
PDE for Finance, Spring 2011 – Homework 2
Distributed 2/14/11, due 2/28/11.

1) Consider the linear heat equation ut−uxx = 0 in one space dimension, with discontinuous
initial data

u(x, 0) =

{
0 if x < 0
1 if x > 0.

(a) Show by evaluating the solution formula that

u(x, t) = N

(
x√
2t

)
(1)

where N is the cumulative normal distribution

N(z) =
1√
2π

∫ z

−∞
e−s

2/2 ds.

(b) Explore the solution by answering the following: what is maxx ux(x, t) as a func-
tion of time? Where is it achieved? What is minx ux(x, t)? For which x is ux >
(1/10) maxx ux? Sketch the graph of ux as a function of x at a given time t > 0.

(c) Show that v(x, t) =
∫ x
−∞ u(z, t) dz solves vt − vxx = 0 with v(x, 0) = max{x, 0}.

Deduce the qualitative behavior of v(x, t) as a function of x for given t: how rapidly
does v tend to 0 as x → −∞? What is the behavior of v as x → ∞? What is the
value of v(0, t)? Sketch the graph of v(x, t) as a function of x for given t > 0.

2) We showed, in the Section 2 notes, that the solution of

wt = wxx for t > 0 and x > 0, with w = 0 at t = 0 and w = φ at x = 0

is
w(x, t) =

∫ t

0

∂G

∂y
(x, 0, t− s)φ(s) ds (2)

where G(x, y, s) is the probability that a random walker, starting at x at time 0, reaches y
at time s without first hitting the barrier at 0. (Here the random walker solves dy =

√
2dw,

i.e. it executes the scaled Brownian whose backward Kolmogorov equation is ut+uxx = 0.)
Let’s give an alternative demonstration of this fact, following the line of reasoning at the
end of the Section 1 notes.

(a) Express, in terms of G, the probability that the random walker (starting at x at time
0) hits the barrier before time t. Differentiate in t to get the probability that it hits
the barrier at time t. (This is known as the first passage time density).

(b) Use the forward Kolmogorov equation and integration by parts to show that the first
passage time density is ∂G

∂y (x, 0, t).

(c) Deduce the formula (2).
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3) Give “solution formulas” for the following initial-boundary-value problems for the linear
heat equation

wt − wxx = 0 for t > 0 and x > 0

with the specified initial and boundary conditions.

(a) w1 = 0 at x = 0; w1 = 1 at t = 0. Express your solution in terms of the function
u(x, t) defined in Problem 1.

(b) w2 = 0 at x = 0; w2 = (x−K)+ at t = 0, with K > 0. Express your solution in terms
of the function v(x, t) defined in Problem 1(c).

(c) w3 = 0 at x = 0; w3 = (x−K)+ at t = 0, with K < 0.

(d) w4 = 1 at x = 0; w4 = 0 at t = 0.

(Hint: while this problem can be done by using the solution formulas, it is much easier to
simply write down a solution that has the right boundary and initial conditions.) Interpret
each wi as the expected payoff of a suitable barrier-type instrument, whose underlying
executes the scaled Brownian motion dy =

√
2dw with initial condition y(0) = x and an

absorbing barrier at 0. (Example: w1(x, T ) is the expected payoff of an instrument which
pays 1 at time T if the underlying has not yet hit the barrier and 0 otherwise.)

4) The Section 2 notes reduce the Black-Scholes PDE to the heat equation by brute-force
algebraic substitution. This problem achieves the same reduction by a probabilistic route.
Our starting point is the fact that

V (s, t) = e−r(T−t)Ey(t)=s [Φ(y(T )] (3)

where dy = rydt+ σydw.

(a) Consider z = 1
σ log y. By Ito’s formula it satisfies dz = 1

σ (r − 1
2σ

2)dt + dw. Express
the right hand side of (3) as a discounted expected value with respect to z process.

(b) The z process is Brownian motion with drift µ = 1
σ (r − 1

2σ
2). The Cameron-Martin-

Girsanov theorem tells how to write an expected value relative to z as a weighted
expected value relative to the standard Brownian motion w. Specifically:

Ez(t)= 1
σ

log s

[
Φ(eσz(T ))

]
= Ew(t)= 1

σ
log s

[
eµ(w(T )−w(t))−1

2µ
2(T−t)Φ(eσw(T ))

]
(4)

where the left side is an expectation using the path-space measure associated with
z, and the right hand side is an expectation using the path-space measure associated
with Brownian motion. Apply this to get an expression for V (s, t) whose right hand
side involves an expected value relative to Brownian motion.

(c) An expected payoff relative to Brownian motion is described by the heat equation
(more precisely by an equation of the form ut + 1

2uxx = 0). Thus (b) expresses the
solution of the Black-Scholes PDE in terms of a solution of the heat equation. Verify
that this representation is the same as the one given in the Section 2 notes.
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5) As noted in Problem 4(b), questions about Brownian motion with drift can often be
answered using the Cameron-Martin-Girsanov theorem. But we can also study this process
directly. Let’s do so now, for the process dz = µdt+ dw with an absorbing barrier at z = 0.

(a) Suppose the process starts at z0 > 0 at time 0. Let G(z0, z, t) be the probability that
the random walker is at position z at time t (and has not yet hit the barrier). Show
that

G(z0, z, t) =
1√
2πt

e−|z−z0−µt|
2/2t − 1√

2πt
e−2µz0e−|z+z0−µt|

2/2t.

(Hint: just check that this G solves the relevant forward Kolmogorov equation, with
the appropriate boundary and initial conditions.)

(b) Show that the first passage time density is

1
2
∂G

∂z
(z0, 0, t) =

z0

t
√

2πt
e−|z0+µt|2/2t.
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