
PDE for Finance Notes, Spring 2011 – Section 3.
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use in connec-
tion with the NYU course PDE for Finance, G63.2706. Prepared in 2003, minor updates
and corrections made in 2011.

More about linear PDE’s: the heat equation on an interval; uniqueness via
the maximum principle; solution by finite differences. Section 2 gave the solution
formula for the heat equation in a half-space – the essential tool for pricing barrier options.
The natural next topic is to consider the heat equation in an interval – the essential tool for
pricing double-barrier options. Then we turn to the question of uniqueness, something we’ve
been assuming up to now. The proof uses the maximum principle – a basic and powerful
tool for obtaining qualitative information about solutions of parabolic equations. Finally
we discuss the most basic finite-difference scheme for solving the linear heat equation on an
interval.

This PDE material is quite standard. Our treatment of the heat equation in an interval
is by separation of variables; this can be found in most basic PDE books. Uniqueness via
the maximum principle is also quite standard; students of finance may find it convenient
to read this in Steele’s book (the relevant section is in the middle of the book but is quite
self-contained). Our centered finite-difference scheme for the heat equation is again in most
PDE books; students of finance will recognize its resemblance to a trinomial tree for solving
the Black-Scholes PDE.

Our separation-of-variables approach to the heat equation on an interval can be a useful
tool for pricing certain classes of options. See D. Davydov and V. Linetsky, Pricing options
on scalar diffusions: an eigenfunction expansion approach, Operations Research 51, 2003,
185-209, available through JSTOR.

************

The heat equation in an interval. A double-barrier option has both an upper and
lower barrier. Its value satisfies the Black-Scholes PDE with appropriate boundary data at
the barriers. If the underlying is lognormal then this problem can be reduced, as shown in
Section 2, to solving the linear heat equation on an interval with appropriate initial and
boundary data. For simplicity we focus on the case when the interval is 0 < x < 1. Thus
we wish to solve:

ut = uxx for t > 0 and 0 < x < 1

with initial data u = g at t = 0, and boundary data u = φ0 at x = 0, u = φ1 at x = 1.

Consider first the case when the boundary condition is zero, i.e. φ0 = φ1 = 0. We will
use the following basic fact: any function f(x) defined for 0 < x < 1 and vanishing at the
endpoints x = 0, 1 can be expanded as a Fourier sine series:

f(x) =
∞∑
k=1

an sin(nπx); (1)
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moreover the coefficients an are determined by f via

an = 2
∫ 1

0
f(x) sin(nπx) dx. (2)

If you accept (1), the justification of (2) is easy. It follows from the fact that the functions
{sin(nπx)}∞n=1 are orthogonal in the inner product (f, g) =

∫ 1
0 f(x)g(x) dx, and each has

norm 1/
√

2.

Now consider the solution of ut = uxx with boundary data 0 and initial data g(x). Applying
(1) at each time, we have

u(x, t) =
∞∑
k=1

an(t) sin(nπx)

for some functions an(t). To get initial data right, an(0) must be the Fourier sine-series
coefficients of g. To satisfy the PDE we must have

dan/dt = −n2π2an,

whence an(t) = an(0)e−n
2π2t. Thus the solution is

u(x, t) =
∞∑
n=1

gne
−n2π2t sin(nπx) (3)

where

gn = 2
∫ 1

0
g(x) sin(nπx) dx. (4)

Notice an important feature of this solution formula: the nth term decays like e−n
2π2t. Thus

terms with higher n (corresponding to higher-order modes of the initial data) decay faster.
If you only need the solution to a certain accuracy at a fixed time T then you only need
consider a limited number of modes – and the number of modes decreases as T increases!
Thus valuing an option by this method gets easier as the maturity gets larger. This is
opposite to the behavior of a time-stepping numerical scheme (such as finite-difference
approximation).

It is natural to seek a solution formula in the form

u(x, t) =
∫ 1

0
G(x, y, t)g(y) dy (5)

since G(x, y, t) is then the probability that a random walker starting at x arrives at y at
time t without first hitting the boundary. (Our random walker executes, as usual,

√
2 times

Brownian motion.) This is just a matter of manipulation: combining (3) and (4) gives (5)
with

G(x, y, t) = 2
∞∑
n=1

e−n
2π2t sin(nπx) sin(nπy). (6)
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One might think the solution formula just presented was limited to initial conditions with
g = 0 at the boundary, i.e. “consistent” initial data. However this is not the case: our
formula is correct even for inconsistent data. The reason is that any function on [0, 1] has
a Fourier sine series – which equals the function almost everywhere (though perhaps not at
the endpoints).

Let’s turn now to the boundary value problem, i.e. the solution of ut− uxx = 0 with initial
condition 0 and boundary data u = φ0 at x = 0, u = φ1 at x = 1. We did all the work
already in Section 2: the argument given there shows that the solution is

u(x, t) =
∫ t

0

∂G

∂y
(x, 0, t− s)φ0(s) ds−

∫ t

0

∂G

∂y
(x, 1, t− s)φ1(s) ds

where G is given by (6). In particular, ∂G
∂y (x, 0, t) is the probability that the random

walker, starting from x, hits the boundary first at 0 and arrives there at time t. Similarly,
−∂G
∂y (x, 1, t) is the probability that the random walker, starting from x, hits the boundary

first at 1 and arrives there at time t.

The “separation of variables” solution method just presented is not limited to the constant-
coefficient heat equation. It can be applied to any equation of the form

ut − 1
2a

2(x)uxx − b(x)ux + r(x)u = 0

on an interval, provided a is strictly positive on this interval. Thus it can be used to price
double-barrier options on a fairly general class of underlyings (provided that the volatility
is independent of time). The key is to recognize that Fourier sine series (and the associated
decay rates n2π2) must be replaced by the eigenfunctions (and eigenvalues) of

−1
2a

2(x)vxx − b(x)vx + r(x)v = λv

with v = 0 at the boundary. These eigenfunctions are orthogonal not in the L2 inner
product, but rather in a different one determined by the coefficients a and b. See the article
by Davydov and Linetsky cited at the beginning of these notes for further information.

********************

Why does time have a preferred direction? This is a convenient time to ask: why
is it so important that we solve ut − uxx = 0 forward rather than backward in time?
The answer is that solving in the correct time direction is stable (moreover the solution
is instantly smooth, regardless how rough the initial data may be) whereas solving in the
wrong time direction is extremely unstable. Indeed, consider the separation of variables
technique presented above. We can, in principle, apply it in the wrong time direction, since
the ODE dan/dt = −n2π2an is reversible. Thus the solution of ut − uxx = 0 for t < T with
final-time data u = g at t = T is

u(x, t) =
∞∑
n=1

gne
n2π2(T−t) sin(nπx)
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But watch out! The nth mode grows extremely fast: as a constant times en
2π2(T−t) as T − t

increases. The tiniest high-frequency ripple in g will become huge as you proceed backward
in time.

The whole-space problem behaves similarly: solving backward in time is extremely unstable.
This is, in fact, a consequence of the fact that solving forward in time is so stable and
smoothing.

Might there still be some interest in solving the heat equation the “wrong way” in time?
Sure. This is the simplest example of “deblurring,” a typical task in image enhancement.
Consider a photograph taken with an out-of-focus camera. Its image is (roughly speaking)
the convolution of the true image with a Gaussian of known variance. Finding the original
image amounts to backsolving the heat equation with the blurry photo as final-time data.
Backsolving the heat equation is a typical example of an ill-posed problem – one whose
answer depends in an unreasonably sensitive way on the data.

***************

The maximum principle and uniqueness. Are our solution formulas the only solution
of the heat equation with the specified initial and/or boundary conditions? By linearity,
this amounts to asking whether u = 0 is the only solution with data 0? The answer is yes.
We shall prove this using the maximum principle.

The maximum principle. This is an elementary yet far-reaching fact about solutions of
linear parabolic equations. Here is the simplest version:

Let D be a bounded domain. Suppose ft −∆f ≤ 0 for all x ∈ D and 0 < t < T .
Then the maximum of f in the closed cylinder D̄ × [0, T ] is achieved either
at the “initial boundary” t = 0 or at the “spatial boundary” x ∈ ∂D.

Notice the asymmetry between the initial boundary t = 0 (where f can easily achieve its
maximum) and the final boundary t = T (where f does not achieve its maximum – except
in the trivial case when f is constant). This asymmetry reflects once again the fact that
time has a “preferred direction” when solving a parabolic PDE.

If ft−∆f were strictly negative, the principle just enunciated would be a calculus exercise.
Indeed, f must achieve its maximum somewhere in the cylinder or on its boundary (we
use here that D is bounded). Our task is to show this doesn’t occur in the interior or at
the “final boundary” t = T . At an interior maximum all first derivatives would vanish and
∂2f/∂x2

i ≤ 0 for each i; but then ft−∆f ≥ 0, contradicting the hypothesis that ft−∆f < 0.
At a final-time maximum (in the interior of D) all first derivatives in x would still vanish,
and we would still have ∂2f/∂x2

i ≤ 0; we would only know ft ≥ 0, but this would still give
ft −∆f ≥ 0, again contradicting the hypothesis of strict negativity.
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If all we know is ft−∆f ≤ 0 then the preceding argument doesn’t quite apply. But the fix
is simple: we can apply it to fε(x, t) = f(x, t) − εt for any ε > 0. As ε → 0 this gives the
desired result.

There is an analogous minimum principle:

Let D be a bounded domain. Suppose ft −∆f ≥ 0 for all x ∈ D and 0 < t < T .
Then the minimum of f in the closed cylinder D̄ × [0, T ] is achieved either
at the “initial boundary” t = 0 or at the “spatial boundary” x ∈ ∂D.

It follows from the maximum principle applied to −f . In particular, if ft −∆f = 0 in the
cylinder then f assumes its maximum and minimum values at the spatial boundary or the
initial boundary.

The proof just given for the maximum principle generalizes straightforwardly to more gen-
eral linear parabolic equations, provided there is no zeroth-order term. For example: if
ft −

∑
i,j αij(x, t)∇2

ijf −
∑
i βi(x, t)∇if ≤ 0 then f achieves its maximum in D̄ × [0, T ] at

the initial or spatial boundary.

Uniqueness. Uniqueness of the initial-boundary-value problem in a bounded domain follows
immediately from the maximum principle. Since the equation is linear, if there were two
solutions with the same data then their difference would be a solution with data 0. So the
main point is this:

Suppose ft = ∆f for t > 0 and x ∈ D. Assume moreover f has initial data 0
(f(x, 0) = 0 for x ∈ D) and boundary data 0 (f(x, t) = 0 for x ∈ ∂D).
Then f(x, t) = 0 for all x ∈ D, t > 0.

Indeed: the maximum and minimum of f are 0, by the maximum (and minimum) principles.
So f is identically 0 in the cylinder.

To show uniqueness for the initial-value problem in all space one must work a bit harder.
The problem is that we no longer have a spatial boundary – and we mean to allow solutions
that grow at ∞, so the maximum of f(x, t) over all 0 < t < T and x ∈ Rn might well occur
as x → ∞. We already know, however, that it’s natural to assume a growth condition of
the form |f(x, t) ≤Mec|x|

2
for some M and c. Subtracting two possible solutions, our task

is thus to show the following:

Suppose ft = ∆f for t > 0 and x ∈ Rn. Assume moreover f has initial data 0
and |f(x, t) ≤Mec|x|

2
for some M and c. Then f(x, t) = 0 for all x ∈ Rn, t > 0.

A brief simplification: we need only show that f = 0 for 0 < t ≤ t0 for some t0 > 0; then
applying this statement k times gives f = 0 for t ≤ kt0 and we can let k → ∞. Another
simplification: we need only show f ≤ 0; then applying this statement to −f we conclude
f = 0.

Here’s the idea: we’ll show f ≤ 0 by applying the maximum principle not to f , but rather
to

g(x, t) = f(x, t)− δ

(t1 − t)n/2
e
|x|2

4(t1−t) .
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for suitable choices of the constants δ and t1. The space-time cylinder will be of the form
D × [0, t0] where D is a large ball and t0 < t1.

Step 1. Observe that gt − ∆g = 0. This can be checked by direct calculation. But a
more conceptual reason is this: the term we’ve subtracted from f is a constant times the
fundamental solution evaluated at ix and t1 − t. The heat equation is invariant under this
change of variables.

Step 2. Let D be a ball of radius r. We know from the maximum principle that the
maximum of g on D× [0, t0] is achieved at the initial boundary or spatial boundary. At the
initial boundary clearly

g(x, 0) < f(x, 0) = 0.

At the spatial boundary we have |x| = r so

g(x, t) = f(x, t)− δ

(t1 − t)n/2
e

r2

4(t1−t)

≤ Mec|x|
2 − δ

(t1 − t)n/2
e

r2

4(t1−t)

≤ Mecr
2 − δ

t
n/2
1

e
r2

4t1

We may choose t1 so that 1/(4t1) > c. Then when r is large enough the second term
dominates the first one, giving

g(x, t) ≤ 0 at the spatial boundary |x| = r.

We conclude from the maximum principle that g(x, t) ≤ 0 on the entire space-time cylinder.
This argument works for any sufficiently large r, so we have shown that

f(x, t) ≤ δ

(t1 − t)n/2
e
|x|2

4(t1−t)

for all x ∈ Rn and all t < t1. Restricting attention to t < t0 for some fixed t0 < t1, we pass
to the limit δ → 0 to deduce that f ≤ 0 as desired. This completes the proof of uniqueness.

***************

Numerical solution by finite differences. Before leaving the linear heat equation, let’s
briefly discuss how it can be solved numerically. These notes consider only the most basic
numerical scheme: explicit finite differences for the linear heat equation ft = fxx on the
unit interval 0 < x < 1, following roughly the discussion in F. John’s book. We suppose, as
usual, that the value of f is specified at the boundary points x = 0 and x = 1. For more
information (including more sophisticated schemes) see e.g. Chapter 8 of the “student
guide” by Wilmott, Howison, and Dewynne.
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If the timestep is ∆t and the spatial length scale is ∆x then the numerical f is defined at
(x, t) = (j∆x, k∆t). The explicit finite difference scheme determines f at time (j + 1)∆t
given f at time j∆t by reading it off from

f((j + 1)∆t, k∆x)− f(j∆t, k∆x)
∆t

=
f(j∆t, (k + 1)∆x)− 2f(j∆t, k∆x) + f(j∆t, (k − 1)∆x)

(∆x)2
.

Notice that we use the initial data to get started, and we use the boundary data when k∆x
is next to the boundary.

This method has the stability restriction

∆t <
1
2

(∆x)2. (7)

To see why, observe that the numerical scheme can be rewritten as

f((j+1)∆t, k∆x) = ∆t
(∆x)2

f(j∆t, (k+1)∆x)+ ∆t
(∆x)2

f(j∆t, (k−1)∆x)+(1−2 ∆t
(∆x)2

)f(j∆t, k∆x).

If 1− 2 ∆t
(∆x)2

> 0 then the scheme has a discrete maximum principle: if f ≤ C initially and
at the boundary then f ≤ C for all time; similarly if f ≥ C initially and at the boundary
then f ≥ C for all time. The proof is easy, arguing inductively one timestep at a time. (If
the stability restriction is violated then the scheme is unstable, and the discrete solution
can grow exponentially.)

Let’s show that the numerical solution converges to the solution of the PDE as ∆x and ∆t
tend to 0 while obeying the stability restriction (7). The main point is that the scheme is
consistent, i.e.

g(t+ ∆t, x)− g(t, x)
∆t

→ gt as ∆t→ 0

and
g(t, x+ ∆x)− 2g(t, x) + g(t, x−∆x)

(∆x)2
→ gxx as ∆x→ 0

if g is smooth enough. Let f be the numerical solution, g the PDE solution, and consider
h = f − g evaluated at gridpoints. Consistency gives

h((j + 1)∆t, k∆x) = ∆t
(∆x)2

h(j∆t, (k + 1)∆x) + ∆t
(∆x)2

h(j∆t, (k − 1)∆x)

+(1− 2 ∆t
(∆x)2

)h(j∆t, k∆x) + ∆te(j∆t, k∆x)

with |e| uniformly small as ∆x and ∆t tend to zero. Stability – together with the fact that
h = 0 initially and at the spatial boundary – gives

|h(j∆t, k∆x)| ≤ j∆tmax |e|.

It follows that h(t, x)→ 0, uniformly for bounded t = j∆t, as ∆t and ∆x tend to 0.

The preceding argument captures, in this special case, a general fact about numerical
schemes: that stability plus consistency implies convergence.
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