

1. We showed, in the Section 2 notes, that the solution of

$$w_t = w_{xx} \quad \text{for } t > 0 \text{ and } x > 0, \text{ with } w = 0 \text{ at } t = 0 \text{ and } w = \phi \text{ at } x = 0$$

is

$$w(x, t) = \int_0^t \frac{\partial G}{\partial y}(x, 0, t-s) \phi(s) ds \quad (1)$$

where $G(x, y, s)$ is the probability that a random walker, starting at x at time 0, reaches y at time s without first hitting the barrier at 0. (Here the random walker solves $dy = \sqrt{2}dw$, i.e. it executes the scaled Brownian whose backward Kolmogorov equation is $u_t + u_{xx} = 0$.) Let's give an alternative demonstration of this fact, following the line of reasoning at the end of the Section 1 notes.

- (a) Express, in terms of G , the probability that the random walker (starting at x at time 0) hits the barrier before time t . Differentiate in t to get the probability that it hits the barrier at time t . (This is known as the *first passage time* density).
- (b) Use the forward Kolmogorov equation and integration by parts to show that the first passage time density is $\frac{\partial G}{\partial y}(x, 0, t)$.
- (c) Deduce the formula (1).

2. As noted in HW2 problem 5, questions about Brownian motion with drift can often be answered using the Cameron-Martin-Girsanov theorem. But we can also study this process directly. Let's do so now, for the process $dz = \mu dt + dw$ with an absorbing barrier at $z = 0$.

- (a) Suppose the process starts at $z_0 > 0$ at time 0. Let $G(z_0, z, t)$ be the probability that the random walker is at position z at time t (and has not yet hit the barrier). Show that

$$G(z_0, z, t) = \frac{1}{\sqrt{2\pi t}} e^{-|z-z_0-\mu t|^2/2t} - \frac{1}{\sqrt{2\pi t}} e^{-2\mu z_0} e^{-|z+z_0-\mu t|^2/2t}.$$

(Hint: just check that this G solves the relevant forward Kolmogorov equation, with the appropriate boundary and initial conditions.)

- (b) Show that the first passage time density is

$$\frac{1}{2} \frac{\partial G}{\partial z}(z_0, 0, t) = \frac{z_0}{t\sqrt{2\pi t}} e^{-|z_0+\mu t|^2/2t}.$$

3. Consider the linear heat equation $u_t - u_{xx} = 0$ on the interval $0 < x < 1$, with boundary condition $u = 0$ at $x = 0, 1$ and initial condition $u = 1$.

- (a) Interpret u as the value of a suitable double-barrier option.

- (b) Express $u(t, x)$ as a Fourier sine series, as explained in Section 3.
- (c) At time $t = 1/100$, how many terms of the series are required to give $u(t, x)$ within one percent accuracy?

4. Consider the SDE $dy = f(y)dt + g(y)dw$. Let $G(x, y, t)$ be the fundamental solution of the forward Kolmogorov PDE, i.e. the probability that a walker starting at x at time 0 is at y at time t . Show that if the infinitesimal generator is self-adjoint, i.e.

$$-(fu)_x + \frac{1}{2}(g^2u)_{xx} = fu_x + \frac{1}{2}g^2u_{xx},$$

then the fundamental solution is symmetric, i.e. $G(x, y, t) = G(y, x, t)$.

5. Consider the stochastic differential equation $dy = f(y, s)ds + g(y, s)dw$, and the associated backward and forward Kolmogorov equations

$$u_t + f(x, t)u_x + \frac{1}{2}g^2(x, t)u_{xx} = 0 \quad \text{for } t < T, \text{ with } u = \Phi \text{ at } t = T$$

and

$$\rho_s + (f(z, s)\rho)_z - \frac{1}{2}(g^2(z, s)\rho)_{zz} = 0 \quad \text{for } s > 0, \text{ with } \rho(z) = \rho_0(z) \text{ at } s = 0.$$

Recall that $u(x, t)$ is the expected value (starting from x at time t) of payoff $\Phi(y(T))$, whereas $\rho(z, s)$ is the probability distribution of the diffusing state $y(s)$ (if the initial distribution is ρ_0).

- (a) The solution of the backward equation has the following property: if $m = \min_z \Phi(z)$ and $M = \max_z \Phi(z)$ then $m \leq u(x, t) \leq M$ for all $t < T$. Give two distinct justifications:
 - (a1) Explain why this is an easy consequence of the probabilistic interpretation of u .
 - (a2) Explain why this amounts to a “maximum principle” for solutions of $u_t + f(x, t)u_x + \frac{1}{2}g^2(x, t)u_{xx} = 0$. Then show, by a PDE argument (similar to what we did for $u_t - u_{xx} = 0$ in all space, but easier), that such a max principle is valid provided $|f|$ is uniformly bounded and we know in advance that u is uniformly bounded. (Hint: let ψ be a smooth function such that $\psi(x) = |x|$ for $|x| \geq 1$. Consider $u_{\epsilon, \delta} = u(x, t) \pm \epsilon t \pm \delta \psi$. Apply the maximum principle to $u_{\epsilon, \delta}$ then consider a suitable limit in which ϵ and δ tend to 0.)
- (b) The solution of the forward equation does *not* in general have the same property; in particular, $\max_z \rho(z, s)$ can be larger than the maximum of ρ_0 . Explain why not, by considering the example $dy = -yds$. (Intuition: $y(s)$ moves toward the origin; in fact, $y(s) = e^{-s}y_0$. Viewing $y(s)$ as the position of a moving particle, we see that particles tend to collect at the origin no matter where they start. So $\rho(z, s)$ should be increasingly concentrated at $z = 0$.) Show that the solution in this case is $\rho(z, s) = e^s \rho_0(e^s z)$. This counterexample has $g = 0$; can you also give a counterexample using $dy = -yds + \epsilon dw$?

6. The solution of the forward Kolmogorov equation is a probability density, so we expect it to be nonnegative (assuming the initial condition $\rho_0(z)$ is everywhere nonnegative). In light of Problem 2b it's natural to worry whether the PDE has this property. Let's show that it does.

(a) Consider the initial-boundary-value problem

$$w_t = a(x, t)w_{xx} + b(x, t)w_x + c(x, t)w$$

with x in the interval $(0, 1)$ and $0 < t < T$. We assume as usual that $a(x, t) > 0$. Suppose furthermore that $c < 0$ for all x and t . Show that if $0 \leq w \leq M$ at the initial time and the spatial boundary then $0 \leq w \leq M$ for all x and t . (Hint: a positive maximum cannot be achieved in the interior or at the final boundary. Neither can a negative minimum.)

(b) Now consider the same PDE but with $\max_{x,t} c(x, t)$ positive. Suppose the initial and boundary data are nonnegative. Show that the solution w is nonnegative for all x and t . (Hint: apply part (a) not to w but rather to $\bar{w} = e^{-Ct}w$ with a suitable choice of C .)

(c) Consider the solution of the forward Kolmogorov equation in the interval, with $\rho = 0$ at the boundary. (It represents the probability of arriving at z at time s without hitting the boundary first.) Show using part (b) that $\rho(z, s) \geq 0$ for all s and z .

[Comment: statements analogous to (a)-(c) are valid for the initial-value problem as well, when we solve for all $x \in R$ rather than for x in a bounded domain. The justification takes a little extra work however, and it requires some hypothesis on the growth of the solution at ∞ .]

7. Consider the solution of

$$u_t + au_{xx} = 0 \quad \text{for } t < T, \text{ with } u = \Phi \text{ at } t = T$$

where a is a positive constant. Recall that in the stochastic interpretation, a is $\frac{1}{2}g^2$ where g represents volatility. Let's use the maximum principle to understand qualitatively how the solution depends on volatility.

(a) Show that if $\Phi_{xx} \geq 0$ for all x then $u_{xx} \geq 0$ for all x and t . (Hint: differentiate the PDE.)

(b) Suppose \bar{u} solves the analogous equation with a replaced by $\bar{a} > a$, using the same final-time data Φ . We continue to assume that $\Phi_{xx} \geq 0$. Show that $\bar{u} \geq u$ for all x and t . (Hint: $w = \bar{u} - u$ solves $w_t + \bar{a}w_{xx} = f$ with $f = (a - \bar{a})u_{xx} \leq 0$.)