
PDE for Finance Notes, Spring 2003 { Section 1.

Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use in connec-

tion with the NYU course PDE for Finance, G63.2706.

Links between stochastic di�erential equations and PDE. A stochastic di�erential
equation, together with its initial condition, determines a di�usion process. We can use it
to de�ne a deterministic function of space and time in two fundamentally di�erent ways:

(a) by considering the expected value of some \payo�," as a function of the initial position
and time; or

(b) by considering the probability of being in a certain state at a given time, given knowl-
edge of the initial state and time.

Students of �nance will be familiar with the Black-Scholes PDE, which amounts to an
example of (a). Thus in studying topic (a) we will be exploring among other things the origin
of the Black-Scholes PDE. The basic mathematical ideas here are the backward Kolmogorov

equation and the Feynman-Kac formula.

Viewpoint (b) is di�erent from (a), but not unrelated. It is in fact dual to viewpoint (a),
in a sense that we will make precise. The evolving probability density solves a di�erent
PDE, the forward Kolmogorov equation { which is actually the adjoint of the backward
Kolmogorov equation.

It is of interest to consider how and when a di�usion process crosses a barrier. This arises
in thinking subjectively about stock prices (e.g. what is the probability that IBM will reach
200 at least once in the coming year?). It is also crucial for pricing barrier options. Prob-
abilistically, thinking about barriers means considering exit times. On the PDE side this
will lead us to consider boundary value problems for the backward and forward Kolmogorov
equations.

A fairly accessible treatment of some of this material is given by Gardiner (Sections 5.1 and
5.2). Wilmott's Chapter 10 discusses exit times (but too brie
y!). Parts of my notes draw
from Fleming-Rishel and Oksendal, however the treatments there are much more general
and sophisticated so not easy to read.

Our main tool will be Ito's formula, coupled with the fact that any Ito integral of the formR b
a f dw has expected value zero. (Equivalently: m(t) =

R t
a f dw is a martingale.) Here w is

Brownian motion and f is non-anticipating. The stochastic integral is de�ned as the limit
of Ito sums

P
i f(ti)(w(ti+1 � w(ti)) as �t! 0. The sum has expected value zero because

each of its terms does: E[f(ti)(w(ti+1)� w(ti))] = E[f(ti)]E[w(ti+1)� w(ti)] = 0.

********************

Expected values and the backward Kolmogorov equation. Here's the most basic
version of the story. Suppose y(t) solves the scalar stochastic di�erential equation

dy = f(y; s)ds+ g(y; s)dw;
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and let
u(x; t) = Ey(t)=x [�(y(T ))]

be the expected value of some payo� � at maturity time T > t, given that y(t) = x. Then
u solves

ut + f(x; t)ux +
1
2g

2(x; t)uxx = 0 for t < T , with u(x; T ) = �(x): (1)

The proof is easy: for any function �(y; t), Ito's lemma gives

d(�(y(s); s)) = �ydy +
1
2�yydydy + �sds

= (�s + f�y +
1
2g

2�yy)dt+ g�ydw:

Choosing � = u, the solution of (1), we get

u(y(T ); T ) � u(y(t); t) =

Z T

t
(ut + fuy +

1
2g

2uyy)ds+

Z T

t
guydw:

Taking the expected value and using the PDE gives

Ey(t)=x [�(y(T ))]� u(x; t) = 0

which is precisely our assertion.

That was the simplest case. It can be jazzed up in many ways. We discuss some of them:

Vector-valued di�usion. Suppose y solves a vector-valued stochastic di�erential equation

dyi = fi(y; s)ds+
X
j

gij(y; s)dwj ;

where each component of w is an independent Brownian motion. Then

u(x; t) = Ey(t)=x [�(y(T ))]

solves
ut + Lu = 0 for t < T , with u(x; T ) = �(x);

where L is the di�erential operator

Lu(x; t) =
X
i

fi
@u

@xi
+ 1

2

X
i;j;k

gikgjk
@2u

@xi@xj
:

The justi�cation is just as in the scalar case, using the multidimensional version of Ito's
lemma. The operator L is called the \in�nitesimal generator" of the di�usion process y(s).

The Feynman-Kac formula. We discuss the scalar case �rst, for clarity. Consider as above
the solution of

dy = f(y; s)dt+ g(y; s)dw
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but suppose we are interested in a suitably \discounted" �nal-time payo� of the form:

u(x; t) = Ey(t)=x

�
e�
R
T

t
b(y(s);s)ds�(y(T ))

�
(2)

for some speci�ed function b(y). Then u solves

ut + f(x; t)ux +
1
2g

2(x; t)uxx � b(x; t)u = 0 (3)

instead of (1). (Its �nal-time condition is unchanged: u(x; T ) = �(x).) If you know some
�nance you'll recognize that when y is log-normal and b is the interest rate, (3) is precisely
the Black-Scholes partial di�erential equation. Also: if b(y(s); s) is the spot interest rate,
then (3) with � = 1 gives the time-t value of a zero-coupon bond with maturity T , given
that the spot interest rate at time t is b(x; t).

To explain (3), we must calculate the stochastic di�erential d[z1(s)�(y(s); s)] where z1(s) =

e�
R
s

t
b(y(r))dr . The multidimensional version of Ito's lemma gives

d[z1(s)z2(s)] = z1dz2 + z2dz1 + dz1dz2:

We apply this with z1 as de�ned above and z2(s) = �(y(s); s). Ito's lemma (or ordinary
di�erentiation) gives

dz1(s) = �z1b(y(s))ds

and we're already familiar with the fact that

dz2(s) = (�s + f�y +
1
2g

2�yy)ds+ g�ydw

= (�s + L�)ds+ g�ydw:

Notice that dz1dz2 = 0. Applying the above with � = u, the solution of the PDE (3), gives

d

�
e�
R
s

t
b(y(r))dru(y(s); s)

�
= z1dz2 + z2dz1

= z1 [(us + Lu)ds+ guydw]� z1ubds

= z1guydw:

The right hand side has expected value 0, so

Ey(t)=x[z1(T )z2(T )] = z1(t)z2(t) = u(x; t)

as asserted.

A moment's thought reveals that vector-valued case is no di�erent. The discounted expected
payo� (2) solves the PDE

ut + Lu� bu = 0

where L is the in�nitesimal generator of the di�usion y.

Running payo�. Suppose we are interested in

u(x; t) = Ey(t)=x

"Z T

t
	(y(s); s)ds

#
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for some speci�ed function 	. Then u solves

ut + Lu+	(x; t) = 0:

The �nal-time condition is u(x; T ) = 0, since we have included no �nal-time term in the
\payo�." The proof is hardly di�erent from before: by Ito's lemma,

d[u(y(s); s)] = (ut + Lu)ds+ru � g � dw

= �	(y(s); s)ds+ru � g � dw:

Integrating and taking the expectation gives

Ey(t)=x [u(y(T ); T )] � u(x; t) = Ey(t)=x

"
�

Z T

t
	(y(s); s)ds

#
:

This gives the desired assertion, since u(y(T ); T ) = 0.

In valuing options, \running payo�s" are relatively rare. However terms of this type will
be very common later in the course, when discuss optimal control problems.

********************

Boundary value problems and exit times. The preceding examples use stochastic
integration from time t to a �xed time T , and they give PDE's that must be solved for all
x 2 Rn. It is also interesting to consider integration from time t to the �rst time y exits
from some speci�ed region. The resulting PDE must be solved on this region, with suitable
boundary data.

Let D be a region in Rn. Suppose y is an Rn-valued di�usion solving

dy = f(y; s)ds+ g(y; s)dw for s > t, with y(t) = x

with x 2 D. Let

�(x) = the �rst time y(s) exits from D, if

prior to T ; otherwise �(x) = T :

This is an example of a stopping time. (De�ning feature of a stopping time: the statement
\�(x) < t" is Ft-measurable; in other words, the decision whether to stop or not at time t
depends only on knowledge of the process up to time t. This is clearly true of the exit time
de�ned above.)

Here is the basic result: the function

u(x; t) = Ey(t)=x

"Z �(x)

t
	(y(s); s)ds+�(y(�(x)); �(x))

#

solves
ut + Lu+	 = 0 for x 2 D

4



with boundary condition
u(x; t) = �(x; t) for x 2 @D (4)

and �nal-time condition
u(x; T ) = �(x; T ) for all x 2 D: (5)

The justi�cation is entirely parallel to our earlier examples. The only change is that we
integrate, in the �nal step, to the stopping time � rather than the �nal time T . (This is
permissible for any stopping time satisfying E[� ] <1. The statement that E [

R �
t f dw] = 0

when E[� ] <1 is known as Dynkin's theorem.)

A subtlety is hiding here: the hypothesis that E[� ] <1 is not a mere technicality. Rather,
there are simple and interesting examples where it is false and E [

R �
t f dw] 6= 0. One such

example is related to the \gambler's ruin" paradox. Consider the standard Brownian process
w(s), starting at w(0) = 0. Let �� be the �rst time w(s) reaches 1. Then w(��) � w(0) =
1 � 0 = 1 certainly does not have mean 0, so E [

R ��
0 dw] 6= 0 in this case. This doesn't

contradict Dynkin's theorem; it just shows that E[��] = 1. To understand the situation
better, consider �n= the time of �rst exit from [�n; 1]. You'll show on HW1 that E[�n] <1
for each n, but E[�n]!1 as n!1. The Brownian motion process eventually reaches 1
with probability one, but it may make extremely large negative excursions before doing so.
Here's the coin-
ipping version of this situation: consider a gambler who decides to bet by

ipping coins and never quitting till he's ahead by a �xed amount. If there is no limit on
the amount he is permitted to lose along the way, then he'll eventually win with probability
one. But if there is a threshold of losses beyond which he must stop then there is a nonzero
probability of ruin and his expected outcome is 0.

There's something slightly misleading about our notation in (4)-(5). We use the same
notation � for both the boundary condition (4) and the �nal-time condition (5) because
they come from the same term in the payo�: �(y(�); �) where � is the time the curve
(y(s); s) exits from the cylinder D � [0; T ]. But � should be thought of as representing
two distinct functions { one at the spatial boundary @D� [0; T ], the other at the �nal time
boundary D � fTg (see the �gure). These two functions need have nothing to do with one

t

x

T

D

�j@D�(0;T )

�jD�fTg

Figure 1: Distinguishing between the two di�erent parts of �.

another. Often one is chosen to be zero, while the other is nontrivial. [A �nancial example:
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when one values a barrier option using the risk-neutral expectation of the payo�, � is zero
at the knock-out price, and it equals the payo� at the maturity time.]

Elliptic boundary-value problems. Now suppose f and g in the stochastic di�erential equa-
tion don't depend on t, and for x 2 D let

�(x) = the �rst time y(s) exits from D:

(Unlike the previous example, we do not impose a �nal time T . Clearly this amounts to
taking T =1 in the previous de�nition.) Suppose furthermore the process does eventually
exit from D, (and more: assume E[�(x)] <1, for all x 2 D). Then

u(x) = Ey(0)=x

"Z �(x)

0
	(y(s))ds+�(y(�(x)))

#

solves
Lu+	 = 0 for x 2 D;

with boundary condition
u = � for x 2 @D:

The justi�cation is again entirely parallel to our earlier examples.

********************

Applications: some properties of the Brownian motion process. Let us use these
results to deduce { by solving appropriate PDE's { some properties of the Brownian motion
process. (This discussion is taken Oksendal's example 7.4.2. Related material on exit times
will be explored in HW1.)

Question 1. Consider n-dimensional Brownian motion starting at x. What is the mean
time it takes to exit from a ball of radius R, for R > jxj? Answer: apply the last example
with f = 0, g = identity matrix, 	 = 1, � = 0. It tells us the mean exit time is the solution
u(x) of

1
2�u+ 1 = 0

in the ball jxj < R, with u = 0 at jxj = R. The (unique) solution is

u(x) =
1

n
(R2 � jxj2):

(To do this calculation we must know in advance that the expected exit time is �nite. We'll
justify this as Question 3 below.)

Question 2. Consider the scalar lognormal process

dy = �ydt+ �ydw
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with � and � constant. Starting from y(0) = x, what is the mean exit time from a speci�ed
interval (a; b) with a < x < b? Answer: the mean exit time u(x) solves

�xux +
1
2�

2x2uxx + 1 = 0 for a < x < b

with boundary conditions u(a) = u(b) = 0. The solution is

u(x) =
1

1
2�

2 � �

 
log(x=a)�

1� (x=a)1�2�=�
2

1� (b=a)1�2�=�
2
log(b=a)

!

(readily veri�ed by checking the equation and boundary conditions). This answer applies
only if � 6= 1

2�
2. See HW1 for the case � = 1

2�
2.

Question 3: Returning to the setting of Question 1, how do we know the mean exit time
is �nite? Answer: assume D is a bounded domain in Rn, and y(s) is multidimensional
Brownian motion starting at x 2 D. Recall that by Ito's lemma, t! �(y(t)) satis�es

d� = r�dw + 1
2��dt (6)

for any function �. Let's apply this with �(y) = jyj2, integrating in time up to the stopping
time

�T (x) = minf�(x); Tg =

(
�rst time y(s) exits from D if less than T

T otherwise.

We get

E
h
jy(�T (x))j

2
i
� jxj2 =

1

2

Z �T (x)

0
��(y(s))ds (7)

= nE [�T (x)]

since �� = 2n. Now let T ! 1. The left hand side of (7) stays �nite, since we're
considering a bounded domain, and by de�nition y(�T (x)) is either in D or on the boundary
of D. Thus we conclude that

lim
T!1

E [�T (x)] <1:

It follows (using the monotone convergence theorem, from real variables) that the exit time
� = limT!1 �T is almost surely �nite, and E[� ] <1, for any starting point x 2 D.

Question 4: Consider Brownian motion in Rn, starting at a point x with jxj = b. Given
r < b, what is the probability that the path ever enters the ball of radius r centered at 0?
Answer: for n = 1; 2 this probability is 1. (Interpretation: Brownian motion is \recurrent"
in dimensions 1 and 2 { it comes arbitrarily close to any point, in�nitely often, regardless
of where it starts.) In higher dimensions the situation is di�erent: in dimension n � 3 the
probability of entering the ball of radius r is (b=r)2�n. (Interpretation: Brownian motion is
\transient" in dimension n � 3.)

Consider �rst the case n � 3. We use the stopping time �k = �rst exit time from the annulus

Dk = fr < jxj < 2krg:
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Since Dk is bounded, E[�k] < 1 and we can integrate the stochastic di�erential equation
(6) up to time �k. Let's do this with the special choice

�(y) = jyj2�n:

This � solves Laplace's equation �� = 0 away from its singularity at y = 0. (The singularity
does not bother us, since we only evaluate � at points y(s) 2 Dk and 0 does not belong to
Dk.) The analogue of (7) is

E
h
jy(�k)j

2�n
i
� b2�n =

1

2

Z �k

0
��(y(s))ds = 0:

If pk is the probability that y leaves the annulus Dk at radius r, and qk = 1 � pk is the
probability that it leaves the annulus at radius 2kr, we have

r2�npk + (2kr)2�nqk = b2�n:

As k !1 this gives pk ! (b=r)2�n, as asserted.

The case n = 2 is treated similarly, using

�(y) = log y;

which solves �� = 0 in the plane, away from y = 0. Arguing as before we get

pk log r + qk log(2
kr) = log b:

As k !1 this gives qk ! 0. So pk ! 1, as asserted.

The case n = 1 is similar to n = 2, using �(y) = jyj.

****************************

Another application: distribution of �rst arrivals. Consider a scalar di�usion whose
drift and volatility are functions of y alone, independent of t:

dy = f(y(s))ds+ g(y(s))dw:

The initial condition is y(t) = x. We are interested in the �rst arrival of y(s) at a given
threshold, say y = 0. Assume to �x ideas that x > 0.

What is the distribution of arrival times? Let the density of arrival times be �(s).
Its cumulative distribution function

R T
0 �(s) ds is the probability that the �rst arrival occurs

by time T . According to our discussion of the backward Kolmogorov equation, this is u(x; 0)
where u solves

ut + fux +
1
2g

2uxx = 0 for x > 0; 0 < t < T (8)

with boundary condition
u = 1 at x = 0
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and �nal-time condition
u = 0 at t = T :

Clearly u depends also on the �nal time T ; let's make that dependence explicit by writing
u = u(x; t;T ). Evidently u(x; 0;T ) =

R T
0 �(s) ds, so by di�erentiation we get

�(s) =
@u

@T
(x; 0; s):

For special choices of f and g (e.g. Brownian motion with drift, or lognormal) the PDE (8)
can be solved explicitly (we'll discuss how to do this later), yielding an explicit formula for
the distribution of �rst arrivals.

Suppose the mean arrival time is �nite. Then we know it should be given by v(x) where
fvx+

1
2gvxx = �1 for x > 0 with v = 0 at x = 0. On the other hand, the mean arrival time

is Z
1

0
s�(s) ds =

Z
1

0
s@su(x; 0; s) ds:

Are these apparently di�erent expressions consistent? Yes indeed! To show this, we observe
(writing us for @su(x; 0; s), for simplicity) that

Z
1

0
sus ds = �

Z
1

0
s(1� u)s ds =

Z
1

0
(1� u) ds

by integration by parts, since
R
1

0 @s[s(1 � u)] ds = s(1� u)j10 = 0: Moreover the function
v(x) =

R
1

0 (1� u) ds clearly satis�es v = 0 at x = 0, and

fvx +
1
2g

2vxx = �

Z
1

0
fux +

1
2g

2uxx ds:

But since f and g are independent of time, u(x; t;T ) depends on t and T only through T �t,
so @u=@T = �@u=@t. Therefore, using the backward Kolmogorov equation,

�

Z
1

0
fux +

1
2g

2uxx ds =

Z
1

0
ut ds = �

Z
1

0
@su(x; 0; s) ds:

The last expression is clearly u(x; 0; 0) � u(x; 0;1) = 0 � 1 = �1. Thus v solves the
anticipated PDE.

****************************

Transition probabilities and the forward Kolmogorov equation. We've shown that
when the state evolves according to a stochastic di�erential equation

dyi = fi(y; s)ds+
X
j

gij(y; s)dwj

the expected �nal position
u(x; t) = Ey(t)=x [�(y(T ))]
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solves the backward Kolmogorov equation

ut +
X
i

fi
@u

@xi
+ 1

2

X
i;j;k

gikgjk
@2u

@xi@xj
= 0 for t < T , with u = � at t = T . (9)

We can write the backward Kolmogorov equation as

ut + Lu = 0 (10)

with

Lu =
X
i

fi
@u

@xi
+
X
i;j

aij
@2u

@xi@xj
; (11)

where aij =
1
2

P
k gikgjk =

1
2(gg

T )ij .

The solution of the stochastic di�erential equation is a Markov process, so it has a well-
de�ned transition probability

p(z; s;x; t) = probability of being at z at time s, given that it started at x at time t:

More precisely: p(�; s;x; t) is the probability density of the state at time s, given that it
started at x at time t. Of course p is only de�ned for s > t. To describe a Markov process,
p must satisfy the Chapman-Kolmogorov equation

p(z; s;x; t) =

Z
Rn

p(z1; s1;x; t)p(z; s; z1; s1) dz1

for any s1 satisfying t < s1 < s. Intuitively: the state can get from (x; t) to (z; s) by way
of being at various intermediate states z1 at a chosen intermediate time s1. The Chapman-
Kolmogorov equation calculates p(z; s;x; t) by adding up (integrating) the probabilities of
getting from (x; t) to (z; s) via (z1; s1), for all possible intermediate positions z1.

How should we visualize p? Consider �rst the case when y is multidimensional Brownian
motion. Then p(�; s;x; t) is the density of a Gaussian random variable with mean x and
variance s � t. The graph of z ! p(z; s;x; t) always has volume 1 below it (since p is a
probability density); as s!1 its maximum value tends to 0 (a Brownian particle di�uses
further and further away, on average, as time increases); as s! t it becomes in�nitely tall
and thin (at time s � t the Brownian particle is very close to its initial position x). The
situation for a general stochastic di�erential equation is similar: p becomes in�nitely tall and
thin, concentrating at z = x, as s! t; and if ggT > 0 then the graph of p keeps spreading
as s ! 1. Of course in the general case p does not describe a Gaussian distribution, and
there is no simple formula for the mean or variance { they are simply the mean and variance
of y(s).

If the stochastic di�erential equation does not involve time explicitly, then the transition
probability depends only on the \elapsed time":

if dy = f(y)dt+ g(y)dw with f; g depending only on y, then p(z; s;x; t) = p(z; s� t;x; 0):
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If the stochastic di�erential equation does not involve space explicitly, then the transition
probability depends only on the \relative position":

if dy = f(t)dt+ g(t)dw with f; g depending only on t, then p(z; s;x; t) = p(z � x; s; 0; t):

The initial position of a Markov process need not be deterministic. Even if it is (e.g. if
y(0) = x is �xed), we may wish to consider a later time as the \initial time." The transition
probability determines the evolution of the spatial distribution, no matter what its initial
value: if �0(x) is the probability density of the state at time t then

�(z; s) =

Z
Rn

p(z; s;x; t)�0(x) dx (12)

gives the probability density (as a function of z) at any time s > t.

The crucial fact about the transition probability is this: it solves the forward Kolmogorov

equation in s and z:

�ps �
X
i

@

@zi
(fi(z; s)p) +

1
2

X
i;j;k

@2

@zi@zj
(gik(z; s)gjk(z; s)p) = 0 for s > t; (13)

with initial condition
p = Æx(z) at s = t.

We can write the forward Kolmogorov equation as

�ps + L�p = 0 (14)

with

L�p = �
X
i

@

@zi
(fip) +

X
i;j

@2

@zi@zj
(aijp) : (15)

Here aij =
1
2(gg

T )ij just as before. The initial condition p = Æx(z) encapsulates the fact,
already noted, that the graph of p(�; s;x; t) becomes in�nitely tall and thin at x as s decreases
to t. The technical meaning is thatZ

Rn

p(z; s;x; t)f(z) dz ! f(x) as s decreases to t (16)

for any continuous f .

Recall that if the initial state distribution is �0 then the evolving distribution is �(z; s) =R
p(z; s;x; t)�0(x) dx. This function �(z; s) automatically solves the forward equation (just

bring the derivatives under the integral, and use that p solves it). The initial condition on
p is just what we need to have �(z; s)! �0(z) as s! t. (Demonstration: multiply (16) by
�0(x) and integrate in x to see thatZ

�(z; s)f(z) dz =

Z
p(z; s;x; t)f(z)�0(x) dzdx!

Z
f(x)�0(x) dx
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as s ! t. Since this is true for every continuous f , we conclude that �(z; s) converges
[weakly] to �0(z) as s! t.)

Please note that the forward Kolmogorov equation describes the probability distribution
by solving an initial-value problem, while the backward Kolmogorov equation describes
the expected �nal payo� by solving a �nal-value problem. Students familiar with pricing
options via binomial trees will �nd this familiar. The stock prices at various nodes of a tree
are determined by working forward in time; the option values at various nodes of a tree are
determined by working backward in time.

Notice that the forward and backward Kolmogorov equations are, in general, completely
di�erent. There is one case, however, when they are closely related: for Brownian motion
the forward equation starting at t = 0 is

ps �
1
2�p = 0 for s > 0

while the backward equation with �nal time T is

ut +
1
2�u = 0 for t < T :

In this special case the backward equation is simply the forward equation with time reversed.
More careful statement: if u(x; t) solves the backward equation then ~u(z; s) = u(z; T � s)
solves the forward equation, and conversely. This is an accident, associated with the the
self-adjointness of the Laplacian. The situation is di�erent even for Brownian motion with
constant drift f : then the forward equation is ps + f � rp� 1

2�p = 0, while the backward
equation is ut + f � ru+ 1

2�u = 0, and the two are not equivalent under time-reversal.

Students with a background in physical modeling will be accustomed to equations of the
form vt = div (a(x)rv). Neither the forward nor the backward Kolmogorov equation has
this form. Such equations are natural in physics, but not in problems from control theory
and stochastic di�erential equations.

Application: steady-state distributions. The backward Kolmogorov equation comes
up more often than the forward one in �nance. But one important application involves
the large-time behavior of a di�usion. If �(z; s) is the probability density of a di�usion,
then evidently �1(z) = lims!1 �(z; s) represents (if it exists) the large-time statistics of
the process. For Brownian motion �1 = 0, re
ecting the fact that Brownian particles
wander a lot. The situation is quite di�erent however for the Ornstein-Uhlenbeck process
dy = �kyds+�dw. We expect y to remain near 0 due to the deterministic term �ky, which
constantly pushes it toward 0. And indeed the steady-state distribution is

�1(z) = Ce�kz
2=�2

where C is chosen so that �1 has integral 1. (It's easy to check that this gives a steady-state
solution of the forward Kolmogorov equation. In fact this gives the long-time asymptotics
of a fairly general initial condition, but this is not so obvious.)

This application can be generalized. Consider the stochastic PDE dy = �V 0(y)dt + �dw.
Its deterministic part pushes y toward a local minima of V . If V grows rapidly enough at
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in�nity (so the di�usion is succesfully con�ned, and does not wander o� to in�nity) then
the long-time statistics are described by the steady-state distribution

�1(z) = Ce�2V (z)=�
2

:

Testing the plausibility of the forward equation. We will explain presently why the
forward equation holds. But �rst let's get used to it by examining some consequences and
checking some special cases. Let �0(x) be the probability density of the state at time 0, and
consider

�(z; s) =

Z
p(z; s;x; 0)�0(x) dx

for s > 0. It gives the probability density of the state at time s.

Checking the integral. Since � is a probability density we expect that
R
�(z; s) dz = 1 for all

s. In fact, from the forward equation

d

ds

Z
� dz =

Z
�s dz

=

Z
L�� dz

= 0

since each term of L�� is a perfect derivative. (Here and below, we repeatedly integrate
by parts, with no \boundary terms" at �1. We are implicitly assuming that � and its
derivatives decay rapidly as z ! �1. This is true, provided the initial distribution �0 has
this property.)

If the stochastic di�erential equation has no drift then the expected position is independent

of time. In general, E[y(s)] � E[y(0)] = E
R s
0 f(y(r); r) dr since the expected value of the

integral dw vanishes. Thus when f = 0 the expected position E[y(s)] is constant. Let's
prove this again using the forward equation:

d

ds
(expected position) =

d

ds

Z
z�(z; s) dz

=

Z
z�s(z; s) dz

=

Z
zL��(z; s) dz

= 0 when f = 0:

The last step is the result of integration by parts; for example, if y is scalar valued (dy =
g(y; t)dw) we have Z

zL�� dz = 1
2

Z
z
�
g2�

�
zz

dz

= �1
2

Z �
g2�

�
z
dz

= 0:

13



(As noted above, to justify the integrations by parts one must know that � vanishes rapidly
enough at spatial in�nity.)

The special case f = constant, g = 0. If g = 0 then we're studying a deterministic motion.
If in addition f = constant then the solution is explicit and very simple: y(t) = y(0) + ft.
Clearly

Prob of being at z at time s = Prob of being at z � fs at time 0;

whence
�(z; s) = �0(z � fs):

In particular, �s+ f �r� = 0, which agrees with the forward equation (since f is constant).

Biting the bullet. Enough playing around; let's explain why the forward equation holds.
The �rst main ingredient is the observation that

Ey(t)=x [�(y(T ))] =

Z
�(z)p(z; T ;x; t) dz: (17)

We know how to determine the left hand side (by solving the backward equation, with �nal
value � at t = T ). This relation determines the integral of p(�; T ;x; t) against any function
�, for any value of x; t; T . This is a lot of information about p { in fact, it fully determines
p. Our task is to make this algorithmic, i.e. to explain how p can actually be computed.
(The answer, of course, will be to solve the forward equation in z and s.)

The second main ingredient is the relation between L and L�. Brie
y: L� is the adjoint of
L in the L2 inner product. Explaining this: recall from linear algebra that if A is a linear
operator on an inner-product space, then its adjoint A� is de�ned by

hAx; yi = hx;A�yi:

When working in Rn we can represent A by a matrix, and A� is represented by the transpose
AT . The situation is similar here, but our inner product space consists of all (square-
integrable, scalar-valued) functions on Rn, with inner product

hv; wi =

Z
Rn

v(x)w(x) dx:

We claim that
hLv; wi = hv;L�wi: (18)

When y is scalar-valued our claim says thatZ
R

�
fvx +

1
2g

2vxx
�
w dx =

Z
R
v
�
�(fw)x +

1
2(g

2w)xx
�
dx:

This is a consequence of integration by parts. For example, the �rst term on the left equals
the �rst term on the right sinceZ

R
[fw]vx dx = �

Z
R
[fw]xv dx:
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The second term on each side matches similarly, integrating by parts twice. Notice that f
and g can depend on time as well as space; it doesn't change the argument. The proof of
(18) when y is vector valued is essentially the same as the scalar case.

The third main ingredient is hiding in our derivation of the backward equation. We know
from this derivation that

Ey(t)=x [�(y(T ); T )] � �(x; t) = Ey(t)=x

"Z T

t
(�s + L�)(y(s); s) ds

#
(19)

for any function �(y; s). Our main use of this relation up to now was to choose � so that
the right hand side vanished, i.e. to choose � to solve the backward equation. But we don't
have to make such a restrictive choice: relation (19) holds for any �.

Let's put these ingredients together. Rewriting (19) using the transition probabilities givesZ
Rn

�(z; T )p(z; T ;x; t) dz � �(x; t) =

Z T

t

Z
Rn

(�s + L�)(z; s)p(z; s;x; t) dzds: (20)

Using (18) and doing the obvious integration by parts in time, the right hand side becomesZ T

t

Z
Rn

��ps + �L�p dzds+

Z
Rn

�(z; s)p(z; s;x; t) dz

����s=T

s=t
: (21)

This is true for all �. Since the left hand side of (20) involves only the initial and �nal times
(t and T ) we conclude that

�ps + L�p = 0:

Therefore (20)-(21) reduce toZ
Rn

�(z; t)p(z; t;x; t) dz = �(x; t)

for all �, which is what we mean by the initial condition \p = Æx when s = t". Done!

The argument is simple; but maybe it's hard to encompass. To recapitulate its essence,
let's give a new proof (using the forward equation) of the fact (known via Ito calculus) that

u solves the backward equation =)
d

ds
E [u(y(s); s)] = 0:

In fact: if �(z; s) is the probability distribution of the state at time s,

d

ds
E [u(y(s); s)] =

d

ds

Z
u(z; s)�(z; s) dz

=

Z
us�+ u�s dz

=

Z
us�+ uL�� dz

=

Z
us�+ (Lu)� dz

= 0

using in the last step our hypothesis that u solves the backward equation.
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********************

Boundary value problems. The preceding discussion concerned the backward and for-
ward Kolmogorov equations in all space. When working in a bounded domain, the bound-
ary conditions for the forward Kolmogorov equation depend on what the random walk does
when it reaches the boundary.

We discuss here just the case of most interest for �nancial applications: the absorbing

boundary condition, i.e. a random walk that we track only till it hits the boundary for
the �rst time. (After that time we think of the random walker as disappearing, i.e. be-
ing \absorbed" by the boundary.) The corresponding boundary condition for the forward
Kolmogorov equation is that the probability density vanish there (since it represents the
density of not-yet-absorbed walkers).

Let's explain brie
y why this choice is right. Consider the backward Kolmogorov equation
in a bounded domain, with boundary condition u = 0:

ut + Lu = 0 for x 2 D; t < T
u(x; T ) = �(x) at t = T
u(x; t) = 0 for x 2 @D:

We know that
u(x; t) = Ey(t)=x [�(y(�); �)]

where � = �(x) is the exit time from D (or T , if the path doesn't exit by time T ) and

� = 0 for x 2 @D; � = � at the �nal time T :

This formula for u can be written as

u(x; t) =

Z
Rn

�(z)q(z; T ;x; t) dz

where
q(z; s;x; t) = probability that the di�usion arrives at z at time s,
starting from x at time t, without hitting @D �rst.

Our assertion is that q(z; s;x; t) solves the forward Kolmogorov equation for z 2 D and

s > t, with boundary condition q = 0 for z 2 @D, and initial condition q = Æx. The
justi�cation is very much like the argument given above for Rn.

One thing changes signi�cantly when we work in a bounded domain:
R
D q(z; s;x; t) dz < 1.

The reason is that q gives the probability of arriving at z at time s without hitting the

boundary �rst. Thus

1�

Z
D
q(z; s;x; t) dz = prob of hitting @D by time s, starting from x at time t.
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Evidently
R
q(z; s;x; t) dz is decreasing in time. Let's check this for Brownian motion, for

which qs �
1
2�q = 0. We have

d

ds

Z
D
q(z; s;x; t) dz =

Z
D
qs dz

= 1
2

Z
D
�q dz

= 1
2

Z
@D

@q

@n
� 0:

The inequality in the last step is a consequence of the maximum principle (to be discussed
in a future lecture): since q = 0 at @D and q � 0 in D we have @q=@n � 0 at @D, where n
is the outward unit normal. (In fact @q=@n < 0; this is a \strong version" of the maximum
principle.)

Application to the exit time distribution. We used the backward Kolmogorov equation
to express the probability that a di�usion reaches a certain threshold before time T (see
(8)). The forward Kolmogorov equation gives a very convenient alternative expression for
the same quantity. Indeed, if � solves the forward Kolmogorov equation in the domain D
of interest, with � = 0 at the boundary and � = Æx at time 0, then

R
D �(x; T ) dx gives the

probability of surviving till time T . So 1 �
R
D �(x; T ) dx is the probability of hitting the

boundary by time T , given that you started at x at time 0. When D is a half-space, this is
an alternative expression for u(x; 0;T ) de�ned by (8).
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