥ 1

For simplicity: u3 is periodic in y

Eh = αmh
∫

Ω

|e(w) + 1
2∇u3 ⊗∇u3|2 + h3

∫
Ω

|∇∇u3|2

+αg

∫
Ω

u2
3 + 1

2αs

∫
Ω

|∇u3|2 − (αc − αs)

∫
Ω

∂x w1 + αc‖u3‖2
H1/2(Γ)

Key hypothesis: αc > αs. Notation: Γ = free edges. Notes:

Extra surf energy due to u3 6= 0 is αs
∫

Ω
1
2 |∇u3|2 + αc‖u3‖2

H1/2(Γ)

Extra surf energy due to in-plane def is (αs − αc)
∫

Ω
div w

Since
∫

Ω
div w =

∫
Ω
∂x w1 + const, surf tension is tensile when αc > αs.

H1/2 term is energy of capillary fringe field:

‖u3‖2
H1/2(Γ) = min

∫
water
|∇u3|2 =

∑
k

|k |
(
|û3(0, k)|2 + |û3(L, k)|2

)
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Parameters, conventions, expectations

Eh = αmh
∫

Ω

|e(w) + 1
2∇u3 ⊗∇u3|2 + h3

∫
Ω

|∇∇u3|2

+αg

∫
Ω

u2
3 + 1

2αs

∫
Ω

|∇u3|2 − (αc − αs)

∫
Ω

∂x w1 + αc‖u3‖2
H1/2(Γ)

αm dimensionless

αg dimension: 1/length; gravitation, normalized by film stiffness

αs dimension: length; water-sheet surface energy, normalized

αc dimension: length; water-air surface energy, normalized

u3 mean 0, since water is incompressible

We expect

min Eh =

(
value assoc

tensile effects

)
+

(
correction due to presence

of bending energy

)
.

First term is like “relaxed energy,” second term is like “excess energy due to
positive h,” except that we haven’t nondimensionalized.
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A convenient reorganization

Eh = E1 + E2 + E3 + E4

E1 = αmh
∫

Ω

(∂x w1 + 1
2 |∂x u3|2)2 − (αc − αs)

∫
Ω

(∂x w1 + 1
2 |∂x u3|2)

E2 = αmh
∫

Ω

(∂y w2 + 1
2 |∂y u3|2)2 + 1

2αs

∫
Ω

|∂y u3|2

E3 = h3
∫

Ω

|∇∇u3|2 + 1
2αc

∫
Ω

|∂x u3|2 + αg

∫
Ω

u2
3 + αc‖u3‖2

H1/2(Γ)

E4 = 1
2αmh

∫
Ω

|∂x w2 + ∂y w1 + ∂x u3∂y u3|2

E1 captures stretching due to surface tension. It slaves ∂1w1 to ∂x u3.

E2 captures effect of confining bdry conditions. It determines
∫ 1

0 (∂y u3)2.
Minimization of E1 and E2 gives the “value assoc to tensile forces.”
E3 captures effect of bending resistance. Its min value is the “correction
due to bending energy.”
E4 is unimportant due to symmetry of bdry conditions.
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Energy due to tensile forces

E1 = αmh
∫

Ω

(∂x w1 + 1
2 |∂x u3|2)2 − (αc − αs)

∫
Ω

(∂x w1 + 1
2 |∂x u3|2)

E2 = αmh
∫

Ω

(∂y w2 + 1
2 |∂y u3|2)2 + 1

2αs

∫
Ω

|∂y u3|2

E1 captures stretching due to surface tension. To minimize integrand, E1

prefers ∂x w1 + 1
2 |∂x u3|2 to be a special value. So ∂x w1 is slaved to ∂x u3.

E2 captures effect of the confining bdry condition. Bdry condn gives∫ 1
0 ∂y w2 dy = −∆/2. Claim: E2 is minimized when, at each x ,

z =
∫ 1

0 |∂y u3|2 dy achieves

min
z>0

αmh
4

(∆− z)2 +
1
2
αsz.

No wrinkling if best z is 0 (this occurs when αmh∆ < αs).
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Analysis of E2

E2 = αmh
∫

Ω

(∂y w2 + 1
2 |∂y u3|2)2 + 1

2αs

∫
Ω

|∂y u3|2

For any x , let z = z(x) =
∫ 1

0 (∂y u3)2 dy . We have

− 1
2 ∆ + 1

2 z =

∫ 1

0
∂y w2 + 1

2 (∂y u3)2 dy

≤
(∫ 1

0
|∂y w2 + 1

2 (∂y u3)2|2
)1/2

.

Therefore

E2 ≥
∫ L

0
αmh

(
z(x)−∆

2

)2

+ 1
2αsz(x)

≥ L min
z≥0

(
αmh

(
z −∆

2

)2

+ 1
2αsz

)
.

Moreover: if
∫ 1

0 |∂y u3|2 dy deviates from the optimal value, E2 will be larger
(by an amount that’s easy to determine).
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Summary thus far

The picture so far:

E1 ≥ −
(αc − αs)2

4αmh
L, E2 ≥ −

1
4
αmh∆2L− [αmh∆− αs]2

+

4αmh
L.

Equality holds in former when ∂x w1 + 1
2 |∂x u3|2 has the preferred value, so

∂x w1 is slaved to ∂x u3.

Equality holds in the latter when∫ 1

0
(∂y u3)2 dy = δ for all x ,

with

δ =

[
αmh∆− αs

αmh

]
+

(which should be positive, to see wrinkling).

min E1 + min E2 is analogous to the min “relaxed energy” E0 of Lectures 2 & 3.
If “excess energy” is small, then conditions noted above must be approx met.
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Correction due to the bending term

Moving forward: E3 controls the wrinkling. Recall:

E3 = h3
∫

Ω

|∇∇u3|2 + 1
2αc

∫
Ω

|∂x u3|2 + αg

∫
Ω

u2
3 + αc‖u3‖2

H1/2(Γ).

The capillary term forces u3 to be small at unconfined edges x = 0, L.

If u3 is uniformly small, then length scale of wrinkling must be small
(since avg of |∂y u3|2 was fixed by E2). Expensive wrt bending energy.

If u3 is not uniformly small, then ∂x u3 must be large. Expensive wrt
surface energy.

Evidently: length scale of wrinkling should vary with distance to edge. Focus
for discussion: how does it vary, and what is the associated excess energy?
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A heuristic argument

Arguing as for refinement of wrinkles in “annulus problem,” we can construct
u3(x , y) st

∫ 1
0 (∂y u3)2 dy = δ and there’s a local length scale `(x) for the

wrinkling, with

|u3| ∼ δ1/2`(x), |∂x u3| ∼ δ1/2`′(x) |∇∇u3| ∼ δ1/2`−1(x).

Since E3 = h3 ∫
Ω
|∇∇u3|2 + 1

2αc
∫

Ω
|∂x u3|2 + αg

∫
Ω

u2
3 + αc‖u3‖2

H1/2(Γ)
we get

E3 ∼ h3
∫ L

0
δ`−2 dx + 1

2αc

∫ L

0
δ|`′|2 dx + αg

∫ L

0
`2 dx + αcδ(`(0) + `(L)).

Note: the final term is linear in ` since we expect∫ 1

0
|∂1/2

y u3|2 dy ∼
(∫ 1

0
u2

3 dy
)1/2(∫ 1

0
|∂y u3|2 dy

)1/2

.
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Variation of the local length scale
Conclusion thus far: wrinkling length scale should minimize∫ L

0

(
h3`−2 + 1

2αc |`′|2 + αg`
2
)

dx + αc(`(0) + `(L)).

What to do with this?

(a) Study this 1D variational problem for `(x).

(b) Draw qualitative conclusions, then seek ansatz-free results for E3.

I’ll focus on (b).

Easy warmup. If L is large enough, edge effects should be unimportant and `
should be indep of x . The assoc bulk wrinkling scale `B should achieve

min
`

h3`−2 + αg`
2

whence `B = (h3α−1
g )1/4. We know the ansatz-free lower bound associated

with this calculation: it uses the interpolation ineq∫ 1

0
|∂y u3|2 dy ≤

(∫ 1

0
u2

3 dy
)1/2(∫ 1

0
|∂yy u3|2 dy

)1/2

.
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The energetic cost of refinement
A different question: Suppose `(0)� `B , and L is large enough that `B is
achieved at x = L/2. What is the energetic cost of refinement?

In terms of ` the answer is easy:∫ L/2

0
h3`−2 + 1

2αc |`′|2 dx ≥
∫ L/2

0

√
2h3/2α

1/2
c |`′/`| dx

≥
√

2h3/2α
1/2
c ln(`B/`(0)).

Does this have an ansatz-free analogue? Yes! It is provided (after
nondimensionalization) by

Proposition: If g(x , y) : [0, 1]2 → R is periodic in y and∫ 1
0 g2(0, y) dy ≤ a (sufficiently small)∫ 1
0 g2(1, y) dy ≥ b (sufficiently large)∫ 1
0 (∂y g)2(x , y) dy ≥ 1 for most x (all but measure ε)

then

t
∫ 1

0

∫ 1

0
(∂yy g)2 + α

∫ 1

0

∫ 1

0
(∂x g)2 ≥ C

√
αt log(b/a)

provided ε ≤ α
√

ab
2
√
αt log(b/a)

.
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Proof of the proposition
Sketch of proof, assuming for simplicity that

∫ 1
0 g2(0, y) dy = a,∫ 1

0 g2(1, y) = b, and b = 4na for some n.

Step 1: Let xj be the largest x st
∫ 1

0 g2(x , y) dy ≥ 4ja. Note that
0 ≤ x0 < x1 < · · · < xn = 1 and∫ 1

0
g2(x , y) dy < 4ja for x > xj ;

also
∫ 1

0 g2(xj , y) dy = 4ja, and (by triangle ineq)(∫ 1

0
|g(xj , y)− g(xj+1, y)|2 dy

)1/2

≥
(∫ 1

0
g2(xj+1, y) dy

)1/2

−
(∫ 1

0
g2(xj , y) dy

)1/2

Step 2: Observe that∫
xj<x<xj+1

0<y<1

(∂x g)2 dx dy ≥ 1
|xj+1 − xj |

∫ 1

0
|g(xj , y)− g(xj+1, y)|2 dy

since LHS is minimized by the function that’s affine in x with the same values
at x = xj and xj+1.
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Proof of the proposition, cont’d

Step 3: Suppose now that
∫ 1

0 g2
y dy ≥ 1 on at least half of (xj , xj+1). Then our

much-used interpolation ineq
(∫
|∂y g|2 dy

)2 ≤
∫

g2 dy ·
∫
|∂yy g|2 dy gives∫

xj<x<xj+1
0<y<1

g2
yy dx dy ≥ 1

4ja
1
2
|xj+1 − xj |.

Combining this with outcome of step 2, we get

t
∫

xj<x<xj+1
0<y<1

g2
yy dx dy + α

∫
xj<x<xj+1

0<y<1

g2
x dx dy

≥ t
4ja
· 1

2 |xj+1 − xj |+
α

|xj+1 − xj |
· 4ja

≥ C
√
αt .

Repeating for each j , we get a total of order
√
αt log(b/a) since n ∼ log(b/a).
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Proof of the proposition – cont’d

Step 4. We assumed in Step 3 that
∫ 1

0 g2
y dy ≥ 1 on at least half of (xj , xj+1).

It’s sufficient for Step 3 that this hold for at least half those intervals, eg for
j ≥ n/2.

Suppose Step 3 fails, because this condition fails for some j ≥ n/2. Then

|xj − xj+1| ≤ Cε ≤ C
α
√

ab
2
√
αt log(b/a)

and 4j ≥ (b/a)1/2. In this case

α

∫
xj<x<xj+1

0<y<1

g2
x dx dy ≥ α

|xj+1 − xj |
4ja

≥ α
√

ab
|xj+1 − xj |

≥ C
√
αt log(b/a)

and the estimate is true anyway.
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Stepping back

Wrinkling can be microstructure (when its length scale→ 0 as h→ 0).

Advantage of focus on energy scaling law: permits ansatz-free analysis.

Different tools have different strengths:

- Numerics predicts patterns, but finds local minima
- Minimization within an ansatz suggests what to expect
- Ansatz-independent lower bounds confirm (or refute) adequacy of

a particular ansatz
- Lower bounds help explain why patterns form, and which features

are most important
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Stepping back – cont’d

Some successes, but still many open problems.

- For the floating elastic sheet: is the local scale of wrinkling
correctly predicted by our 1D var’l problem for `(x)?

- For the film bonded to a compliant substrate, are the labyrinth
patterns comparable energetically to the herringbone pattern?

- For a “crumpled” piece of paper, does energy minimization require
folds? How does the min energy scale with h?

Wrinkling is just one example of energy-driven pattern formation

- Shape-memory materials, ferromagnets, liquid crystals, . . .
- Energy min is a good guide in some systems, not in others.
- Many examples are “understood,” through numerics or

minimization within an ansatz.
- Attempts at rigorous analysis challenge our understanding.
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