
PDE for Finance, Spring 2011 – Homework 4
Distributed 3/21/11, due 4/4/11.

These problems concern deterministic optimal control (Section 4 material). Warning: some
of the problems here are a bit laborious (though they are not necessarily difficult).

1) Consider the finite-horizon utility maximization problem with discount rate ρ. The
dynamical law is thus

dy/ds = f(y(s), α(s)), y(t) = x,

and the optimal utility discounted to time 0 is

u(x, t) = max
α∈A

{∫ T

t
e−ρsh(y(s), α(s)) ds+ e−ρT g(y(T ))

}
.

It is often more convenient to consider, instead of u, the optimal utility discounted to time
t; this is

v(x, t) = eρtu(x, t) = max
α∈A

{∫ T

t
e−ρ(s−t)h(y(s), α(s)) ds+ e−ρ(T−t)g(y(T ))

}
.

(a) Show (by a heuristic argument similar to those in the Section 4 notes) that v satisfies

vt − ρv +H(x,∇v) = 0

with Hamiltonian
H(x, p) = max

a∈A
{f(x, a) · p+ h(x, a)}

and final-time data
v(x, T ) = g(x).

(Notice that the PDE for v is autonomous, i.e. there is no explicit dependence on
time.)

(b) Now consider the analogous infinite-horizon problem, with the same equation of state,
and value function

v̄(x, t) = max
α∈A

∫ ∞
t

e−ρ(s−t)h(y(s), α(s)) ds.

Show (by an elementary comparison argument) that v̄ is independent of t, i.e. v̄ = v̄(x)
is a function of x alone. Conclude using part (a) that if v̄ is finite, it solves the
stationary PDE

−ρv̄ +H(x,∇v̄) = 0.

2) Recall Example 1 of the Section 4 notes: the state equation is dy/ds = ry − α with
y(t) = x, and the value function is

u(x, t) = max
α≥0

∫ τ

t
e−ρsh(α(s)) ds
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with h(a) = aγ for some 0 < γ < 1, and

τ =

{
first time when y = 0 if this occurs before time T
T otherwise.

(a) We obtained a formula for u(x, t) in the Section 4 notes, however our formula doesn’t
make sense when ρ− rγ = 0. Find the correct formula in that case.

(b) Let’s examine the infinite-horizon-limit T → ∞. Following the lead of Problem 1 let
us concentrate on v(x, t) = eρtu(x, t) = optimal utility discounted to time t. Show
that

v̄(x) = lim
T→∞

v(x, t) =

{
G∞x

γ if ρ− rγ > 0
∞ if ρ− rγ ≤ 0

with G∞ = [(1− γ)/(ρ− rγ)]1−γ .

(c) Use the stationary PDE of Problem 1(b) (specialized to this example) to obtain the
same result.

(d) What is the optimal consumption strategy, for the infinite-horizon version of this
problem?

3) Consider the analogue of Example 1 with the power-law utility replaced by the logarithm:
h(a) = ln a. To avoid confusion let us write uγ for the value function obtained in the notes
using h(a) = aγ , and ulog for the value function obtained using h(a) = ln a. Recall that
uγ(x, t) = gγ(t)xγ with

gγ(t) = e−ρt
[

1− γ
ρ− rγ

(
1− e−

(ρ−rγ)(T−t)
1−γ

)]1−γ
.

(a) Show, by a direct comparison argument, that

ulog(λx, t) = ulog(x, t) +
1
ρ
e−ρt(1− e−ρ(T−t)) lnλ

for any λ > 0. Use this to conclude that

ulog(x, t) = g0(t) lnx+ g1(t)

where g0(t) = 1
ρe
−ρt(1− e−ρ(T−t)) and g1 is an as-yet unspecified function of t alone.

(b) Pursue the following scheme for finding g1: Consider the utility h = 1
γ (aγ−1). Express

its value function uh in terms of uγ . Now take the limit γ → 0. Show this gives a
result of the expected form, with

g0(t) = gγ(t)|γ=0

and
g1(t) =

dgγ
dγ

(t)
∣∣∣∣
γ=0

.

(This leads to an explicit formula for g1 but it’s messy; I’m not asking you to write it
down.)
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(c) Indicate how g0 and g1 could alternatively have been found by solving appropriate
PDE’s. (Hint: find the HJB equation associated with h(a) = ln a, and show that the
ansatz ulog = g0(t) lnx + g1(t) leads to differential equations that determine g0 and
g1.)

4) Our Example 1 considers an investor who receives interest (at constant rate r) but no
wages. Let’s consider what happens if the investor also receives wages at constant rate w.
The equation of state becomes

dy/ds = ry + w − α with y(t) = x,

and the value function is

u(x, t) = max
α≥0

∫ T

t
e−ρsh(α(s)) ds

with h(a) = aγ for some 0 < γ < 1. Since the investor earns wages, we now permit y(s) < 0,
however we insist that the final-time wealth be nonnegative (y(T ) ≥ 0).

(a) Which pairs (x, t) are acceptable? The strategy that maximizes y(T ) is clearly to
consume nothing (α(s) = 0 for all t < s < T ). Show this results in y(T ) ≥ 0 exactly
if

x+ φ(t)w ≥ 0

where
φ(t) =

1
r

(
1− e−r(T−t)

)
.

Notice for future reference that φ solves φ′ − rφ+ 1 = 0 with φ(T ) = 0.

(b) Find the HJB equation that u(x, t) should satisfy in its natural domain {(x, t) :
x+ φ(t)w ≥ 0}. Specify the boundary conditions when t = T and where x+ φw = 0.

(c) Substitute into this HJB equation the ansatz

v(x, t) = e−ρtG(t)(x+ φ(t)w)γ .

Show v is a solution when G solves the familiar equation

Gt + (rγ − ρ)G+ (1− γ)Gγ/(γ−1) = 0

(the same equation we solved in Example 1). Deduce a formula for v.

(d) In view of (a), a more careful definition of the value function for this control problem
is

u(x, t) = max
α≥0

∫ τ

t
e−ρsh(α(s)) ds

where

τ =

{
first time when y(s) + φ(s)w = 0 if this occurs before time T
T otherwise.

Use a verification argument to prove that the function v obtained in (c) is indeed the
value function u defined this way.
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5) This problem is a special case of the “linear-quadratic regulator” widely used in engi-
neering applications. The state is y(s) ∈ Rn, and the control is α(s) ∈ Rn. There is no
pointwise restriction on the values of α(s). The evolution law is

dy/ds = Ay + α, y(t) = x,

for some constant matrix A, and the goal is to minimize∫ T

t
|y(s)|2 + |α(s)|2 ds+ |y(T )|2.

(In words: we prefer y = 0 along the trajectory and at the final time, but we also prefer
not to use too much control.)

(a) What is the associated Hamilton-Jacobi-Bellman equation? Explain why we should
expect the relation α(s) = −1

2∇u(y(s)) to hold along optimal trajectories.

(b) Since the problem is quadratic, it’s natural to guess that the value function u(x, t)
takes the form

u(x, t) = 〈K(t)x, x〉

for some symmetric n × n matrix-valued function K(t). Show that this u solves the
Hamilton-Jacobi-Bellman equation exactly if

dK

dt
= K2 − I − (KTA+ATK) for t < T , K(T ) = I

where I is the n× n identity matrix. (Hint: two quadratic forms agree exactly if the
associated symmetric matrices agree.)

(c) Show by a suitable verification argument that this u is indeed the value function of
the control problem.
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