PDE for Finance, Spring 2011 - Homework 1

Distributed 1/24/2011, due 2/14/2011. HW must be turned in by the due date to get credit, unless an extension has been granted.

1) Consider the lognormal random walk

$$dy = \mu y dy + \sigma y dw$$

starting at y(0) = x. Assume $\mu \neq \frac{1}{2}\sigma^2$. The Section 1 notes examine the mean exit time from an interval [a, b] where 0 < a < x < b. There we used the PDE for the mean exit time

$$\mu x u_x + \frac{1}{2}\sigma^2 x^2 u_{xx} = -1 \quad \text{for } a < x < b \tag{1}$$

with boundary conditions u(a) = u(b) = 0 to derive an explicit formula for u.

(a) Show that the general solution of (1), without taking any boundary conditions into account, is

$$u = \frac{1}{\frac{1}{2}\sigma^2 - \mu} \log x + c_1 + c_2 x^{\gamma}$$

with $\gamma = 1 - 2\mu/\sigma^2$. Here c_1 and c_2 are arbitrary constants. [The formula given in the notes for the mean exit time is easy to deduce from this fact, by using the boundary conditions to solve for c_1 and c_2 ; however you need not do this calculation as part of your homework.]

- (b) Argue as in the notes to show that the mean exit time from the interval (a, b) is finite. (Hint: mimic the argument used to answer Question 3, using $\phi(y) = \log y$.)
- (c) Let p_a be the probability that the process exits at a, and $p_b = 1 p_a$ the probability that it exits at b. Give an equation for p_a in terms of the barriers a, b and the initial value x. (Hint: mimic the argument used in the answer to Question 4, using $\phi(y) = y^{\gamma}$.) How does p_a behave in the limit $a \to 0$?
- 2) Examine the analogues of Problem 1(a)–(c) when $\mu = \frac{1}{2}\sigma^2$. (Hint: notice that $xu_x + x^2u_{xx} = u_{zz}$ with $z = \log x$.)
- 3) Consider a diffusion dy = f(y)ds + g(y)dw starting at x at time 0, with a < x < b. Let τ be its exit time from the interval [a, b], and assume $E[\tau] < \infty$.
 - (a) Let $u_a(x)$ be the probability it exits at a. Show that u_a solves $fu_x + \frac{1}{2}g^2u_{xx} = 0$ with boundary conditions $u_a(a) = 1$, $u_a(b) = 0$.
 - (b) Apply this method to Problem 1(c). Is this approach fundamentally different from the one indicated by the hint above?

- 4) Consider once again a diffusion dy = f(y)ds + g(y)dw starting at x at time 0. We know the mean arrival time to the boundary $v(x) = E[\tau]$ satisfies $fv_x + \frac{1}{2}g^2v_{xx} = -1$ with v = 0 at x = a, b. Now consider the second moment of the arrival time $h(x) = E[\tau^2]$. Show that it satisfies $fh_x + \frac{1}{2}g^2h_{xx} = -2v(x)$, with h = 0 at x = a, b.
- 5) Let w(t) be standard Brownian motion, starting at 0. Let τ_n be the first time w exits from the interval [-n,1], and let τ_{∞} the the first time it reaches w=1.
 - (a) Find the expected value of τ_n , and the probability that the path exits [-n,1] at -n.
 - (b) Verify by direct evaluation that $w(\tau_n)$ has mean value 0. (This must of course be true, since $E\left[\int_0^{\tau_n}dw=0\right]$ by Dynkin's theorem.)
 - (c) Conclude from (a) that $E[\tau_{\infty}] = \infty$.
 - (d) Show that τ_{∞} is almost-surely finite.