

PDE for Finance, Spring 2015 – Homework 2

Distributed 2/23/15, due 3/09/15.

(1) This problem uses a PDE to value a zero-coupon bond when the short-term interest rate is described by the Vasicek model. Suppose $r(t)$ solves $dr = (\theta - ar) dt + \sigma dw$, where θ , a , and σ are positive constants. If today is time t_0 and the short-term rate today is $r(t_0) = r_0$, the value of a zero-coupon bond with maturity T and face value of one dollar is

$$E_{r(t_0)=r_0} \left[e^{-\int_{t_0}^T r(s) ds} \right].$$

(a) Explain why this is equal to $V(t_0, r(t_0))$, where $V(t, r)$ solves the PDE

$$V_t + (\theta - ar)V_r + \frac{1}{2}\sigma^2 V_{rr} - rV = 0$$

for $t < T$, with the final-time condition $V(T, r) = 1$ for all r .

(b) Look for a solution of the form $V(t, r) = A(t, T)e^{-B(t, T)r}$. Show that A and B should satisfy

$$A_t - \theta AB + \frac{1}{2}\sigma^2 AB^2 = 0 \quad \text{and} \quad B_t - aB + 1 = 0$$

with final-time conditions

$$A(T, T) = 1 \quad \text{and} \quad B(T, T) = 0.$$

(c) Solving for B first, then A , show that the solution is

$$B(t, T) = \frac{1}{a}(1 - e^{-a(T-t)})$$

and

$$A(t, T) = \exp \left[\left(\frac{\theta}{a} - \frac{\sigma^2}{2a^2} \right) (B(t, T) - T + t) - \frac{\sigma^2}{4a} B^2(t, T) \right].$$

(2) Consider the linear heat equation $u_t - u_{xx} = 0$ in one space dimension, with discontinuous initial data

$$u(x, 0) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0. \end{cases}$$

(a) Show by evaluating the solution formula that

$$u(x, t) = N \left(\frac{x}{\sqrt{2t}} \right) \tag{1}$$

where N is the cumulative normal distribution

$$N(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-s^2/2} ds.$$

(b) Explore the solution by answering the following: what is $\max_x u_x(x, t)$ as a function of time? Where is it achieved? What is $\min_x u_x(x, t)$? For which x is $u_x > (1/10) \max_x u_x$? Sketch the graph of u_x as a function of x at a given time $t > 0$.

(c) Show that $v(x, t) = \int_{-\infty}^x u(z, t) dz$ solves $v_t - v_{xx} = 0$ with $v(x, 0) = \max\{x, 0\}$. Deduce the qualitative behavior of $v(x, t)$ as a function of x for given t : how rapidly does v tend to 0 as $x \rightarrow -\infty$? What is the behavior of v as $x \rightarrow \infty$? What is the value of $v(0, t)$? Sketch the graph of $v(x, t)$ as a function of x for given $t > 0$.

(3) This problem obtains convenient representations for the solutions of some particular initial-boundary-value problems for the linear heat equation on the half-line:

$$w_t - w_{xx} = 0 \quad \text{for } t > 0 \text{ and } x > 0.$$

(a) Let w_1 be the solution with $w_1 = 0$ at $x = 0$ and $w_1 = 1$ at $t = 0$. Express it in terms of the function $u(x, t)$ defined in Problem 2.

(b) Let w_2 be the solution with $w_2 = 0$ at $x = 0$ and $w_2 = (x - K)_+$ at $t = 0$. Assume that $K > 0$. Express w_2 in terms of the function $v(x, t)$ defined in Problem 2(c).

(c) Let w_3 be the solution with $w_3 = 0$ at $x = 0$ and $w_3 = (x - K)_+$ at $t = 0$, when $K < 0$. Find a convenient representation of w_3 analogous to those you gave for w_1 and w_2 .

(d) Let w_4 be the solution with $w_4 = 1$ at $x = 0$ and $w_4 = 0$ at $t = 0$. Find a convenient representation, analogous to those you gave for the other w_i . (Hint: what boundary value problem does $w_4 - 1$ solve?)

(e) Interpret each w_i as the expected payoff of a suitable barrier-type instrument, whose underlying executes the scaled Brownian motion $dy = \sqrt{2}dw$ with initial condition $y(0) = x$ and an absorbing barrier at 0. (Example: $w_1(x, T)$ is the expected payoff of an instrument which pays 1 at time T if the underlying has not yet hit the barrier and 0 otherwise.)

NOTE: One can, of course, use the general representation formula for solutions of the half-space problem to get a “formula” for each w_i . But I’m not asking you to do this. Rather, I’m asking you to find (using the functions introduced in Problem 2) a solution of the PDE with the correct initial and boundary conditions. This is *much* easier.

(4) Let’s look more closely at the function w_1 introduced in Problem 3(a).

(a) Show that for fixed $x > 0$, $w_1(x, t) \rightarrow 0$ as $t \rightarrow \infty$.

(b) How fast does it decay? (Suggestion: show that as $t \rightarrow \infty$, $w_1(x, t) \sim Ct^{-\alpha}$. What is the best possible value of α ?)

(5) The Section 2 notes reduce the Black-Scholes PDE to the heat equation by brute-force algebraic substitution. This problem achieves the same reduction by a probabilistic route. Our starting point is the fact that

$$V(s, t) = e^{-r(T-t)} E_{y(t)=s} [\Phi(y(T))] \tag{2}$$

where $dy = rydt + \sigma ydw$.

- (a) Consider $z = \frac{1}{\sigma} \log y$. By Ito's formula it satisfies $dz = \frac{1}{\sigma}(r - \frac{1}{2}\sigma^2)dt + dw$. Express the right hand side of (2) as a discounted expected value with respect to z process.
- (b) The z process is Brownian motion with drift $\mu = \frac{1}{\sigma}(r - \frac{1}{2}\sigma^2)$. The Cameron-Martin-Girsanov theorem tells how to write an expected value relative to z as a weighted expected value relative to the standard Brownian motion w . Specifically:

$$E_{z(t)=\frac{1}{\sigma} \log s} [\Phi(e^{\sigma z(T)})] = E_{w(t)=\frac{1}{\sigma} \log s} \left[e^{\mu(w(T)-w(t)) - \frac{1}{2}\mu^2(T-t)} \Phi(e^{\sigma w(T)}) \right] \quad (3)$$

where the left side is an expectation using the path-space measure associated with z , and the right hand side is an expectation using the path-space measure associated with Brownian motion. Apply this to get an expression for $V(s, t)$ whose right hand side involves an expected value relative to Brownian motion.

- (c) An expected payoff relative to Brownian motion is described by the heat equation (more precisely by an equation of the form $u_t + \frac{1}{2}u_{xx} = 0$). Thus (b) expresses the solution of the Black-Scholes PDE in terms of a solution of the heat equation. Verify that this representation is the same as the one given in the Section 2 notes.