PDE for Finance, Spring 2015 — Homework 6
Distributed 4/27/15, due 5/11/15.

About our final exam: Our Final Exam will be Monday May 18, at our usual class time
(5:10-7pm), in our usual location (WWH 512). You may bring two 8.5 x 11 sheets of notes
(both sides, any font); the preparation such notes is an excellent study tool. The exam
covers the material in Sections 1-7 and Homeworks 1-6; in particular, material covered in
class on 5/4 or 5/11 will not be on the exam. For an idea what to expect, see problems 1-6
of my 2003 exam, at http://www.math.nyu.edu/faculty /kohn/pde.finance/2003/exam.pdf
(problem 7 of the 2003 exam is about jump diffusions, a topic we haven’t covered yet this
semester.) In general: the exam problems will address topics you have seen on HW or in
class, formulated in such a way that if you understand the material each question can be
answered relatively quickly.

Plan for the last few lectures: On 4/27 we'll discuss Example 2 from the Section 7
notes, then we’ll review why option prices are given by risk-neutral discounted payoffs. On
5/4 we’ll discuss an alternative approach to Merton-type portfolio optimization problems,
using what is known as the “martingale method.” On 5/11 we’ll discuss the analogue of
the forward and backward Kolmogorov equations, when the asset price is a jump-diffusion.
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This homework set reinforces our discussions of discrete-time dynamic programming prob-
lems.

(1) In Example 1 of the Section 7 notes we considered a problem of optimal execution,
using a model in which the impact of a trade on the asset price is linear and permanent.
In Example 3 of the Section 7 notes we considered a problem of optimal investment,
using a model in which the impact of a trade on the asset price is temporary. This
problem considers revisits the optimal execution problem of Example 1, using the
impact model of Example 3.

As in Example 1, we consider an investor who wants to buy a fixed amount of a given
asset. Let P; be the price of the asset on day i, ignoring any impact of the investor’s
trades. (We assume that the impact of his trading within day ¢ is so transient that it
does not affect the asset price on day ¢ + 1). We assume that

P, = P;_1 +oe;

where e; has mean value 0. (The variance and other statistical properties of e; will not
matter to our model.) Concerning market impact: we assume that if the investor buys
s units of the asset on day i and yesterday’s asset price was P;_1, then his expected
cost is E[Pi(s + £0s%)] = Pi_1(s + 30s%). Here 6 > 0 is a parameter (fixed over time)
that captures the effect of market impact upon the investor’s cost.

Following the notation of Example 1, let N be the day when the purchase must be
completed, and for i = NN — 1, N —2,... let V;(P,_1, W;) be the investor’s optimal



expected cost starting on day 1, if the total to be purchased is W; and the day ¢ — 1
price was P;_.

(a) Show that Vi (P, W) = P(W + 36W?).

(b) Show that Vy_i(P,W) = P(W + 14W?).

(¢) Use the principle of dynamic programming to relate V;_; to V;, then use an

inductive argument to show that V;(P,W) = P(W + %HN_liH W?2) for all i < N.

(d) What trading strategy does this model suggest?

Consider the following discrete-time analogue of the Merton problem. An investor
starts with wealth W} at time ty. He can invest it only in two assets: one is risk-free
and earns no interest; the other is risky, with return R; in the time period from ¢; to
tj+1 (i-e. its price P; at time t; satisfies Pj11 = R;P;). Assume that the returns R;
are independent and identically distributed, and that R; > 0 with probability 1. The
investor’s goal is to maximize E[h(Wy)], where h is a concave utility function. His
trades must be self-financing, and no borrowing or short-selling is permitted.

(a) Let W; be the investor’s wealth at time ¢;, and let 0 < §; < 1 be the fraction of
his wealth invested in the risky asset during the time interval (t;,¢;41). Give a
formula for W, in terms of W, 0;, and R;.

(b) Let u;j(W) be the investor’s optimal expected utility of time-ty wealth, if his
wealth at time ¢; is W. How does the principle of dynamic programming deter-
mine the function u;(W) in terms of u;jq(W)?

(c) Suppose now that the utility function is h(w) = w? with 0 < v < 1. Show that
un—1(W) = gW?, where g is a suitable constant. Your answer should include a
characterization of g.

(d) Show that in fact '
un—;(W) =¢g’W7 for1<j<N

where g is the same constant as in part (c). (Hint: argue inductively.)

Example 2 of the Section 7 notes discusses work by Bertsimas, Kogan, and Lo involving
least-square replication of a European option. The analysis there assumes all trades
are self-financing, so the value of the portfolio at consecutive times is related by

Vi= Vi1 =0;1(Pj — Pj1).

Let’s consider what happens if trades are permitted to be non-self-financing. This
means we introduce an additional control g;, the amount of cash added to (if g; > 0)
or removed from (if g; < 0) the portfolio at time j, and the portfolio values now
satisfy

Vi—=Vjia=0;-1(Pj — Pj1) +gj-1.

It is natural to add a quadratic expression involving the g’s to the objective: now we
seek to minimize

N-1
E|(VN=F(Pn)+ad g
7=0



where « is a positive constant. The associated value function is

N-1
Ji(V,P) = min Ev—v,p=p |(VN = F(PN))*+a Y g;
Jj=t
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The claim enunciated in the Section 7 notes remains true in this modified setting: J;
can be expressed as a quadratic polynomial

Ji(Vi, Pi) = ai(P)|V; = bi(Py)|* + &(Py)

where @;,b;, and ¢; are suitably-defined functions which can be constructed induc-
tively. Demonstrate this assertion in the special case i = N — 1, and explain how
an_1,bny_1,¢n_1 are related to the functions ay_1,bn_1,cny_1 of the Section 7 notes.



