PDE for Finance, Spring 2015 — Homework 3. Distributed 3/12/15, due 3/30/15.

1. We showed, in the Section 2 notes, that the solution of
Wy = Wy, fort>0and x>0, withw=0att=0andw=¢atz=0

is

t

w(x,t) = a—G(:c, 0,t — s)p(s)ds (1)
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where G(z,y,s) is the probability that a random walker, starting at x at time 0,
reaches y at time s without first hitting the barrier at 0. (Here the random walker
solves dy = v/2dw, i.e. it executes the scaled Brownian whose backward Kolmogorov
equation is us+uz, = 0.) Let’s give an alternative demonstration of this fact, following

the line of reasoning at the end of the Section 1 notes.

(a) Express, in terms of G, the probability that the random walker (starting at x at
time 0) hits the barrier before time ¢. Differentiate in ¢ to get the probability that
it hits the barrier at time ¢. (This is known as the first passage time density).

(b) Use the forward Kolmogorov equation and integration by parts to show that the
first passage time density is %(m, 0,t).

(c) Deduce the formula (1).

2. As noted in HW2 problem 5, questions about Brownian motion with drift can often
be answered using the Cameron-Martin-Girsanov theorem. But we can also study this
process directly. Let’s do so now, for the process dz = udt + dw with an absorbing
barrier at z = 0.

(a) Suppose the process starts at zp > 0 at time 0. Let G(zg, z,t) be the probability
that the random walker is at position z at time ¢ (and has not yet hit the barrier).

Show that
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(Hint: just check that this G solves the relevant forward Kolmogorov equation,
with the appropriate boundary and initial conditions.)

(b) Show that the first passage time density is
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3. Consider the linear heat equation u; — uz, = 0 on the interval 0 < z < 1, with
boundary condition ©v = 0 at x = 0,1 and initial condition v = 1.

(a) Interpret u as the value of a suitable double-barrier option.



(b) Express u(t,z) as a Fourier sine series, as explained in Section 3.

(c) At time ¢ = 1/100, how many terms of the series are required to give u(t,x)
within one percent accuracy?

4. Consider the SDE dy = f(y)dt + g(y)dw. Let G(z,y,t) be the fundamental solution
of the forward Kolmogorov PDE, i.e. the probability that a walker starting at x at
time 0 is at y at time ¢. Show that if the infinitesimal generator is self-adjoint, i.e.

_(fu)ar + %(gzu)xx = fuz + %g2uI$7
then the fundamental solution is symmetric, i.e. G(z,y,t) = G(y, z,t).

5. Consider the stochastic differential equation dy = f(y, s)ds + g(y, s)dw, and the asso-
ciated backward and forward Kolmogorov equations

up + f(x, t)u, + %gQ(fL‘,t)um =0 fort<T,withu=®att=T
and

ps+ (f(2,8)p): — 3(6%(2,8)p)z- =0 for s >0, with p(2) = po(2) at s = 0.

Recall that u(x,t) is the expected value (starting from x at time ¢) of payoff ®(y(T)),
whereas p(z, s) is the probability distribution of the diffusing state y(s) (if the initial
distribution is py).

(a) The solution of the backward equation has the following property: if m =
min, ®(z) and M = max, ¢(z) then m < u(z,t) < M for all ¢t < T. Give
two distinct justifications:

(al) Explain why this is an easy consequence of the probabilistic interpretation
of u.

(a2) Explain why this amounts to a “maximum principle” for solutions of u; +
f(z,t)ugy + 39%(z,t)uzy = 0. Then show, by a PDE argument (similar to
what we did for u; — uz, = 0 in all space, but easier), that such a max
principle is valid provided | f| is uniformly bounded and we know in advance
that v is uniformly bounded. (Hint: let ¢ be a smooth function such that
() = |z| for |x| > 1. Consider ues = u(x,t)£et£d1). Apply the maximum
principle to ue s then consider a suitable limit in which e and ¢ tend to 0.)

(b) The solution of the forward equation does not in general have the same property;
in particular, max, p(z, s) can be larger than the maximum of pg. Explain why
not, by considering the example dy = —yds. (Intuition: y(s) moves toward the
origin; in fact, y(s) = e *yo. Viewing y(s) as the position of a moving particle,
we see that particles tend to collect at the origin no matter where they start.
So p(z, s) should be increasingly concentrated at z = 0.) Show that the solution
in this case is p(z,s) = €®*pp(e®z). This counterexample has g = 0; can you also
give a counterexample using dy = —yds + edw?



6. The solution of the forward Kolmogorov equation is a probability density, so we expect
it to be nonnegative (assuming the initial condition pg(z) is everywhere nonnegative).
In light of Problem 2b it’s natural to worry whether the PDE has this property. Let’s
show that it does.

(a) Consider the initial-boundary-value problem
w = a(x, )Wy + b(x, t)wy + c(z, t)w

with z in the interval (0,1) and 0 < ¢t < T. We assume as usual that a(z,t) > 0.
Suppose furthermore that ¢ < 0 for all z and ¢. Show that if 0 < w < M at the
initial time and the spatial boundary then 0 < w < M for all x and ¢. (Hint: a
positive maximum cannot be achieved in the interior or at the final boundary.
Neither can a negative minimum.)

(b) Now consider the same PDE but with max, ; c(z,t) positive. Suppose the initial
and boundary data are nonnegative. Show that the solution w is nonnegative
for all x and ¢. (Hint: apply part (a) not to w but rather to @ = e~ “*w with a
suitable choice of C.)

(¢) Consider the solution of the forward Kolmogorov equation in the interval, with
p = 0 at the boundary. (It represents the probability of arriving at z at time s
without hitting the boundary first.) Show using part (b) that p(z,s) > 0 for all
s and z.

[Comment: statements analogous to (a)-(c) are valid for the initial-value problem
as well, when we solve for all x € R rather than for x in a bounded domain. The
justification takes a little extra work however, and it requires some hypothesis on the
growth of the solution at co.]

7. Consider the solution of
U+ aug, =0 fort <T,withu=®att="T

where a is a positive constant. Recall that in the stochastic interpretation, a is
%92 where ¢ represents volatility. Let’s use the maximum principle to understand
qualitatively how the solution depends on volatility.

(a) Show that if ®,, > 0 for all = then u,, > 0 for all x and ¢. (Hint: differentiate
the PDE.)

(b) Suppose @ solves the analogous equation with a replaced by a > a, using the
same final-time data ®. We continue to assume that ®,, > 0. Show that © > u
for all z and ¢. (Hint: w = u —u solves w; + awg, = f with f = (a — a)ug, <0.)



