PDE for Finance Notes — Section 4
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, G63.2706, Spring 1999.

Reminders: No lecture March 10 [I'm out of town], March 17 [spring break]|, and March
31 [Passover].

Stochastic differential equations. You know, by now, that it’s important to understand
something about stochastic differential equations and the Ito calculus. We’ll fill in the basics
this week. Source material: Neftci does a good job of covering the main ideas, though
he gives very few real proofs. (Chapter 8 of Neftci, concerning the relevance of diffusion
processes to finance, covers important material rarely discussed in texts at this level.) Baxter
& Rennie is much briefer, and more organized around martingales, but well worth reading.
Arnold’s book goes deeper, giving a fully rigorous yet very readable treatment. (By sticking
to the continuous-time setting he keeps the proofs quite elementary; alas, his book is out
of print. No doubt there are comparable treatments in print; please tell me if you know of
one.)
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Brownian motion. In passing from deterministic control to stochastic control, we inserted
“noise” on the right hand side of our state equation in a very specific way. We focus here
on explaining what we’ve done; see Neftci Chapter 8 (or Merton, whose work Neftci is
explaining) for discussion of why this type of noise is natural and what it ignores. (Briefly:
it ignores the possibility of sudden large changes in the market due to rare but randomly
occurring events.)

The basic building block is the Brownian motion process. A one-dimensional Brownian
motion w(t) is a stochastic process with the following properties:

e For s < t the increment w(t) — w(s) is Gaussian with mean zero and variance
E[(w(t) — w(s))?] =t — 5. Moreover the increments associated with disjoint intervals
are independent.

e Its sample paths are continuous, i.e. the function t — w(t) is (almost surely) contin-
uous.

e It starts at 0, in other words w(0) = 0.

This process is unique (up to a suitable notion of equivalence). One “construction” of
Brownian motion obtains it as the limit of discrete-time random walks; students of finance
who have considered the continuous-time limit of a binomial lattice have seen something
very similar.

The sample paths of Brownian motion, though continuous, are non-differentiable. Here
is an argument that proves a little less but captures the main point. Given any interval



(a,b), divide it into subintervals by a = t; < t2... < ty = b. Clearly
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As N — oo, the left hand side has expected value b — a (independent of N). The term
in brackets on the right tends to zero (almost surely) by continuity. So the second term
on the right must tend to infinity (almost surely). Thus the sample paths of w have
unbounded total variation on any interval. One can show, in fact, that |w(t) — w(s)| is of
order /|t — s|loglog 1/]t — s| as |t — s| — 0.

It’s easy to construct, for any constant ¢ > 0, a process whose increments are mean-
value-zero, independent, and variance 02|t — s|: just use cw(t). The vector-valued ver-
sion of this construction is more interesting. We say w(t) = (wi,...,w,) is an R"-
valued Brownian motion if its components are independent scalar Brownian motions. Thus
El(w(t) —w(s))i(w(t) — w(s));] equals 0 if i # j and |t — s| if i = j. Given such w, we
can obtain a process with correlated increments by taking linear combinations, i.e. by
considering z(t) = Aw(t) where A is a (constant, deterministic) matrix. Its covariance is
E[(2(t) — 2(8))i(2(t) — 2(s));] = (AAT);;. If the desired variance o is a function of time
(deterministic, or random but nonanticipating) — or if the desired covariance matrix A is a
function of time (deterministic, or random but nonanticipating) — the construction requires
solving a stochastic integral (to be discussed below).

Filtrations and conditional expectations. It was natural, in discussing stochastic
control, to insist that the control be “non-anticipating.” Let’s discuss informally what this
means. This discussion is also essential for understanding the term “martingale.”

The meaningful statements about a Brownian motion (or any stochastic process, for that
matter) are statements about its values at various times. Here is an example of a statement:
“—3 <w(.5) < —2 and w(1.4) > 3”. Here is another: “maxg<¢<; |w(t)| < 3”. A statement
is either true or false for a given sample path; it has a certain probability of being true.
We denote by F; the set of all statements about w that involve only the values of w up
to time ¢t. Obviously Fs C F; if s < t. These F;’s are called the filtration associated with
w. A non-anticipating control «(t) is one whose value at time t is determined by time-t
information, i.e. by statements in F;.

We can also consider functions of a Brownian path. When we take the expected value of
some expression involving Brownian motion we are doing this. Here are some examples of
functions: flw] = w(.5) — w(1)?; glw] = maxo<i<1 |w(t)|. Notice that both these exam-
ples are determined entirely by time-1 information (jargon: f and g are Fj-measureable).
It’s often important to discuss the expected value of some uncertain quantity given the
information available at time t. For example, we may wish to know the expected value of
maxo<¢<1 [w(t)| given knowledge of w only up to time .5. This is a conditional expectation,
sometimes written Fi[g] = E[g|F:] (in this case ¢ would be .5). We shall define it in a
moment via orthogonal projection. This definition is easy but not so intuitive. After giving
it, we’ll explain why the definition captures the desired intuition.



Let V be the vector space of all functions g[w], endowed with the inner product (f,g) =
E[fg]. It has subspaces

Vi = space of functions whose values are determined by time-t information.
The conditional expectation is defined by orthogonal projection:
E.[g] = orthogonal projection of g onto V;.
In other words: E[g| is the unique function in V; such that
E[Eglf] = Elgf] for all f €V,

All the key properties of conditional expectation follow easily from this definition. Example:
“tower property”
s <t = E;[E[f] = Es[f]

since projecting first to V; then to Vi C V4 is the same as projecting directly to Vs. Another
fact: Ejp is the ordinary expectation operator E. Indeed, V; is one-dimensional (its elements
are functions of a single point w(0) = 0, i.e. it consists of those functions that aren’t random
at all). From the definition of orthogonal projection we have

Eplg] € Vo and E [Eplg]f] = E[gf] for all f € V.

But when f is in Vj it is deterministic, so E[gf] = fE[g]. Similarly E[Eplg]f] = fEo[g]-
Thus Ey[g] = Elg].

To see that this matches our intuition, i.e. that Ej is properly interpreted as “the expected
value based on future randomness, given all information available at time ¢”, let’s consider
the simplest possible discrete-time analogue. Consider a 2-stage coin-flipping process which
obtains at each stage heads (probability p) or tails (probability ¢ = 1 — p). We visualize it
using a nonrecombining binomial) tree, numbering the states as shown.

The space V3 is 4-dimensional; its functions are determined by the full history, i.e. they can
be viewed as functions of the time-2 nodes (numbered 3,4,5,6 in the figure). The space Vj
is two-dimensional; its functions are determined by just the first flip. Its elements can be
viewed as functions of the time-1 nodes (numbered 1,2 in the figure); or, equivalently, they



are elements of V5 such that f(3) = f(4) and f(5) = f(6). The “expected value of f given
time-1 information” intuitively has values

EA[f](1) = pf(4) +af(3), Ea[f)(2) = pf(6) +¢f(5).

To check that this agrees with our prior definition, we must verify that when g(5) = ¢(6)
and g(3) = g(4),

(Erlf], 9) = (£, 9),

which amounts to

[pf(6)+af(5)lg(2)+[pf(4) +af(3)]g(1) = p*f(6)9(6) +paf(5)9(5) +paf(4)g(4)+q*f(3)g(3)
with the convention g(2) = ¢g(5) = ¢(6), g(1) = g(3) = g(4). It’s true.

A stochastic process z(t) is “adapted” to F; if its values up to and including time ¢ are
determined by the statements in F;. (The stochastic processes obtained from Brownian
motion by solving stochastic differential equations automatically have this property.) Such
a stochastic process is called a martingale if Eq[z(t)] = z(s) for s < t. An equivalent
statement: Es[z(t) — x(s)] = 0 for s < ¢. Intuitively: given current information, there’s no
point betting on the future of the process; it’s equally likely to go up or down.

Stochastic integrals. We have been writing stochastic differential equations of the type

dy = f(y, a)ds + g(y, o)dw, y(t) = .

where a(s) is some control. This is really shorthand for the associated integral equation

s =+ [ 1) a6ds + [ gluts),als)iu. W

To understand what this means we must understand the two integrals on the right.

The first one is relatively easy. If y and « are continuous in s then

[ #t6(9),as)s

makes perfect sense as a Riemann integral. (All the processes we’ll consider do have y
continuous in s, so this hypothesis is OK. The condition that « be continuous in s is
less natural — but it holds for feedback controls, i.e. controls in which «a(s) is specified as a
deterministic function of y(s) and s, provided that the feedback law is continuous. For more
general non-anticipating «(s) the definition of this integral is more subtle — the successful
treatment is similar to the one of [ gdw explained below.)

The second “stochastic” integral is more subtle. The proper interpretation is this: for any
random but nonanticipating integrand g¢(s),
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with the notation a = t; < ta < ... <ty = b and At = max; |[t;y1 — t;|. (We may, but we
don’t have to, choose the t;’s equally spaced.) The important point is that we evaluate g
at the beginning of the increment. We’ll show presently that making the opposite choice
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would give a different answer. Thus the stochastic integral is not a Riemann integral, but
something different.

A key property of the stochastic integral is immediately clear: since ¢ is nonanticipating,

b
E, / gdw =0 (3)
because each term in the sum has
By [g(ti) (w(tiv1) —w(ti))] =0

(since w(tj+1) —w(t;) is independent of all time-¢; information, hence independent of g(t;)).
Therefore by the tower property E, [g(t;)[w(ti+1) —w(t;)]] = 0, and summing gives (3).
We used this property repeatedly in our stochastic control discussion. Remembering the
definition of a martingale, (3) says the solution of a stochastic differential equation of the
form dy = gdw (with no dt term on the right) is a martingale.

What kind of limit do we mean in (3)?7 The mean-square kind. If a sequence of func-
tions ¢, (z) is defined for = € (0,1), one says ¢ = lim,_,~ ¢, in the mean-square sense if
fol |¢n(z) — ¢(x)|?>dz — 0. The situation for the stochastic integral is similar, except the
integral is replaced by expectation:

E

b N-1 2
(/a gdw — Z g(t)[w(tiy1) — w(tz)]> ] 0.

We won’t prove the existence of this limit in any generality (you’ll find this in Arnold).
Instead let’s do a simple example — which actually displays many of the essential ideas of
the general case. Specifically: let’s show that

b
/a wdw = Lw(b) — Lu(a) — (b— a)/2.

Notice that this is different from the formula you might have expected based on elementary
calculus (wdw # %w2). The calculus rule is based on Chain Rule, whereas in the stochastic
setting we must use Ito’s formula — as we’ll explain presently. If I skip too many details,
you’ll find a slower treatment in Neftci pp. 179-184.

According to the definition, [ ;’ w dw is the limit of

N-1
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A bit of manipulation shows that this is exactly equal to

gw’(b) — ~3 Z (tir1) —w(t))?,

=1
so our assertion is equivalent to the statement

N-1

Jlim 3™ (wltig) - wit)? =b—a (4)
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In the Ito calculus we sometimes write “dw x dw = dt;” when we do, it’s basically shorthand
for (4). Notice that each term (w(t;11)—w(t;))? is random (the square of a Gaussian random
variable with mean 0 and variance ¢;11 — ¢;). But in the limit the sum is deterministic, by
a sort of law of large numbers. If you believe it’s deterministic then the value is clear, since
Sy = SN w(tiyr) — w(t;))? has expected value b — a for any N.

To prove (4) in the mean-square sense, we must show that

E[(Sn = (b—a)’| =0
as N — oo. Expanding the square, this is equivalent to

B[S} - (b-a)] 0.

Now,
[N—1 N— 1
E[szv} = E|) (wti) - )2 D (wltj) — (%‘))2]
'L:l j=1
[N-1
= E|Y (wtipa) - (ti))z(w(tj+1—w(tj))2]-
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The last term is easy to evaluate, using the properties of Brownian motion:

E [(wtiyr) = w(t)?(w(tj1) = w(t;)?] = (i — )t — 1)

when i # j, and
B |(w(tiyn) = w(ts))'] = 3(ti41 — :)°.

(The latter follows from the fact that w(t;+1) — w(t;) is Gaussian with mean 0 and variance
tiv1 — ti.) We deduce after some manipulation that

N-1
E {512\/ —(b— G)Q} = 2 (tiy1 —t;)°
i=1
< 2(max [tip1 — t[)(b—a)

which does indeed tend to 0 as max; |t;+1 — t;| — 0.



We now confirm a statement made earlier, that the stochastic integral just defined is different
from

N-1
dim > wtivn)[wtivn) — w(t)), (5)
Indeed, we have
N-1 N-1 N-1
;1 w(ti) [w(tivr) — w(ti)] — ; w(ts)[w(tivr) — wts)] = ; [w(tis1) — w(t;)]”

which tends in the limit (we proved above) to b— a. Thus the alternative (wrong) definition
(5) equals Jw?(b) — $w?(a) + 3(b—a). If we had used this definition, the stochastic integral
would not have been a martingale.

Stochastic differential equations. We didn’t prove the existence of solutions to ordinary
differential equations early in the course, and we won’t prove the existence of solutions to
stochastic ones now. But it’s important to say that solutions do exist, under reasonable
conditions on the form of the equation. Moreover the resulting stochastic process y(s) has
continuous sample paths (y is a continuous function of s).

The Ito calculus. If y(s) solves a stochastic differential equation, it’s natural to seek a
stochastic differential equation for ¢(s,y(s)) where ¢ is any smooth function. If y solved an
ordinary differential equation we would obtain the answer using chain rule. When y solves
a stochastic differential equation we must use the Ito calculus instead. It replaces the chain
rule.

Let’s first review the situation for ordinary differential equations. Suppose dy/dt = f(y,t)
with initial condition y(0) = z. It is a convenient mnemonic to write the equation in the
form

dy = f(y,t)dt.
This reminds us that the solution is well approximated by its finite difference approximation
y(tiv1) —y(t:) = f(y(ts), t:)(tip1 — ). Let us write

Ay = f(y,t)At

as an abbreviation for the finite difference approximation. (In this section A is always an
increment, never the Laplacian.) The ODE satisfied by z(t) = ¢(y(t)) is, by chain rule,
dz/dt = ¢'(y(t))dy/dt. The mnemonic for this is

dp = ¢'dy.
It reminds us of the proof, which boils down to the fact that (by Taylor expansion)
A¢ = ¢'(y)Ay + error of order |Ayl|?.

In the limit as the time step tends to 0 we can ignore the error term, because |Ay|? < C|At|?
and the sum of these terms is of order max; |t;+1 — ;|-



OK, now the stochastic case. Suppose y solves

dy = f(y,t)dt + g(y,t)dw

where f and g are possibly random but non-anticipating (for example there might be a
choice of control hiding inside). Ito’s lemma, in its simplest form, says that if ¢ is smooth
then z = ¢(y) satisfies the stochastic differential equation

dz = ¢'(y)dy + 3¢ (y)g?dt = &/ (y)gdw + [ ¢/ (1) f + 3" ()9 dt
Here is a heuristic justification: carrying the Taylor expansion of ¢(y) to second order gives

Ap = ¢(y(tiv1)) — o(y(ts))
= ¢ (yt:)ly(tiv1) —y(t:)] + 50" (y(t:)) [y(tis1) — y(t:)] + error of order |Ayl?.

So far we haven’t cheated. It’s tempting to write the last expression as
¢’ (y)(gAw + fAL) + 30" (y)g? (Aw)? + errors of order |Ay| + |Aw]||At| + |At|?

where ¢'(y) = ¢'(y(t:)), g = g(y(ti), t;), Aw = w(tit1) — w(t;), etec. (In other words:
it’s tempting to substitute Ay = fAt + gAw.) That’s not quite right: in truth Ay =
y(ti+1) — y(t;) is given by a stochastic integral from t; to t;11, and our cheat pretends that
the integrand is constant over this time interval. But fixing this cheat is a technicality
— much as it is in the deterministic setting — so let’s proceed as if the last formula were
accurate. I claim that the error terms are negligible in the limit At — 0. This is easy to
see for the |At|? terms, since

> (tis1 — 1) < max ltiv1 — ti] Y [tis — ti
i i
A similar argument works for the |At||Aw| terms. The |Ay|? term is a bit more subtle;
we’ll return to it presently. Accepting this, we have

A¢ =~ ¢ (y)(gAw + fAL) + 3¢ (y) g% (Aw)?.

Now comes the essence of the matter: we can replace (Aw)? by At. A more careful statement
of this assertion: if a =t; <ty < ... <ty = b then

b
g%Zh (tee) —w(t))? = [ hit)a (6)

if h is non-anticipating. Notice: we don’t claim that h(Aw)? is literally equal to hAt for
any single time interval, no matter how small. Rather, we claim that once the contributions
of many time intervals are combined, the fluctuations of w cancel out and the result is an
integral dt. We proved (6) in the case h = 1; the general case is more technical, of course,
but the ideas are similar.

We skipped over why the |Ay|? error terms can be ignored. The reason is that they’re
controlled by
max\y( z+1 ‘Z’y H—l )’2



The argument above shows that the sum is finite. Since y(t) is continuous, max; |y(t;+1) —
y(t;)| tends to zero. So this term is negligible.

The same logic applies more generally, when w is a vector-valued Brownian motion, y is
vector-valued, and ¢ is a function of time as well as y. The only new element (aside from
some matrix algebra) is that the quadratic terms in Aw are now of the form

AwjAwy = [wj(tit1) — w;(t:)][wi(tiv1) — wi(ti)).

An argument very much like the proof of (4) shows that

At—0

= 0 if £k
lim ; [wj(tiv1) — wj(ts)][we(tiv1) — we(ti)] = { b—a ifj—k

which justifies (at the same heuristic level as our scalar treatment) the rule that Aw;Awy
should be replaced by dt when j = k, and 0 when j # k.

Knowing these proofs is less important than having some facility with actually applying Ito’s
lemma. We’ve seen good examples of that in our treatment of stochastic control. You’ll
find many more examples in textbook treatments of financial models. The next homework
set will mainly involve applications of Ito’s lemma.



