
PDE for Finance, Spring 2014 – Homework 2
Distributed 2/11/14, due 2/24/14.
Typo in 1(b) corrected 2/17: a factor of σ2 was missing before.
Typo in 4(a) corrected 2/18: I wrote t→ 0 before, but I meant t→∞.

(1) This problem uses a PDE to value a zero-coupon bond when the short-term interest
rate is described by the Vasicek model. Suppose r(t) solves dr = (θ − ar) dt + σ dw,
where θ, a, and σ are positive constants. If today is time t0 and the short-term rate
today is r(t0) = r0, the value of a zero-coupon bond with maturity T and face value
of one dollar is

Er(t0)=r0

[
e
−
∫ T
t0
r(s) ds

]
.

(a) Explain why this is equal to V (t0, r(t0)), where V (t, r) solves the PDE

Vt + (θ − ar)Vr + 1
2σ

2Vrr − rV = 0

for t < T , with the final-time condition V (T, r) = 1 for all r.
(b) Look for a solution of the form V (t, r) = A(t, T )e−B(t,T )r. Show that A and B

should satisfy

At − θAB + 1
2σ

2AB2 = 0 and Bt − aB + 1 = 0

with final-time conditions

A(T, T ) = 1 and B(T, T ) = 0.

(c) Solving for B first, then A, show that the solution is

B(t, T ) =
1
a

(1− e−a(T−t))

and

A(t, T ) = exp

[(
θ

a
− σ2

2a2

)
(B(t, T )− T + t)− σ2

4a
B2(t, T )

]
.

(2) Consider the linear heat equation ut − uxx = 0 in one space dimension, with discon-
tinuous initial data

u(x, 0) =

{
0 if x < 0
1 if x > 0.

(a) Show by evaluating the solution formula that

u(x, t) = N

(
x√
2t

)
(1)

where N is the cumulative normal distribution

N(z) =
1√
2π

∫ z

−∞
e−s

2/2 ds.

1



(b) Explore the solution by answering the following: what is maxx ux(x, t) as a func-
tion of time? Where is it achieved? What is minx ux(x, t)? For which x is
ux > (1/10) maxx ux? Sketch the graph of ux as a function of x at a given time
t > 0.

(c) Show that v(x, t) =
∫ x
−∞ u(z, t) dz solves vt − vxx = 0 with v(x, 0) = max{x, 0}.

Deduce the qualitative behavior of v(x, t) as a function of x for given t: how
rapidly does v tend to 0 as x → −∞? What is the behavior of v as x → ∞?
What is the value of v(0, t)? Sketch the graph of v(x, t) as a function of x for
given t > 0.

(3) This problem obtains convenient representations for the solutions of some particular
initial-boundary-value problems for the linear heat equation on the half-line:

wt − wxx = 0 for t > 0 and x > 0.

(a) Let w1 be the solution with w1 = 0 at x = 0 and w1 = 1 at t = 0. Express it in
terms of the function u(x, t) defined in Problem 2.

(b) Let w2 be the solution with w2 = 0 at x = 0 and w2 = (x−K)+ at t = 0. Assume
that K > 0. Express w2 in terms of the function v(x, t) defined in Problem 2(c).

(c) Let w3 be the solution with w3 = 0 at x = 0 and w3 = (x−K)+ at t = 0, when
K < 0. Find a convenient representation of w3 analogous to those you gave for
w1 and w2.

(d) Let w4 be the solution with w4 = 1 at x = 0 and w4 = 0 at t = 0. Find a
convenient representation, analogous to those you gave for the other wi. (Hint:
what boundary value problem does w4 − 1 solve?)

(e) Interpret each wi as the expected payoff of a suitable barrier-type instrument,
whose underlying executes the scaled Brownian motion dy =

√
2dw with initial

condition y(0) = x and an absorbing barrier at 0. (Example: w1(x, T ) is the
expected payoff of an instrument which pays 1 at time T if the underlying has
not yet hit the barrier and 0 otherwise.)

NOTE: One can, of course, use the general representation formula for solutions of
the half-space problem to get a “formula” for each wi. But I’m not asking you to do
this. Rather, I’m asking you to find (using the functions introduced in Problem 2) a
solution of the PDE with the correct initial and boundary conditions. This is much
easier.

(4) Let’s look more closely at the function w1 introduced in Problem 3(a).

(a) Show that for fixed x > 0, w1(x, t)→ 0 as t→∞.
(b) How fast does it decay? (Suggestion: show that as t → ∞, w1(x, t) ∼ Ct−α.

What is the best possible value of α?)

(5) The Section 2 notes reduce the Black-Scholes PDE to the heat equation by brute-force
algebraic substitution. This problem achieves the same reduction by a probabilistic
route. Our starting point is the fact that

V (s, t) = e−r(T−t)Ey(t)=s [Φ(y(T )] (2)
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where dy = rydt+ σydw.

(a) Consider z = 1
σ log y. By Ito’s formula it satisfies dz = 1

σ (r − 1
2σ

2)dt + dw.
Express the right hand side of (2) as a discounted expected value with respect
to z process.

(b) The z process is Brownian motion with drift µ = 1
σ (r − 1

2σ
2). The Cameron-

Martin-Girsanov theorem tells how to write an expected value relative to z as a
weighted expected value relative to the standard Brownian motion w. Specifi-
cally:

Ez(t)= 1
σ

log s

[
Φ(eσz(T ))

]
= Ew(t)= 1

σ
log s

[
eµ(w(T )−w(t))−1

2µ
2(T−t)Φ(eσw(T ))

]
(3)

where the left side is an expectation using the path-space measure associated
with z, and the right hand side is an expectation using the path-space measure
associated with Brownian motion. Apply this to get an expression for V (s, t)
whose right hand side involves an expected value relative to Brownian motion.

(c) An expected payoff relative to Brownian motion is described by the heat equation
(more precisely by an equation of the form ut + 1

2uxx = 0). Thus (b) expresses
the solution of the Black-Scholes PDE in terms of a solution of the heat equation.
Verify that this representation is the same as the one given in the Section 2 notes.
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