
PDE for Finance Notes, Spring 2003 { Section 4

Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in

connection with the NYU course PDE for Finance, G63.2706.

Deterministic optimal control. We've been studying the solution of an SDE, modelling

for example the price of an asset in the marketplace. One focus of our attention has been

the backward Kolmogorov equation, whose solution u(x; t) is the expected �nal-time payo�,

if the system starts in state x at time t. The backward Kolmogorov equation is a linear

PDE, which must be solved backward in time.

We're heading toward stochastic control. That theory considers SDE's over which we have

some in
uence, modelling for example the value of a portfolio. One typical goal is to

maximize the utility of �nal-time wealth. The task is now two-fold: (i) to identify an

optimal strategy, and (ii) to evaluate the associated \value function" u(x; t) { the optimal

utility of �nal-time wealth, if the system starts in state x at time t. It solves the Hamilton-

Jacobi-Bellman (HJB) equation { the analogue in this setting of the backward Kolmogorov

equation. The HJB equation is usually nonlinear, due to the e�ect of our decision-making.

Like the backward Kolmogorov equation, it must be solved backward in time. Underlying

the derivation and solution of the HJB equation is the dynamic programming principle {

a powerful scheme for solving optimization problems by gradually increasing the time-to-

maturity (or a similar parameter).

Selected �nancial applications of stochastic control include: (a) optimizing the allocation

of assets between distinct risky investment opportunities (e.g. a time-dependent version of

CAPM); (b) optimizing the rate at which to spend income from an investment portfolio;

(c) optimal hedging of an option on a non-traded underlying; and (d) pricing of American

options (i.e. optimization of the \exercise rule"). All these problems involve a blend of

(i) stochasticity and (ii) control. We are already well-versed in stochasticity. We now take

a little time to become well-versed in control, by studying deterministic control problems.

Then we'll combine the two ingredients (in Sections 5 and beyond) to address �nancially

sign�cant examples.

The material covered in this section is \standard," however I don't know a really good

place to read it. The book by Fleming and Rishel, Deterministic and Stochastic Optimal

Control, covers everything here and much more { but it goes much deeper than the level

of this class. Roughly the same comment applies to the book of Bertsekas, Dynamic Pro-

gramming: Deterministic and Stochastic Models. The charming and inexpensive book A.

Dixit, Optimization in Economic Theory (Oxford Univ Press, 1990, paperback) covers some

closely related material. Most basic engineering-oriented texts such as Macki & Strauss,

Introduction to Optimal Control Theory, emphasize the Pontryagin Maximum Principle

and de-emphasize the method of dynamic programming. By contrast, we will emphasize

dynamic programming because it is the more useful approach for many of the �nancial
applications. (There is a stochastic-control analogue of the Pontryagin Maximum Princi-

ple. It is the \martingale method," presented e.g. in Section 5.2 of Korn & Korn, Option

Pricing and Portfolio Optimization. Perhaps we'll �nd time to discuss this toward the end

of the semester.) Those with a lot of background in PDE's will enjoy reading Chapter 10
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of Evans, Partial Di�erential Equations, where he discusses the relation between determin-
istic optimal control and the viscosity solution of the associated Hamilton-Jacobi-Bellman

equation. However the analysis of viscosity solutions lies beyond the scope of this course.

Once we get to stochastic control it will be easier to suggest things to read. We'll be fol-

lowing, among other things, pieces of Merton's work; the corresponding articles { reprinted

in R.C. Merton, Continuous Time Finance { are very rich and not too diÆcult.

This section is relatively long, because there's a lot to cover. We shall focus however on

two key examples. Example 1 is the deterministic analogue of Merton's classic example

involving optimal investment and consumption. Example 2 is a minimum-time problem

whose HJB equation is the Eikonal equation jruj = 1. Example 2 has, I guess, no �nancial

interpretation but its easy-to-visualize character makes it a convenient aid to understanding.

General topics which we'll explain, specializing where convenient to these examples, include:

�nding the relevant Hamilton-Jacobi-Bellman equation; identifying the optimal feedback law;
and proving optimality by means of a veri�cation argument.

***********************

What is optimal control? A typical problem of optimal control is this: we have a system

whose state at any time t is described by a vector y = y(s) 2 Rn. The system evolves in

time, and we have the ability to in
uence its evolution through a vector-valued control

�(s) 2 Rm. The evolution of the system is determined by an ordinary di�erential equation

_y(s) = f(y(s); �(s)); y(0) = x; (1)

and our goal is to choose the function �(s) for 0 < s < T so as to maximize some utility or

minimize some cost, e.g.

max

Z T

0
h(y(s); �(s)) ds + g(y(T )): (2)

The problem is determined by specifying the dynamics f , the initial state x, the �nal time

T , the \running utility" h and the \�nal utility" g. The problem is solved by �nding the

optimal control �(s) for 0 < s < T and the value of the maximum.

The mathematical and engineering literature often focuses on minimizing some sort of cost;

the economic literature on maximizing utility. The two problems are mathematically equiv-

alent.

One needs some hypotheses on f to be sure the solution of the ODE de�ning y(s) exists
and is unique. We do not make these explicit since the goal of these notes is to summarize

the main ideas without getting caught up in �ne points. See Evans for a mathematically

careful treatment. Another technical point: it's possible (even easy) to formulate optimal
control problems that have no solution. If the utility is bounded above, then for any � > 0

there's certainly a control ��(s) achieving a value within � of optimal. But the controls ��
might not converge to a meaningful control as �! 0. Note however that even if an optimal

control doesn't exist, the optimal value (the maximum utility) is still well-de�ned.
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An optimal control problem is evidently a special type of optimization problem. What's
special is that we're dealing with functions of time, and decisions that must be made as time

proceeds. Often the optimal control is described by a feedback law. Such a law determines

the optimal control �(s) as having the form �(s) = F (y(s); s) for some function F (the

feedback law).

Example 1: Here is a simple example which already has �nancial interest. (It's a deter-

ministic version of Merton's famous example of optimal investment and consumption; we'll

do the version with investment in a few weeks). Consider an individual whose wealth today

is x, and who will live exactly T years. His task is to plan the rate of consumption of wealth

�(s) for 0 < s < T . All wealth not yet consumed earns interest at a �xed rate r. The state
equation is thus

_y = ry � �; y(0) = x: (3)

The control is �(s) � 0, and the state is constrained by y(s) � 0 (he cannot consume wealth

he doesn't have). The goal is

max

Z T

0
e��sh(�(s)) ds

where � is the discount rate and h(�) is the utility of consumption. (The function h,
which must be given as part of the formulation of the problem, should be monotonically

increasing and concave. A typical choice is h(�) = �
 with 0 < 
 < 1.) We have, for

simplicity, assigned no utility to �nal-time wealth (a bequest), so the solution will naturally

have y(T ) = 0. Our goal is not strictly of the form (2) due to the presence of discounting;

well, we omitted discounting from (2) only for the sake of simplicity.

The state constraint y(s) � 0 is awkward to deal with. In practice it tells us that if the

investor ever runs out of wealth (i.e. if y(s) ever reaches 0) then � = 0 and y = 0 thereafter.

This state constraint can be avoided by reformulating the goal as

max

Z �

0
e��sh(�(s)) ds

where � is the �rst time y reaches 0 if this occurs before T , or � = T if y is positive for all

s < T . With this goal we need not impose the state constraint y(s) � 0.

Control theory is related to { but much more general than { the one-dimensional calculus

of variations. A typical calculus of variations problem is

max
y(s)

Z T

0
W (s; y(s); _y) ds

subject, perhaps, to endpoint conditions on y(0) and y(T ). The example just formulated
can be expressed in this form,

max
y(s)

Z T

0
e��sh(ry � _y) ds; subject to y(0) = x;

except that we have additional constraints ry(s)� _y(s) � 0 and y(s) � 0 for all s.

We will shortly discuss the method of dynamic programming as a scheme for solving optimal

control problems. The key to this method is to consider how the solution depends on the
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initial time and initial state as parameters. Thus rather than start arbitrarily at time 0,
it is better to introduce a variable initial time t. And it is fruitful to consider the value

function u(x; t), the optimal value achievable using initial time t and initial state x. In the

context of our basic framework (1) this means changing the state equation to

_y(s) = f(y(s); �(s)); y(t) = x:

The control �(s) is now to be determined for t < s < T , and the value function is

u(x; t) = max

Z T

t
h(y(s); �(s)) ds + g(y(T )):

In the context of Example 1 it means changing the state equation to

_y = ry � �; y(t) = x;

and the objective to

u(x; t) = max

Z T

t
e��sh(�(s)) ds:

(Warning: with this de�nition u(x; t) is the utility of consumption discounted to time 0.

The utility of consumption discounted to time t is e�tu(x; t).)

We started by formulating the \typical" optimal control problem (1)-(2). Now let's discuss

some of the many variations on this theme, to get a better sense of the scope of the subject.

We repeat for clarity the state equation:

_y(s) = f(y(s); �(s)) for t < s < T with initial data y(t) = x:

Sometimes we may wish to emphasize the dependence of y(s) on the initial value x, the
initial time t, and the choice of control �(s); t < s < T ; in this case we write y = yx;t;�(s).
The control is typically restricted to take values in some speci�ed set A, independent of s:

�(s) 2 A for all s;

the set A must be speci�ed along with the dynamics f . Sometimes it is natural to impose

state constraints, i.e. to require that the state y(s) stay in some speci�ed set Y :

yx;t;�(s) 2 Y for all s;

when present, this requirement restricts the set of admissible controls �(s). Our basic

example (2) is known as a �nite horizon problem; its value function is

u(x; t) = max
�

(Z T

t
h(yx;t;�(s); �(s)) ds + g(yx;t;�(T ))

)
: (4)

For the analogous in�nite horizon problem it is customary to set the starting time to be
0, so the value function depends only on the spatial variable x:

u(x) = max
�

Z 1

0
e��sh(yx;0;�(s); �(s)) ds: (5)
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Discounting is important for the in�nite-horizon problem, since without it the integral
de�ning u could easily be in�nite. (As already noted in our example, it is also often natural

to include discounting in a �nite-horizon problem.)

The minimum time problem is a little bit di�erent. It minimizes the time it takes y(s)
to travel from x to some target set G. The value function is thus

u(x) = min
�
ftime at which yx;0;�(s) �rst arrives in Gg : (6)

The minimum time problem is somewhat singular: if, for some x, the solution starting
at x cannot arrive in G (no matter what the control) then the value is unde�ned. The

discounted minimum time problem avoids this problem: its value function is

u(x) = min
�

Z �(x;�)

0
e�s ds (7)

where �(x; �) is the time that yx;0;�(s) �rst arrives in G, or in�nity if it never arrives.

Notice that the integral can be evaluated: the quantity being minimized is
R �(x;�)
0 e�s ds =

1 � e��(x;�). So we're still minimizing the arrival time, but the value function is 1 �
exp(�arrival time) instead of the arrival time itself.

Example 2. Here is a simple example of a minimum-time problem, with the great advan-

tages that (a) we can easily visualize everything, and (b) we know the solution in advance.

In its simplest form the problem is: given a point x in Rn, and a set G not containing x, �nd
the distance from x to G. We recognize this as a minimum time problem, by reformulating

it in terms of paths travelled with speed � 1. The state equation is

dy=ds = �(s); y(0) = x;

and the controls are restricted by

j�(s)j � 1:

The minimum arrival time

u(x) = min
�
ftime of arrival at Gg

is of course the distance from x to G, and the optimal strategy is to travel with constant
velocity (and unit speed) toward the point in G that is closest to x. We remark that

u(x) = dist (x;G) solves the di�erential equation

jruj = 1

in its natural domain 
 = Rn � G, with boundary condition u = 0 at @
. This is an

example of a (time-independent) Hamilton-Jacobi equation. The solution is typically not
smooth: consider for example the case when 
 is a circle or a square. The optimal control

is determined by a feedback law (\wherever you are right now, proceed at unit speed

toward the nearest point on the target G"). The non-smoothness of u re
ects the fact

that the feedback law is discontinuous, with nonuniqueness where ru is discontinuous.

There is clearly nothing pathological about this example: non-smooth value functions, and

discontinuous feedback laws, are commonplace in deterministic optimal control.
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***********************

Dynamic programming. There are basically two systematic approaches to solving opti-

mal control problems: one known as the Pontryagin Maximum Principle, the other known

as Dynamic Programming. The two approaches are fundamentally equivalent, though in

speci�c problems one may be easier to apply than the other. We shall emphasize dy-
namic programming, because (a) it extends more easily to the random case (time-dependent

decision-making to optimize expected utility), and (b) it extends the familiar �nancial pro-

cedure of valuing an option by working backward through a tree.

The essence of dynamic programming is pop psychology: \today is the �rst day of the rest

of your life." More: every day is the �rst day of the future thereafter. How to use this

insight? One way is to make it the basis of a numerical solution scheme. Another way is

to use it to derive a PDE for u(x; t). These two ideas are of course closely related: our

numerical solution scheme is in fact a crude numerical scheme for solving the PDE.

Let's start with the numerical scheme, concentrating on the �nite-horizon problem (4), and

keeping space one-dimensional for simplicity. Our goal is to compute (approximately) the

value function u(x; t). Of course any numerical scheme must work in discrete space and

time, so t is a multiple of �t, and x is a multiple of �x. It's also natural to consider that

the controls are discretized: �(s) is piecewise constant with mesh �t. Now work backward

in time:

First Consider the problem with initial time t = T . In this case the dynamics is irrelevant.

So are the control and the running utility . Whatever the value of x, the associated
value function is g(x). In other words: u(x; T ) = g(x).

Next Consider the problem with initial time t = T ��t. Approximate the dynamics as

y(s+�t) = y(s) + f(y(s); �(s))�t:

Since there is just one time interval between the initial time t and the �nal time

T = t + �t, and since the control is piecewise constant, the unknown is now just a

single vector � = �(t) (not a function). It is determined by optimization. We may

approximate the objective integral by a sum (dropping terms of higher order in �t),
leading to

u(x; T ��t) = max
�

fh(x; �)�t+ g (x+ f(x; �)�t)g :

This must be evaluated for each x (i.e. every multiple of �x), and the maximization
over � must be done globally (we need the global optimum, not just a local opti-

mum). For a real numerical scheme some further structure is needed here: we should

solve a problem in a bounded spatial domain, and impose concavity hypotheses as-

suring that there are no local optima. For the present conceptual discussion let us

ignore such practical issues and proceed. (One might worry that when the spatial

dimension is greater than 1 this scheme is utterly impractical, since the number of

grid points x to be considered at each time t is of order (�x)�n in dimension n.
This worry is well-founded: our scheme is impractical in higher dimensions. However
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there are good numerical schemes for multidimensional problems. One option is to
solve the Hamilton-Jacobi-Bellman equation we'll derive presently, using a suitable

�nite-di�erence scheme.) At the end of this step we have computed u(�; T ��t) as a
function of space.

Next Consider the problem with initial time t = T�2�t. For any initial state x = y(t), the
possible controls are now represented by a pair of vectors �(t); �(t+�t). However we
can still solve the problem by considering just the current control � = �(t), since the
optimal choice of �(t +�t) has already been determined in the course of evaluating

u(x; T ��t). Making crucial use of the fact that the \running utility" is an integral
in time, we may determine the optimal value u(x; T � 2�t) by solving

u(x; T � 2�t) = max
�

fh(x; �)�t+ u (x+ f(x; �)�t; T ��t)g :

Here the unknown is just the control � to be used during the time interval from
T � 2�t to T ��t. The optimal � depends of course on x, and the optimization in

� must be done for each choice of x separately. (Again, this is the conceptual but

impractical version; numerical optimal control uses various workarounds to make it

more practical.) At the end of this step we have computed u(�; T � 2�t) as a function
of space.

Continue The scheme continues, working backward time-step by time-step. Notice that

for computing u(x; T � (j + 1)�t) we need only save the values of u(x; T � j�t).
However if we wish to synthesize an optimal control starting at an arbitary point x
and time t = T�(j+1)�t we must save much more information: namely the feedback

law � = F (y; s), obtained in the course of calculating u(y; s) for s > t. (This is the

optimal initial-time-period value of the control, when the initial state is y and the

initial time is s). This information permits us to synthesize the optimal control and

solve the state equation at the same time: starting from x at time t, the state evolves
by

y�(s+�t) = y�(s)) + f(y�(s); �(s))�t

with �(s) determined by

�(s) = F (y�(s); s) :

We remark that a similar philosophy can be used in many other settings. One example is

this standard scheme for computing the shortest path between two nodes of a graph. Pick

one of the nodes (call it an endpoint). Find all nodes that lie distance 1 from it, then all

points that lie distance 2 from it, etc. Stop when the other endpoint appears in the set you

come up with.

Students of math �nance will have noticed by now that dynamic programming looks a lot like
the binomial-tree method for valuing a European or American option. The resemblance is

no coincidence. The biggest di�erence is that for the European option no optimization need

be done at any point in the calculation; for the American option the optimization is simple

{ over just two alternatives, to exercise or not to exercise. This is due to the completeness

of the underlying market model. In a multiperiod market that's not complete, there is an
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optimization to be done at each stage. We'll discuss an example of this type when we get
to stochastic optimal control.

The discrete-time, discrete-space scheme described above can be viewed as a crude nu-

merical scheme for solving the PDE satis�ed by the value function. This is known as the

Hamilton-Jacobi-Bellman equation. We shall derive it, in essence, by taking the for-

mal limit �t ! 0 in our numerical discussion. This viewpoint can be used for all the

optimal control problems we've discussed (�nite-horizon, in�nite-horizon, least-time, with

or without discounting) but to �x ideas we concentrate on the usual �nite-horizon example

u(x; t) = max
�

(Z T

t
h(y(s); �(s)) ds + g(y(T ))

)

where the controls are restricted by �(s) 2 A, and the state equation is

dy=ds = f(y(s); �(s)) for t < s < T and y(t) = x:

(Space can be multidimensional here.) The Hamilton-Jacobi-Bellman equation in this case

is

ut +H(ru; x) = 0 for t < T (8)

with

u(x; T ) = g(x) at t = T ;

where H (the \Hamiltonian") is de�ned by

H(p; x) = max
a2A

ff(x; a) � p+ h(x; a)g: (9)

(Note that p is a vector with the same dimensionality as x; a is a vector with the same

dimensionality as �.)

To explain, we start with the dynamic programming principle, which was in fact the

basis of our discrete scheme. It says:

u(x; t) = max
�

(Z t0

t
h(yx;t;�(s); �(s)) ds + u(yx;t;�(t

0); t0)

)
(10)

whenever t < t0 < T . The justi�cation is easy, especially if we assume that an optimal

control exists (this case captures the main idea; see Evans for a more careful proof, without

this hypothesis). Suppose the optimal utility starting at x at time t is achieved by an

optimal control �x;t(s). Then the restriction of this control to any subinterval t0 < s < T
must be optimal for its starting time t0 and starting position yx;t;�(t

0). Indeed, if it weren't

then there would be a new control �0(s) which agreed with � for t < s < t0 but did

better for t0 < s < T . Since the utility is additive { the running utility is
R T
t h(y; �) ds =R t0

t h(y; �) ds +
R T
t0 h(y; �) ds { this new control would be better for the entire time period,

contradicting the optimality of �. Therefore in de�ning u(x; t) as the optimal utility, we can

restrict our attention to controls that are optimal from time t0 on. This leads immediately

to (10).
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Now let us derive (heuristically) the Hamilton-Jacobi-Bellman equation. The basic idea is
to apply the dynamic programming principle with t0 = t+�t and let �t! 0. Our argument

is heuristic because (i) we assume u is di�erentiable, and (ii) we assume the optimal control

is adequately approximated by one that is constant for t < s < t+�t. (Our goal, as usual,
is to capture the central idea, referring to Evans for a more rigorous treatment.) Since �t is
small, the integral on the right hand side of (10) can be approximated by h(x; a)�t, where
a 2 A is the (constant) value of � for t < s < t+�t. Using a similar approximation for the

dynamics, the dynamic programming principle gives

u(x; t) � h(x; a)�t+ u(x+ f(x; a)�t; t+�t) + errors we wish to ignore

with equality when a is chosen optimally. Using the �rst-order Taylor expansion of u this

becomes

u(x; t) � h(x; a)�t + u(x; t) + (ru � f(x; a) + ut)�t+ error terms

with equality when a is optimal. In the limit �t! 0 this gives

0 = ut +max
a2A

fru � f(x; a) + h(x; a)g;

i.e. ut + H(ru; x) = 0 with H as asserted above. The �nal-time condition is obvious: if

t = T then the dynamics is irrelevant, and the total utility is just g(x).

That was easy. Other classes of optimal control problems are treated similarly. Let's look

at the minimum-time problem, where the state evolves by

dy=ds = f(y; �); y(t) = x;

and the controls are restricted by

�(s) 2 A for all s

for some set A. The associated Hamilton-Jacobi-Bellman equation is

H(ru; x) = �1 for x =2 G

with Hamiltonian

H(p; x) = min
a2A

ff(x; a) � pg = 0:

The boundary condition is

u = 0 for x 2 G:

To see this, we argue essentially as before: the value function (the time it takes to arrive at

G) should satisfy

u(x) � �t+ u(x+ f(x; a)�t) + error terms

for any a 2 A, with equality when a is optimal. Using Taylor expansion this becomes

u(x) � �t+ u(x) +ru � f(x; a)�t+ error terms:
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Optimizing over a and letting �t! 0 we get

1 + min
a2A

ff(x; a) � rug = 0;

which is the desired equation.

Let us specialize this to Example 2. In that example the set A is the unit ball, and

f(y; �) = �, so H(p; x) = minjaj�1 p � a = �jpj and the Hamilton-Jacobi equation becomes

jruj = 1, as expected.

***************

Solutions of the Hamilton-Jacobi-Bellman equation are not unique (at least, not when we

understand \solution" in the naive almost-everywhere sense). For example, there are many

Lipschitz continuous solutions of jruj = 1 in a square, with u = 0 at the boundary. If

one were smooth we might prefer it { however there is no smooth solution. So, is the HJB

equation really of any use?

The answer is yes, it's very useful, for three rather distinct reasons. The �rst is obvious; the

second is elementary but not obvious; the third is subtle, representing a major mathematical

achievement of the past 20 years:

(a) In deriving the HJB equation, we deduced a relation between the optimal control and

the value of ru: brie
y, �(s) achieves the optimum in the de�nition of H(p; x) with
p = ru(y(s); s) and x = y(s). Thus the derivation of the HJB equation tells us the

relation between the value function and the optimal control. In many settings, this

argument permits us to deduce a feedback law once we know the value function.

(b) The argument used for the HJB equation can often be reorganized to show that a

conjectured formula for the value function is correct. This sort of argument is called

a veri�cation theorem.

(c) There is a more sophisticated notion of \solution" of a Hamilton-Jacobi equation,

namely the notion of a viscosity solution. Viscosity solutions exist, are unique, and

can be computed by suitable numerical schemes. Moreover the value function of a
dynamic programming problem is automatically a viscosity solution of the associated

HJB equation. (Chapter 10 of Evans' book gives an excellent introduction to the

theoretical side of this topic. The book Level Set Methods by J. Sethian, Cambridge

Univ Press, provides a readable introduction to the numerical side, concentrating on

the special class of HJB equations associated with geometric evolution problems {

closely connected with our minimum time example.)

Point (a) should be clear, and it will be illuminated further by various examples later on.
Point (c) is an interesting story, but beyond the scope of the present discussion. Our present

intention is to concentrate on point (b). We focus as usual on the setting of the �nite-horizon

problem. As usual, u(x; t) denotes the value function (the maximal value achievable starting

from state x at time t). Our plan is to develop schemes for proving upper and lower bounds
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on u. If we do a really good job the upper and lower bounds will coalesce { in which case
they will fully determine u.

There's always one type of bound that is easy. Since we're maximizing utility, these are the

lower bounds. Any scheme for choosing the control { for example a conjectured feedback law

specifying �(s) as a function of y(s) { provides a lower bound v(x; t) = the value achieved
by this scheme. The inequality

v(x; t) � u(x; t)

is obvious, since u is the maximal value obtainable using any control { including the ones

used to de�ne v.

The veri�cation theorem provides the other bound. In its most basic form { specialized

to the present setting { it says the following. Suppose w(x; t) is de�ned (and continuously

di�erentiable) for t < T , and it solves the Hamilton-Jacobi equation (8) with w = g at

t = T . Then w is an upper bound for the value function:

u(x; t) � w(x; t):

To see why, consider any candidate control �(s) and the associated state y = yx;�(s) starting
from x at time t. The chain rule gives

d

ds
w(y(s); s) = ws(y(s); s) +rw(y(s); s) � _y(s)

= ws(y(s); s) +rw(y(s); s) � f(y(s); �(s))

� ws +H(rw; y) � h(y(s); �(s)) (11)

= �h(y(s); �(s));

using for (11) the relation

H(p; y) = max
a2A

ff(y; a) � p+ h(y; a)g � f(y; �) � p+ h(y; �)

with y = y(s), � = �(s), and p = rw(y(s); s). Now integrate in time from t to T :

w(y(T ); T ) � w(x; t) � �

Z T

t
h(y(s); �(s)) ds:

Since w(y(T ); T ) = g(y(T )) this gives

g(y(T )) +

Z T

t
h(y(s); �(s)) ds � w(x; t):

The preceding argument applies to any control �(s). Maximizing the left hand side over all

admissible controls, we have

u(x; t) � w(x; t)

as asserted.

We presented the task of �nding lower and upper bounds as though they were distinct, but

of course they are actually closely correlated. A smooth solution w of the Hamilton-Jacobi
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equation comes equipped with its own feedback law (as discussed in point (a) above). It
is natural to consider the lower bound v obtained using the feedback law associated with

w. I claim that this v is equal to w. To see this, follow the line of reasoning we used for

the veri�cation theorem, noticing that (11) holds with equality if � is determined by the

feedback associated with w. Therefore integration gives

w(x; t) = g(y(T )) +

Z T

t
h(y(s); �(s)) ds

and the right hand side is, by de�nition, v(x; t). In conclusion: if w is a (continuously

di�erentiable) solution of the HJB equation, satisfying the appropriate �nal-time condition

too, then w is in fact the value function u(x; t).

It sounds like a great scheme, and in many ways it is. There is however a small 
y in the

ointment. Sometimes the value function isn't continuously di�erentiable. (Consider, for

example, the minimum time problem). In such a case our proof of the veri�cation theorem

remains OK for paths that avoid the locus of nonsmoothness { or cross it transversely. But

there is a problem if the state should happen to hug the locus of nonsmoothness. Said more

plainly: if w(x; t) has discontinuous derivatives along some set � in space-time, and if a

control makes (y(s); s) move along �, then the �rst step in our veri�cation argument

d

ds
w(y(s); s) = ws(y(s); s) +rw(y(s); s) � _y(s)

doesn't really make sense (for example, the right hand side is not well-de�ned). Typically

this problem is overcome by using the fact that the veri�cation argument has some extra

freedom: it doesn't really require that w solve the HJB equation exactly. Rather, it requires

only that w satisfy the inequality wt +H(rw; t) � 0.

To give an example where this extra freedom is useful consider our geometrical Example 2,

with target G the complement of the unit square in R2. The HJB equation is jruj = 1 in


=unit square, with u = 0 at @
. The value function is de�ned as u(x)=minimum time of
arrival to @
 (among all paths with speed � 1). Simple geometry tells us the solution is

the distance function dist (x; @
), whose graph is a pyramid. We wish to give an entirely

PDE proof of this fact.

One inequality is always easy. In this case it is the relation u(x) � dist (x; @
). This is clear,
because the right hand side is associated with a speci�c control law (namely: travel straight

toward the nearest point of the boundary, with unit speed). To get the other inequality,

observe that if w � 0 at @
 and jrwj � 1 in 
 then

d

ds
w(y(s)) = rw(y(s)) � _y(s)

= rw(y(s)) � �(s)

� �jrw(y(s))j � �1:

(Here y(s) solves the state equation _y = �, with initial condition y(0) = x and any admissible

control j�(s)j � 1.) If � is the time of arrival at @
 then integration gives

w(y(�)) � w(x) �

Z �

0
(�1) ds:

12



Since w(y(�)) � 0 we conclude that
w(x) � �:

Minimizing the right hand side over all admissible controls gives

w(x) � u(x):

We're essentially done. We cannot set w equal to the distance function itself, because this

choice isn't smooth enough. However we can choose w to be a slightly smoothed-out version

of the distance function minus a small constant. It's easy to see that we can approach the
distance function from below by such functions w. Therefore (using these w's and passing

to a limit)

dist (x; @
) � u(x);

completing our PDE argument that the value function is in this case the distance function.

It's time for a more �nancial example. Let's give the solution to Example 1 for a

power-law utility. The state equation is

_y = ry � �; y(t) = x

where x is the initial wealth and � is the consumption rate, restricted by � � 0 (an explicit

constraint on the controls). We consider the problem of �nding

u(x; t) = max
�

Z T

t
e��s�
(s) ds;

which amounts to the utility of consumption with the power-law utility function h(�) = �
 .
Utility functions should be concave so we assume 0 < 
 < 1.

First, before doing any real work, let us show that the value function has the form

u(x; t) = g(t)x


for some function g(t). It suÆces for this purpose to show that the value function has the

homogeneity property

u(�x; t) = �
u(x; t); (12)

for then we can take g(t) = u(1; t). To see (12), suppose �(s) is optimal for starting

point x, and let yx(s) be the resulting trajectory. We may consider the control ��(s) for
the trajectory that starts at �x, and it is easy to see that the associated trajectory is

y�x(s) = �yx(s). Using the power-law form of the utility this comparison demonstrates

that

u(�x; t) � �
u(x; t):

This relation with � replaced by 1=� and x replaced by �x gives

u(x; t) � ��
u(�x; t);

completing the proof of (12).
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Now let's �nd the HJB equation. This is almost a matter of specializing the general cal-
culation to the case at hand. But we didn't have a discount term before, so let's redo the

argument to avoid any doubt. From the dynamic programming principle we have

u(x; t) � e��ta
�t+ u(x+ (rx� a)�t; t+�t) + error terms

with equality when a � 0 is chosen optimally. Using the �rst-order Taylor expansion of u
this becomes

u(x; t) � e��ta
�t+ u(x; t) + (ux(rx� a) + ut)�t+ error terms

with equality when a is optimal. In the limit �t! 0 this gives

ut +max
a�0

fux(rx� a) + e��ta
g = 0:

This is the desired HJB equation, to be solved for t < T . The �nal-time condition is of

course u = 0 (since no utility is associated to �nal-time wealth).

It's obvious that ux > 0. (This follows from the observation that u(x; t) = g(t)x
 . Or it's
easy to prove using the original problem formulation and a suitable comparison argument.)

Therefore the optimal a is easy to �nd, by di�erentiation, and it is positive:


a
�1 = e�tux:

This is the feedback law, determining the optimal control (once we know ux). Remembering

that u(x; t) = g(t)x
 , we can write the feedback law as

a =
h
e�tg(t)

i1=(
�1)
x

To �nd g (and therefore u) we substitute u = g(t)x
 into the HJB equation. This leads,

after some arithmetic and cancelling a common factor of x
 from all terms, to

dg

dt
+ r
g + (1� 
)g(e�tg)1=(
�1):

This equation (with the end condition g(T ) = 0) is entirely equivalent to the original HJB
equation. It looks ugly, however it is not diÆcult to solve. First, multiply each term by e�t

to see that G(t) = e�tg(t) solves

Gt + (r
 � �)G+ (1� 
)G
=(
�1) = 0:

Next, multiply by (1�
)�1G
=(1�
) to see that H(t) = G1=(1�
) satis�es the linear equation

Ht � �H + 1 = 0 with � = ��r

1�
 :

This is a linear equation! The solution satisfying H(T ) = 0 is

H(t) = ��1
�
1� e��(T�t)

�
:
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Unraveling our changes of variables gives �nally

g(t) = e��t
�
1� 


�� r


�
1� e

�
(��r
)(T�t)

1�


��1�

:

We've solved the HJB equation. Have we actually found the value function and the optimal

feedback (consumption) policy? Yes indeed. The veri�cation theorem given above supplies
the proof. (Well, it should be redone with discounting, and with the more precise formu-

lation of the objective which integrates the utility only up to the �rst time � when y = 0,

if this occurs before T . These modi�cations require no really new ideas.) Nothing fancy is

needed since u(x; t) is smooth.
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