
PDE for Finance Notes, Spring 2014 – Section 4
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use only in
connection with the NYU course PDE for Finance, MATH-GA 2706. Prepared in 2003,
minor updates made in 2011 and 2014.

Deterministic optimal control. We began the semester by studying stochastic differ-
ential equations and the associated linear partial different equations – the backward Kol-
mogorov equation (a PDE for the expected payoff of a generalized option) and the forward
Kolmogorov equation (a PDE for the evolving probability density).

We’re heading toward stochastic control. That theory considers SDE’s over which we have
some influence, modelling for example the value of a portfolio. One typical goal is to
maximize the utility of final-time wealth. The task is then two-fold: (i) to identify an optimal
strategy, and (ii) to evaluate the associated “value function” u(x, t) – the optimal utility of
final-time wealth, if the system starts in state x at time t. It will solve the Hamilton-Jacobi-
Bellman (HJB) equation – the analogue for stochastic control of the backward Kolmogorov
equation. The HJB equation is usually nonlinear, due to the effect of our decision-making.
Like the backward Kolmogorov equation, it must be solved backward in time. Underlying
the derivation and solution of the HJB equation is the dynamic programming principle –
a powerful scheme for solving optimization problems by gradually increasing the time-to-
maturity (or a similar parameter).

Selected financial applications of stochastic control include: (a) optimizing the allocation
of assets between distinct risky investment opportunities; (b) optimizing the rate at which
to spend income from an investment portfolio; (c) optimal hedging of an option on a non-
traded underlying; and (d) pricing of American options (i.e. optimization of the “exercise
rule”). All these problems involve a blend of (i) stochasticity and (ii) control. We already
understand stochasticity. This provides an introduction to optimal control, in the simpler
deterministic setting. In Sections 5 and beyond, we’ll combine the two ingredients to address
financially signficant examples.

The material covered in this section is “standard,” however I don’t know many good places
to read about it. The book by Fleming and Rishel, Deterministic and Stochastic Optimal
Control, covers everything here and much more – but it goes far deeper than the level of
this class. Roughly the same comment applies to the book of Bertsekas, Dynamic Program-
ming and Optimal Control. The charming and inexpensive book A. Dixit, Optimization in
Economic Theory (Oxford Univ Press, 1990, paperback) covers some closely related mate-
rial. Most basic engineering-oriented texts (for example Macki & Strauss, Introduction to
Optimal Control Theory) emphasize the Pontryagin Maximum Principle and de-emphasize
the method of dynamic programming. By contrast, we will emphasize dynamic program-
ming because it is the more useful approach for many of the financial applications. Those
with substantial background in PDE’s will enjoy reading Chapter 10 of Evans, Partial Dif-
ferential Equations, where he discusses the relation between deterministic optimal control
and the viscosity solution of the associated Hamilton-Jacobi-Bellman equation; however the
analysis of viscosity solutions lies beyond the scope of this course.

1

Once we get to stochastic control it will be easier to suggest things to read: the book
Stochastic Optimization in Continuous Time by F-R Chang is an excellent introduction at
about the same level as this class.

This section is relatively long, because there’s a lot to cover. We shall focus however on
two key examples. Example 1 is the deterministic analogue of Merton’s classic example
involving optimal investment and consumption. Example 2 is a minimum-time problem
whose HJB equation is the Eikonal equation |∇u| = 1. Example 2 has, I guess, no financial
interpretation but its easy-to-visualize character makes it a convenient aid to understanding.
General topics which we’ll explain, specializing where convenient to these examples, include:
finding the relevant Hamilton-Jacobi-Bellman equation; identifying the optimal feedback law;
and proving optimality by means of a verification argument.

What is optimal control? A typical problem of optimal control is this: we have a system
whose state at any time t is described by a vector y = y(s) ∈ Rn. The system evolves in
time, and we have the ability to influence its evolution through a vector-valued control
α(s) ∈ Rm. The evolution of the system is determined by an ordinary differential equation

ẏ(s) = f(y(s), α(s)), y(0) = x, (1)

and our goal is to choose the function α(s) for 0 < s < T so as to maximize some utility or
minimize some cost, e.g.

max
∫ T

0
h(y(s), α(s)) ds+ g(y(T)). (2)

The problem is determined by specifying the dynamics f , the initial state x, the final time
T , the “running utility” h and the “final utility” g. The problem is solved by finding the
optimal control α(s) for 0 < s < T and the value of the maximum.

The mathematical and engineering literature often focuses on minimizing some sort of cost;
the economic literature on maximizing utility. The two problems are mathematically equiv-
alent.

One needs some hypotheses on f to be sure the solution of the ODE defining y(s) exists
and is unique. We do not make these explicit since the goal of these notes is to summarize
the main ideas without getting caught up in fine points. See Evans for a mathematically
careful treatment. Another technical point: it’s possible (even easy) to formulate optimal
control problems that have no solution. If the utility is bounded above, then for any ε > 0
there’s certainly a control αε(s) achieving a value within ε of optimal. But the controls αε
might not converge to a meaningful control as ε→ 0. Note however that even if an optimal
control doesn’t exist, the optimal value (the maximum utility) is still well-defined.

An optimal control problem is evidently a special type of optimization problem. What’s
special is that we’re dealing with functions of time, and decisions that must be made as time
proceeds. Often the optimal control is described by a feedback law. Such a law determines

2

the optimal control α(s) as having the form α(s) = F (y(s), s) for some function F (the
feedback law).

Example 1: Here is a simple example which already has financial interest. (It’s a deter-
ministic version of Merton’s famous example of optimal investment and consumption; we’ll
do the version with investment in a few weeks). Consider an individual whose wealth today
is x, and who will live exactly T years. His task is to plan the rate of consumption of wealth
α(s) for 0 < s < T . All wealth not yet consumed earns interest at a fixed rate r. The state
equation is thus

ẏ = ry − α, y(0) = x. (3)

The control is α(s) ≥ 0, and the state is constrained by y(s) ≥ 0 (he cannot consume wealth
he doesn’t have). The goal is

max
∫ T

0
e−ρsh(α(s)) ds

where ρ is the discount rate and h(α) is the utility of consumption. (The function h,
which must be given as part of the formulation of the problem, should be monotonically
increasing and concave. A typical choice is h(α) = αγ with 0 < γ < 1.) We have, for
simplicity, assigned no utility to final-time wealth (a bequest), so the solution will naturally
have y(T) = 0. Our goal is not strictly of the form (2) due to the presence of discounting;
well, we omitted discounting from (2) only for the sake of simplicity.

The state constraint y(s) ≥ 0 is awkward to deal with. In practice it tells us that if the
investor ever runs out of wealth (i.e. if y(s) ever reaches 0) then α = 0 and y = 0 thereafter.
This state constraint can be avoided by reformulating the goal as

max
∫ τ

0
e−ρsh(α(s)) ds

where τ is the first time y reaches 0 if this occurs before T , or τ = T if y is positive for all
s < T . With this goal we need not impose the state constraint y(s) ≥ 0.

Control theory is related to – but much more general than – the one-dimensional calculus
of variations. A typical calculus of variations problem is

max
y(s)

∫ T

0
W (s, y(s), ẏ) ds

subject, perhaps, to endpoint conditions on y(0) and y(T). The example just formulated
can be expressed in this form,

max
y(s)

∫ T

0
e−ρsh(ry − ẏ) ds, subject to y(0) = x,

except that we have additional constraints ry(s)− ẏ(s) ≥ 0 and y(s) ≥ 0 for all s.

We will shortly discuss the method of dynamic programming as a scheme for solving optimal
control problems. The key to this method is to consider how the solution depends on the
initial time and initial state as parameters. Thus rather than start arbitrarily at time 0,
it is better to introduce a variable initial time t. And it is fruitful to consider the value

3

function u(x, t), the optimal value achievable using initial time t and initial state x. In the
context of our basic framework (1) this means changing the state equation to

ẏ(s) = f(y(s), α(s)), y(t) = x.

The control α(s) is now to be determined for t < s < T , and the value function is

u(x, t) = max
∫ T

t
h(y(s), α(s)) ds+ g(y(T)).

In the context of Example 1 it means changing the state equation to

ẏ = ry − α, y(t) = x,

and the objective to

u(x, t) = max
∫ T

t
e−ρsh(α(s)) ds.

(Warning: with this definition u(x, t) is the utility of consumption discounted to time 0.
The utility of consumption discounted to time t is eρtu(x, t).)

We started by formulating the “typical” optimal control problem (1)-(2). Now let’s discuss
some of the many variations on this theme, to get a better sense of the scope of the subject.
We repeat for clarity the state equation:

ẏ(s) = f(y(s), α(s)) for t < s < T with initial data y(t) = x.

Sometimes we may wish to emphasize the dependence of y(s) on the initial value x, the
initial time t, and the choice of control α(s), t < s < T ; in this case we write y = yx,t,α(s).
The control is typically restricted to take values in some specified set A, independent of s:

α(s) ∈ A for all s;

the set A must be specified along with the dynamics f . Sometimes it is natural to impose
state constraints, i.e. to require that the state y(s) stay in some specified set Y :

yx,t,α(s) ∈ Y for all s;

when present, this requirement restricts the set of admissible controls α(s). Our basic
example (2) is known as a finite horizon problem; its value function is

u(x, t) = max
α

{∫ T

t
h(yx,t,α(s), α(s)) ds+ g(yx,t,α(T))

}
. (4)

For the analogous infinite horizon problem it is customary to set the starting time to be
0, so the value function depends only on the spatial variable x:

u(x) = max
α

∫ ∞
0

e−ρsh(yx,0,α(s), α(s)) ds. (5)

4

Discounting is important for the infinite-horizon problem, since without it the integral
defining u could easily be infinite. (As already noted in our example, it is also often natural
to include discounting in a finite-horizon problem.)

The minimum time problem is a little bit different. It minimizes the time it takes y(s)
to travel from x to some target set G. The value function is thus

u(x) = min
α
{time at which yx,0,α(s) first arrives in G} . (6)

The minimum time problem is somewhat singular: if, for some x, the solution starting
at x cannot arrive in G (no matter what the control) then the value is undefined. The
discounted minimum time problem avoids this problem: its value function is

u(x) = min
α

∫ τ(x,α)

0
e−s ds (7)

where τ(x, α) is the time that yx,0,α(s) first arrives in G, or infinity if it never arrives.
Notice that the integral can be evaluated: the quantity being minimized is

∫ τ(x,α)
0 e−s ds =

1 − e−τ(x,α). So we’re still minimizing the arrival time, but the value function is 1 −
exp(−arrival time) instead of the arrival time itself.

Example 2. Here is a simple example of a minimum-time problem, with the great advan-
tages that (a) we can easily visualize everything, and (b) we know the solution in advance.
In its simplest form the problem is: given a point x in Rn, and a set G not containing x, find
the distance from x to G. We recognize this as a minimum time problem, by reformulating
it in terms of paths travelled with speed ≤ 1. The state equation is

dy/ds = α(s), y(0) = x,

and the controls are restricted by
|α(s)| ≤ 1.

The minimum arrival time

u(x) = min
α
{time of arrival at G}

is of course the distance from x to G, and the optimal strategy is to travel with constant
velocity (and unit speed) toward the point in G that is closest to x. We remark that
u(x) = dist (x,G) solves the differential equation

|∇u| = 1

in its natural domain Ω = Rn − G, with boundary condition u = 0 at ∂Ω. This is an
example of a (time-independent) Hamilton-Jacobi equation. The solution is typically not
smooth: consider for example the case when Ω is a circle or a square. The optimal control
is determined by a feedback law (“wherever you are right now, proceed at unit speed
toward the nearest point on the target G”). The non-smoothness of u reflects the fact
that the feedback law is discontinuous, with nonuniqueness where ∇u is discontinuous.
There is clearly nothing pathological about this example: non-smooth value functions, and
discontinuous feedback laws, are commonplace in deterministic optimal control.

5

Dynamic programming. There are basically two systematic approaches to solving opti-
mal control problems: one known as the Pontryagin Maximum Principle, the other known
as Dynamic Programming. The two approaches are fundamentally equivalent, though in
specific problems one may be easier to apply than the other. We shall emphasize dy-
namic programming, because (a) it extends more easily to the random case (time-dependent
decision-making to optimize expected utility), and (b) it extends the familiar financial pro-
cedure of valuing an option by working backward through a tree.

The essence of dynamic programming is pop psychology: “today is the first day of the rest
of your life.” More: every day is the first day of the future thereafter. How to use this
insight? One way is to make it the basis of a numerical solution scheme. Another way is
to use it to derive a PDE for u(x, t). These two ideas are of course closely related: our
numerical solution scheme is in fact a crude numerical scheme for solving the PDE.

Let’s start with the numerical scheme, concentrating on the finite-horizon problem (4), and
keeping space one-dimensional for simplicity. Our goal is to compute (approximately) the
value function u(x, t). Of course any numerical scheme must work in discrete space and
time, so t is a multiple of ∆t, and x is a multiple of ∆x. It’s also natural to consider that
the controls are discretized: α(s) is piecewise constant with mesh ∆t. Now work backward
in time:

First Consider the problem with initial time t = T . In this case the dynamics is irrelevant.
So are the control and the running utility . Whatever the value of x, the associated
value function is g(x). In other words: u(x, T) = g(x).

Next Consider the problem with initial time t = T −∆t. Approximate the dynamics as

y(s+ ∆t) = y(s) + f(y(s), α(s))∆t.

Since there is just one time interval between the initial time t and the final time
T = t + ∆t, and since the control is piecewise constant, the unknown is now just a
single vector α = α(t) (not a function). It is determined by optimization. We may
approximate the objective integral by a sum (dropping terms of higher order in ∆t),
leading to

u(x, T −∆t) = max
α
{h(x, α)∆t+ g (x+ f(x, α)∆t)} .

This must be evaluated for each x (i.e. every multiple of ∆x), and the maximization
over α must be done globally (we need the global optimum, not just a local opti-
mum). For a real numerical scheme some further structure is needed here: we should
solve a problem in a bounded spatial domain, and impose concavity hypotheses as-
suring that there are no local optima. For the present conceptual discussion let us
ignore such practical issues and proceed. (One might worry that when the spatial
dimension is greater than 1 this scheme is utterly impractical, since the number of
grid points x to be considered at each time t is of order (∆x)−n in dimension n.
This worry is well-founded: our scheme is impractical in higher dimensions. However

6

there are good numerical schemes for multidimensional problems. One option is to
solve the Hamilton-Jacobi-Bellman equation we’ll derive presently, using a suitable
finite-difference scheme.) At the end of this step we have computed u(·, T −∆t) as a
function of space.

Next Consider the problem with initial time t = T−2∆t. For any initial state x = y(t), the
possible controls are now represented by a pair of vectors α(t), α(t+ ∆t). However we
can still solve the problem by considering just the current control α = α(t), since the
optimal choice of α(t + ∆t) has already been determined in the course of evaluating
u(x, T −∆t). Making crucial use of the fact that the “running utility” is an integral
in time, we may determine the optimal value u(x, T − 2∆t) by solving

u(x, T − 2∆t) = max
α
{h(x, α)∆t+ u (x+ f(x, α)∆t, T −∆t)} .

Here the unknown is just the control α to be used during the time interval from
T − 2∆t to T −∆t. The optimal α depends of course on x, and the optimization in
α must be done for each choice of x separately. (Again, this is the conceptual but
impractical version; numerical optimal control uses various workarounds to make it
more practical.) At the end of this step we have computed u(·, T −2∆t) as a function
of space.

Continue The scheme continues, working backward time-step by time-step. Notice that
for computing u(x, T − (j + 1)∆t) we need only save the values of u(x, T − j∆t).
However if we wish to synthesize an optimal control starting at an arbitary point x
and time t = T−(j+1)∆t we must save much more information: namely the feedback
law α = F (y, s), obtained in the course of calculating u(y, s) for s > t. (This is the
optimal initial-time-period value of the control, when the initial state is y and the
initial time is s). This information permits us to synthesize the optimal control and
solve the state equation at the same time: starting from x at time t, the state evolves
by

yα(s+ ∆t) = yα(s)) + f(yα(s), α(s))∆t

with α(s) determined by
α(s) = F (yα(s), s) .

We remark that a similar philosophy can be used in many other settings. One example is
this standard scheme for computing the shortest path between two nodes of a graph. Pick
one of the nodes (call it an endpoint). Find all nodes that lie distance 1 from it, then all
points that lie distance 2 from it, etc. Stop when the other endpoint appears in the set you
come up with.

Students of math finance will have noticed by now that dynamic programming looks a lot like
the binomial-tree method for valuing a European or American option. The resemblance is
no coincidence. The biggest difference is that for the European option no optimization need
be done at any point in the calculation; for the American option the optimization is simple
– over just two alternatives, to exercise or not to exercise. This is due to the completeness
of the underlying market model. In a multiperiod market that’s not complete, there is an

7

optimization to be done at each stage. We’ll discuss an example of this type when we get
to stochastic optimal control.

The discrete-time, discrete-space scheme described above can be viewed as a crude nu-
merical scheme for solving the PDE satisfied by the value function. This is known as the
Hamilton-Jacobi-Bellman equation. We shall derive it, in essence, by taking the for-
mal limit ∆t → 0 in our numerical discussion. This viewpoint can be used for all the
optimal control problems we’ve discussed (finite-horizon, infinite-horizon, least-time, with
or without discounting) but to fix ideas we concentrate on the usual finite-horizon example

u(x, t) = max
α

{∫ T

t
h(y(s), α(s)) ds+ g(y(T))

}

where the controls are restricted by α(s) ∈ A, and the state equation is

dy/ds = f(y(s), α(s)) for t < s < T and y(t) = x.

(Space can be multidimensional here.) The Hamilton-Jacobi-Bellman equation in this case
is

ut +H(∇u, x) = 0 for t < T (8)

with
u(x, T) = g(x) at t = T ,

where H (the “Hamiltonian”) is defined by

H(p, x) = max
a∈A
{f(x, a) · p+ h(x, a)}. (9)

(Note that p is a vector with the same dimensionality as x; a is a vector with the same
dimensionality as α.)

To explain, we start with the dynamic programming principle, which was in fact the
basis of our discrete scheme. It says:

u(x, t) = max
α

{∫ t′

t
h(yx,t,α(s), α(s)) ds+ u(yx,t,α(t′), t′)

}
(10)

whenever t < t′ < T . The justification is easy, especially if we assume that an optimal
control exists (this case captures the main idea; see Evans for a more careful proof, without
this hypothesis). Suppose the optimal utility starting at x at time t is achieved by an
optimal control αx,t(s). Then the restriction of this control to any subinterval t′ < s < T
must be optimal for its starting time t′ and starting position yx,t,α(t′). Indeed, if it weren’t
then there would be a new control α′(s) which agreed with α for t < s < t′ but did
better for t′ < s < T . Since the utility is additive – the running utility is

∫ T
t h(y, α) ds =∫ t′

t h(y, α) ds +
∫ T
t′ h(y, α) ds – this new control would be better for the entire time period,

contradicting the optimality of α. Therefore in defining u(x, t) as the optimal utility, we can
restrict our attention to controls that are optimal from time t′ on. This leads immediately
to (10).

8

Now let us derive (heuristically) the Hamilton-Jacobi-Bellman equation. The basic idea is
to apply the dynamic programming principle with t′ = t+∆t and let ∆t→ 0. Our argument
is heuristic because (i) we assume u is differentiable, and (ii) we assume the optimal control
is adequately approximated by one that is constant for t < s < t+ ∆t. (Our goal, as usual,
is to capture the central idea, referring to Evans for a more rigorous treatment.) Since ∆t is
small, the integral on the right hand side of (10) can be approximated by h(x, a)∆t, where
a ∈ A is the (constant) value of α for t < s < t+ ∆t. Using a similar approximation for the
dynamics, the dynamic programming principle gives

u(x, t) ≥ h(x, a)∆t+ u(x+ f(x, a)∆t, t+ ∆t) + errors we wish to ignore

with equality when a is chosen optimally. Using the first-order Taylor expansion of u this
becomes

u(x, t) ≥ h(x, a)∆t+ u(x, t) + (∇u · f(x, a) + ut)∆t+ error terms

with equality when a is optimal. In the limit ∆t→ 0 this gives

0 = ut + max
a∈A
{∇u · f(x, a) + h(x, a)},

i.e. ut + H(∇u, x) = 0 with H as asserted above. The final-time condition is obvious: if
t = T then the dynamics is irrelevant, and the total utility is just g(x).

That was easy. Other classes of optimal control problems are treated similarly. Let’s look
at the minimum-time problem, where the state evolves by

dy/ds = f(y, α), y(t) = x,

and the controls are restricted by

α(s) ∈ A for all s

for some set A. The associated Hamilton-Jacobi-Bellman equation is

H(∇u, x) = −1 for x /∈ G

with Hamiltonian
H(p, x) = min

a∈A
{f(x, a) · p} = 0.

The boundary condition is
u = 0 for x ∈ G.

To see this, we argue essentially as before: the value function (the time it takes to arrive at
G) should satisfy

u(x) ≤ ∆t+ u(x+ f(x, a)∆t) + error terms

for any a ∈ A, with equality when a is optimal. Using Taylor expansion this becomes

u(x) ≤ ∆t+ u(x) +∇u · f(x, a)∆t+ error terms.

9

Optimizing over a and letting ∆t→ 0 we get

1 + min
a∈A
{f(x, a) · ∇u} = 0,

which is the desired equation.

Let us specialize this to Example 2. In that example the set A is the unit ball, and
f(y, α) = α, so H(p, x) = min|a|≤1 p · a = −|p| and the Hamilton-Jacobi equation becomes
|∇u| = 1, as expected.

Solutions of the Hamilton-Jacobi-Bellman equation are not unique (at least, not when we
understand “solution” in the naive almost-everywhere sense). For example, there are many
Lipschitz continuous solutions of |∇u| = 1 in a square, with u = 0 at the boundary. If
one were smooth we might prefer it – however there is no smooth solution. So, is the HJB
equation really of any use?

The answer is yes, it’s very useful, for three rather distinct reasons. The first is obvious; the
second is elementary but not obvious; the third is subtle, representing a major mathematical
achievement of the past 20 years:

(a) In deriving the HJB equation, we deduced a relation between the optimal control and
the value of ∇u: briefly, α(s) achieves the optimum in the definition of H(p, x) with
p = ∇u(y(s), s) and x = y(s). Thus the derivation of the HJB equation tells us the
relation between the value function and the optimal control. In many settings, this
argument permits us to deduce a feedback law once we know the value function.

(b) The argument used for the HJB equation can often be reorganized to show that a
conjectured formula for the value function is correct. This sort of argument is called
a verification theorem.

(c) There is a more sophisticated notion of “solution” of a Hamilton-Jacobi equation,
namely the notion of a viscosity solution. Viscosity solutions exist, are unique, and
can be computed by suitable numerical schemes. Moreover the value function of a
dynamic programming problem is automatically a viscosity solution of the associated
HJB equation. (Chapter 10 of Evans’ book gives an excellent introduction to the
theoretical side of this topic. The book Level Set Methods by J. Sethian, Cambridge
Univ Press, provides a readable introduction to the numerical side, concentrating on
the special class of HJB equations associated with geometric evolution problems –
closely connected with our minimum time example.)

Point (a) should be clear, and it will be illuminated further by various examples later on.
Point (c) is an interesting story, but beyond the scope of the present discussion. Our present
intention is to concentrate on point (b). We focus as usual on the setting of the finite-horizon
problem. As usual, u(x, t) denotes the value function (the maximal value achievable starting
from state x at time t). Our plan is to develop schemes for proving upper and lower bounds

10

on u. If we do a really good job the upper and lower bounds will coalesce – in which case
they will fully determine u.

There’s always one type of bound that is easy. Since we’re maximizing utility, these are the
lower bounds. Any scheme for choosing the control – for example a conjectured feedback law
specifying α(s) as a function of y(s) – provides a lower bound v(x, t) = the value achieved
by this scheme. The inequality

v(x, t) ≤ u(x, t)

is obvious, since u is the maximal value obtainable using any control – including the ones
used to define v.

The verification theorem provides the other bound. In its most basic form – specialized
to the present setting – it says the following. Suppose w(x, t) is defined (and continuously
differentiable) for t < T , and it solves the Hamilton-Jacobi equation (8) with w = g at
t = T . Then w is an upper bound for the value function:

u(x, t) ≤ w(x, t).

To see why, consider any candidate control α(s) and the associated state y = yx,α(s) starting
from x at time t. The chain rule gives

d

ds
w(y(s), s) = ws(y(s), s) +∇w(y(s), s) · ẏ(s)

= ws(y(s), s) +∇w(y(s), s) · f(y(s), α(s))
≤ ws +H(∇w, y)− h(y(s), α(s)) (11)
= −h(y(s), α(s)),

using for (11) the relation

H(p, y) = max
a∈A
{f(y, a) · p+ h(y, a)} ≥ f(y, α) · p+ h(y, α)

with y = y(s), α = α(s), and p = ∇w(y(s), s). Now integrate in time from t to T :

w(y(T), T)− w(x, t) ≤ −
∫ T

t
h(y(s), α(s)) ds.

Since w(y(T), T) = g(y(T)) this gives

g(y(T)) +
∫ T

t
h(y(s), α(s)) ds ≤ w(x, t).

The preceding argument applies to any control α(s). Maximizing the left hand side over all
admissible controls, we have

u(x, t) ≤ w(x, t)

as asserted.

We presented the task of finding lower and upper bounds as though they were distinct, but
of course they are actually closely correlated. A smooth solution w of the Hamilton-Jacobi

11

equation comes equipped with its own feedback law (as discussed in point (a) above). It
is natural to consider the lower bound v obtained using the feedback law associated with
w. I claim that this v is equal to w. To see this, follow the line of reasoning we used for
the verification theorem, noticing that (11) holds with equality if α is determined by the
feedback associated with w. Therefore integration gives

w(x, t) = g(y(T)) +
∫ T

t
h(y(s), α(s)) ds

and the right hand side is, by definition, v(x, t). In conclusion: if w is a (continuously
differentiable) solution of the HJB equation, satisfying the appropriate final-time condition
too, then w is in fact the value function u(x, t).

It sounds like a great scheme, and in many ways it is. There is however a small fly in the
ointment. Sometimes the value function isn’t continuously differentiable. (Consider, for
example, the minimum time problem). In such a case our proof of the verification theorem
remains OK for paths that avoid the locus of nonsmoothness – or cross it transversely. But
there is a problem if the state should happen to hug the locus of nonsmoothness. Said more
plainly: if w(x, t) has discontinuous derivatives along some set Γ in space-time, and if a
control makes (y(s), s) move along Γ, then the first step in our verification argument

d

ds
w(y(s), s) = ws(y(s), s) +∇w(y(s), s) · ẏ(s)

doesn’t really make sense (for example, the right hand side is not well-defined). Typically
this problem is overcome by using the fact that the verification argument has some extra
freedom: it doesn’t really require that w solve the HJB equation exactly. Rather, it requires
only that w satisfy the inequality wt +H(∇w, t) ≤ 0.

To give an example where this extra freedom is useful consider our geometrical Example 2,
with target G the complement of the unit square in R2. The HJB equation is |∇u| = 1 in
Ω=unit square, with u = 0 at ∂Ω. The value function is defined as u(x)=minimum time of
arrival to ∂Ω (among all paths with speed ≤ 1). Simple geometry tells us the solution is
the distance function dist (x, ∂Ω), whose graph is a pyramid. We wish to give an entirely
PDE proof of this fact.

One inequality is always easy. In this case it is the relation u(x) ≤ dist (x, ∂Ω). This is clear,
because the right hand side is associated with a specific control law (namely: travel straight
toward the nearest point of the boundary, with unit speed). To get the other inequality,
observe that if w ≤ 0 at ∂Ω and |∇w| ≤ 1 in Ω then

d

ds
w(y(s)) = ∇w(y(s)) · ẏ(s)

= ∇w(y(s)) · α(s)
≥ −|∇w(y(s))| ≥ −1.

(Here y(s) solves the state equation ẏ = α, with initial condition y(0) = x and any admissible
control |α(s)| ≤ 1.) If τ is the time of arrival at ∂Ω then integration gives

w(y(τ))− w(x) ≥
∫ τ

0
(−1) ds.

12

Since w(y(τ)) ≤ 0 we conclude that
w(x) ≤ τ.

Minimizing the right hand side over all admissible controls gives

w(x) ≤ u(x).

We’re essentially done. We cannot set w equal to the distance function itself, because this
choice isn’t smooth enough. However we can choose w to be a slightly smoothed-out version
of the distance function minus a small constant. It’s easy to see that we can approach the
distance function from below by such functions w. Therefore (using these w’s and passing
to a limit)

dist (x, ∂Ω) ≤ u(x),

completing our PDE argument that the value function is in this case the distance function.

It’s time for a more financial example. Let’s give the solution to Example 1 for a
power-law utility. The state equation is

ẏ = ry − α, y(t) = x

where x is the initial wealth and α is the consumption rate, restricted by α ≥ 0 (an explicit
constraint on the controls). We consider the problem of finding

u(x, t) = max
α

∫ T

t
e−ρsαγ(s) ds,

which amounts to the utility of consumption with the power-law utility function h(α) = αγ .
Utility functions should be concave so we assume 0 < γ < 1.

First, before doing any real work, let us show that the value function has the form

u(x, t) = g(t)xγ

for some function g(t). It suffices for this purpose to show that the value function has the
homogeneity property

u(λx, t) = λγu(x, t), (12)

for then we can take g(t) = u(1, t). To see (12), suppose α(s) is optimal for starting
point x, and let yx(s) be the resulting trajectory. We may consider the control λα(s) for
the trajectory that starts at λx, and it is easy to see that the associated trajectory is
yλx(s) = λyx(s). Using the power-law form of the utility this comparison demonstrates
that

u(λx, t) ≥ λγu(x, t).

This relation with λ replaced by 1/λ and x replaced by λx gives

u(x, t) ≥ λ−γu(λx, t),

completing the proof of (12).

13

Now let’s find the HJB equation. This is almost a matter of specializing the general cal-
culation to the case at hand. But we didn’t have a discount term before, so let’s redo the
argument to avoid any doubt. From the dynamic programming principle we have

u(x, t) ≥ e−ρtaγ∆t+ u(x+ (rx− a)∆t, t+ ∆t) + error terms

with equality when a ≥ 0 is chosen optimally. Using the first-order Taylor expansion of u
this becomes

u(x, t) ≥ e−ρtaγ∆t+ u(x, t) + (ux(rx− a) + ut)∆t+ error terms

with equality when a is optimal. In the limit ∆t→ 0 this gives

ut + max
a≥0
{ux(rx− a) + e−ρtaγ} = 0.

This is the desired HJB equation, to be solved for t < T . The final-time condition is of
course u = 0 (since no utility is associated to final-time wealth).

It’s obvious that ux > 0. (This follows from the observation that u(x, t) = g(t)xγ . Or it’s
easy to prove using the original problem formulation and a suitable comparison argument.)
Therefore the optimal a is easy to find, by differentiation, and it is positive:

γaγ−1 = eρtux.

This is the feedback law, determining the optimal control (once we know ux). Remembering
that u(x, t) = g(t)xγ , we can write the feedback law as

a =
[
eρtg(t)

]1/(γ−1)
x

To find g (and therefore u) we substitute u = g(t)xγ into the HJB equation. This leads,
after some arithmetic and cancelling a common factor of xγ from all terms, to

dg

dt
+ rγg + (1− γ)g(eρtg)1/(γ−1) = 0.

This equation (with the end condition g(T) = 0) is entirely equivalent to the original HJB
equation. It looks ugly, however it is not difficult to solve. First, multiply each term by eρt

to see that G(t) = eρtg(t) solves

Gt + (rγ − ρ)G+ (1− γ)Gγ/(γ−1) = 0.

Next, multiply by (1−γ)−1Gγ/(1−γ) to see that H(t) = G1/(1−γ) satisfies the linear equation

Ht − µH + 1 = 0 with µ = ρ−rγ
1−γ .

This is a linear equation! The solution satisfying H(T) = 0 is

H(t) = λ−1
(
1− e−λ(T−t)

)
.

14

Unraveling our changes of variables gives finally

g(t) = e−ρt
[

1− γ
ρ− rγ

(
1− e−

(ρ−rγ)(T−t)
1−γ

)]1−γ
.

We’ve solved the HJB equation. Have we actually found the value function and the optimal
feedback (consumption) policy? Yes indeed. The verification theorem given above supplies
the proof. (Well, it should be redone with discounting, and with the more precise formu-
lation of the objective which integrates the utility only up to the first time τ when y = 0,
if this occurs before T . These modifications require no really new ideas.) Nothing fancy is
needed since u(x, t) is smooth.

15

