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@ Recall: tension-induced and compressive wrinkling are rather
different. The annulus problem (Lecture 3) was tension-driven;
the herringbone problem (Lecture 4) was compressive.

@ Also recall the classic model problem
H 2
min O/ux—&-5|uyy|
1_

u=0at x:
uy==+

where the length scale of the microstructure depends on dist to
bdry (Lecture 2, and problem 3 of TA Session 2).

@ Today’s discussion concerns an example of tension-induced
wrinkling that's analogous to that model problem.

@ Joint work with Hoai-Minh Nguyen (preprint to come soon).
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The floating elastic sheet

@ sheet floats on water Loy
@ confined on 2 sides 5 %
@ surface tension pulls free edges St §
@ wrinkles form, refining at free ’frf et ’:‘T=

edges

Experiment and some theory: Huang, Davidovitch, Santangelo, Russell,
Menon (PRL 2010); also Davidovitch (PRE 2009)

Focus of today’s discussion:

@ Identify analogue of the relaxed problem and its solution.
@ Estimate the energetic cost of changing the wrinkling length scale.
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Heuristics

@ sheet floats on water LavibbiEy
@ confined on 2 sides 5 g
@ surface tension pulls free edges f: s ;
@ wrinkles form, refining at free :}.f TFT 1‘T=

edges

In the center: If length is large enough, end effects become irrelevant near
center. Confinement requires wrinkling. Surface tension makes it
tension-driven. Scale set by gravitational effects (prefers small amplitude)
and bending (prefers few wrinkles).

At ends: Surface tension (miniscus effects) demand much smaller length
scale.

Near ends: Refinement of wrinkling scale costs energy. A major goal of
today’s discussion: how to quantify this.
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The energy

@ Von Karman theory: displacement (wq, wa, us) LyLbby
@ Confinement: wa(x,0) =0, wa(x,1) = —-A/2 § %
@ Domain Q = [0, L] x [0, 1], with L > 1 i
@ For simplicity: us is periodic in y =T'M~t1~ ’t‘T=
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The energy

@ Von Karman theory: displacement (wq, wa, us) LyLbby
@ Confinement: wa(x,0) =0, wa(x,1) = —-A/2 § %
@ Domain Q = [0, L] x [0, 1], with L > 1 i
@ For simplicity: us is periodic in y =T'M~t1~ ’t‘T=

E, = a,,,h/\e(w)+%Vu3®Vu3\2+h3/\VVU3|2
Q Q

+ag/ é %as/ |VU3|2—(ac—as)/8XW1 + el s,
Q Q Q

Key hypothesis: a: > as. Notation: ' = free edges. Notes:
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The energy

@ Von Karman theory: displacement (wq, wa, us) LyLbby
@ Confinement: wa(x,0) =0, wa(x,1) = —-A/2 § é
@ Domain Q = [0, L] x [0, 1], with L > 1 i
@ For simplicity: us is periodic in y =TM~M~ ﬂ:

E, = a,,,h/\e(w)+%Vu3®Vu3\2+h3/\VVU3|2
Q Q

+ag /Q é 4+ %as/ﬂ IVs? — (e — as) /Q Ot + ac|Us e
Key hypothesis: a: > as. Notation: ' = free edges. Notes:
@ Extra surf energy due to us # 0is as [, 3|Vus|® + ac||u3|\f_,1/2(r)
@ Extra surf energy due to in-plane def is (as — a) fQ divw
@ Since fQ divw = fn Oxwy + const, surf tension is tensile when a¢c > as.
@ H'/2 term is energy of capillary fringe field:

]2 25y = min / Vsl = 37 1k (16s(0, K2 + lds(L, )2

water k

SN—
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Parameters, conventions, expectations

am
Qg
Qs
(674

us

We expect

a,,,h/\e(w)+%Vu3®Vu3\2+h3/\VVU3|2
Q Q

+ag/u§+;as/ |Vu3|2—(ac—as)/axm + acl sl
Q Q Q

dimensionless

dimension: 1/length; gravitation, normalized by film stiffness
dimension: length; water-sheet surface energy, normalized
dimension: length; water-air surface energy, normalized
mean 0, since water is incompressible

tensile effects of bending energy

. value assoc correction due to presence
min E, =

First term is like “relaxed energy,” second term is like “excess energy due to
positive h,” except that we haven’t nondimensionalized.
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A convenient reorganization

En=E+E+E+E

£, :amh/(axm T 10ewsl?)? — (ac—as)/(axm + Yol
Q Q
E, — amh/(ayw2+ g, f?)? + ;as/ 10, U2
Q Q
E3 :hs/ ‘VVU3|2+ %Oéc/ |axU3‘2+Oég/ U§+ac‘|u3||i/1/2(|—)
Q Q Q

E, — %amh/ |9 Ws + B, W1 + Oy sy Us|?
Q

@ E; captures stretching due to surface tension. It slaves 91 w; to dxus.
@ £, captures effect of confining bdry conditions. It determines f01 (Oyus)?.
@ Minimization of Ey and E, gives the “value assoc to tensile forces.”

@ E; captures effect of bending resistance. Its min value is the “correction
due to bending energy.”

@ E,is unimportant due to symmetry of bdry conditions.
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Energy due to tensile forces

E, = amh/(axm - 10ews[?)? — (as — as)/(axm + LowsP)
Q Q

E, - amh/(ayw2+ 110, ) + ;as/ 10, U2
Q Q

@ E; captures stretching due to surface tension. To minimize integrand, E;
prefers 9wy + 1[0xus|? to be a special value. So 9wy is slaved to Oy us.

@ E; captures effect of the confining bdry condition. Bdry condn gives
f01 oywo dy = —A/2. Claim: E; is minimized when, at each x,
z = [ |8yus|? dy achieves

. Olmh 2 1
mip =3~ (A =2 + zas2.

@ No wrinkling if best z is 0 (this occurs when anhA < as).
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Analysis of E;

E, = amh/(ayWZ—l— 110, /2)2 + ;aS/ 10, us ?
Q Q

For any x, let z = z(x) = [ (8yus)? dy. We have

1
1Atz = /8ywz+%(6yu3)2dy
0
1 1/2
< (/ \ayW2+;(ayus)2|2) |
0
Therefore
L —A 2
E > /Oamh<%> + lasz(x)
>

2
Lmin <amh (ﬂ) + ;asz) .
z>0 2

Moreover: if f01 |0y us|? dy deviates from the optimal value, E; will be larger
(by an amount that’s easy to determine).
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Summary thus far

The picture so far:

(ac — as)? 1 e [amhA — o]t

Equality holds in former when 9, w; + }|9xus|? has the preferred value, so
Oxwy is slaved to Oxus.

Equality holds in the latter when

|
/ (0yus)® dy = 6 for all x,
J0

with

[amhA — as}
5= |omh2 —as
amh N

(which should be positive, to see wrinkling).

min E; + min E;, is analogous to the min “relaxed energy” &, of Lectures 2 & 3.
If “excess energy” is small, then conditions noted above must be approx met.

Wrinkling — Lecture 4



Correction due to the bending term

Moving forward: Ez controls the wrinkling. Recall:

Es = h3/ |va3\2+;ac/ |8XuS|2+ag/ U3 + aol|Us 52y
Q Q Q

@ The capillary term forces us to be small at unconfined edges x = 0, L.

@ If uz is uniformly small, then length scale of wrinkling must be small
(since avg of |9, us|? was fixed by Ez). Expensive wrt bending energy.

@ If us is not uniformly small, then dxus must be large. Expensive wrt
surface energy.

Evidently: length scale of wrinkling should vary with distance to edge. Focus
for discussion: how does it vary, and what is the associated excess energy?
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A heuristic argument

Arguing as for refinement of wrinkles in “annulus problem,” we can construct

us(x,y) st f01 (0yu3)? dy = ¢ and there’s a local length scale /(x) for the
wrinkling, with

lus| ~ 6"720(x), |0xus| ~ 620 (x) |VVus| ~ 820" (x).
Since Es = b [ [VVUs[* + ac [o |0xts|® + ag [o U5 + aclluslZ /2, We get
L L L
E, ~ h3/ 5072 dx+;ac/ 6|€'|2dx—|—ag/ @ dx + aed (£(0) + £(L)).
0 0 0

Note: the final term is linear in ¢ since we expect

1 . 1 ) 1/2 1 )
/ 9,/ Us\zdyfv(/ Ude> (/ |9y us| dy>
0 0 0

1/2
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Variation of the local length scale

Conclusion thus far: wrinkling length scale should minimize
L
/ (P02 + el + agf) o + ac(£(0) + (L))
0
What to do with this?

(a) Study this 1D variational problem for ¢(x).
(b) Draw qualitative conclusions, then seek ansatz-free results for Es.
I'll focus on (b).
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Variation of the local length scale

Conclusion thus far: wrinkling length scale should minimize
L
/ (P02 + el + agf) o + ac(£(0) + (L))
0
What to do with this?

(a) Study this 1D variational problem for ¢(x).
(b) Draw qualitative conclusions, then seek ansatz-free results for Es.
I'll focus on (b).

Easy warmup. If L is large enough, edge effects should be unimportant and ¢
should be indep of x. The assoc bulk wrinkling scale ¢g should achieve

min h*07% + agl®
4

whence ¢g = (hag')"/*. We know the ansatz-free lower bound associated
with this calculation: it uses the interpolation ineq

1 1 1/2 1
/O |ayus|2dys(/0 uédy) (/0 \ayyuafdy)
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The energetic cost of refinement

A different question: Suppose ¢(0) < ¢g, and L is large enough that ¢z is
achieved at x = L/2. What is the energetic cost of refinement?

In terms of ¢ the answer is easy:

Y]

L/2 L/2
/ B 1 Lol dx / VBH2aL2|1 /1) dx
0 0

V2h 20l In(e5/6(0)).

\Y]

Wrinkling — Lecture 4



The energetic cost of refinement

A different question: Suppose ¢(0) < ¢g, and L is large enough that ¢z is
achieved at x = L/2. What is the energetic cost of refinement?

In terms of ¢ the answer is easy:

Y]

L/2 L/2 172
/ B 1 Lol dx / VBH2aL2|1 /1) dx
0 0

V2h 20l In(e5/6(0)).

\Y]

Does this have an ansatz-free analogue? Yes! It is provided (after
nondimensionalization) by

Proposition' If g(x,y) : [0,1]? — R s periodic in y and
-] fo (0,y) dy < a(sufficiently small)
() fo (1,y) dy > b (sufficiently large)

° fo (9y9)%(x, y) dy > 1 for most x (all but measure ¢)
then

/ / () +a / / (0x9)° > CVatlog(b/a)

2\/7Iog(b/a)
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Proof of the proposition

Sketch of proof, assuming for simplicity that fo (0,y)dy = a,
[ 9%(1,y) = b, and b = 4"a for some n.

Step 1: Let x; be the largest x st fo (x,y) dy > #a. Note that
0<x<Xxg<---<xp=1and

1 .
/ 9’(x,y)dy < #a for x > x;;
0

also fo (x;,y) dy = 4a, and (by triangle ineq)

1/2 1
(/ 19(%;, ¥) — 9(Xi1, ¥ )\Zdy) 2(/0 gg(muy)dy)

Step 2: Observe that

1/2

—(/01 (%) dy)v2

1 1
ﬁ,<x<xl,r1 (9x9)° dx dy > m/o 19(x,¥) — 9011, ¥) [ dy

o<y<1
since LHS is minimized by the function that’s affine in x with the same values
at x = x; and Xj.1.

Wrinkling — Lecture 4



Proof of the proposition, cont'd

Step 3: Suppose now that f01 g§ dy > 1 on at least half of (x;, x;11). Then our
much-used interpolation ineq ([ |0,g/* dy)2 < [g%dy - [|dy9 dy gives

/x,-<x<xj+1 gy dxdy > 2 4, 2|X/+1 - Xxjl.

o<y<1
Combining this with outcome of step 2, we get
2 2
z‘\Aj<X<Xj+1 gyy ax dy + Ol/('j<)(<xj+1 9 ax dy
o<y<1 o<y<1

«

— = .4a
X1 — X

t
> m'%|)(j+1—xj|+

> CVat.

Repeating for each j, we get a total of order v/t log(b/a) since n ~ log(b/a).
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Proof of the proposition — cont'd

Step 4. We assumed in Step 3 that f(; g§ dy > 1 on at least half of (x;, Xj1).
It's sufficient for Step 3 that this hold for at least half those intervals, eg for

j>nj/2.
Suppose Step 3 fails, because this condition fails for some j > n/2. Then

‘Xf_X]‘+1‘ < CES Caiab

2v/atlog(b/a)
and 4 > (b/a)'/2. In this case
2 > (&4 j
¢ A<X<XI+1 Gy = gy
o<y<1
aVad - cVatlog(b/a)
X1 — X1 le

and the estimate is true anyway.
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Stepping back

@ Wrinkling can be microstructure (when its length scale — 0 as h — 0).
@ Advantage of focus on energy scaling law: permits ansatz-free analysis.
@ Different tools have different strengths:

- Numerics predicts patterns, but finds local minima

- Minimization within an ansatz suggests what to expect

- Ansatz-independent lower bounds confirm (or refute) adequacy of
a particular ansatz

- Lower bounds help explain why patterns form, and which features
are most important
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Stepping back — contd

@ Some successes, but still many open problems.

- For the floating elastic sheet: is the local scale of wrinkling
correctly predicted by our 1D var'l problem for ¢(x)?

- For the film bonded to a compliant substrate, are the labyrinth
patterns comparable energetically to the herringbone pattern?

- For a “crumpled” piece of paper, does energy minimization require
folds? How does the min energy scale with h?

@ Wrinkling is just one example of energy-driven pattern formation

- Shape-memory materials, ferromagnets, liquid crystals, ...

- Energy min is a good guide in some systems, not in others.

- Many examples are “understood,” through numerics or
minimization within an ansatz.

- Attempts at rigorous analysis challenge our understanding.
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