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Stochastic optimal control. Stochastic optimal control is like deterministic optimal con-
trol except that (i) the equation of state is a stochastic differential equation, and (ii) the
goal is to maximize or minimize the expected utility or cost. To see the structure of the
theory in a simple, uncluttered way, we begin by examining what becomes of a standard
deterministic utility maximization problem when the state equation is perturbed by a little
noise. Then we present a finance classic: Merton’s analysis of optimal consumption and
investment, in the simplest meaningful case (a single risk-free asset and a risk-free account).
My treatment follows more or less the one in Fleming and Rishel’s book “Deterministic and
Stochastic Optimal Control” (Springer-Verlag, 1975). However, my best recommendation
for reading on this topic and related ones is the book by F-R Chang, “Stochastic Optimiza-
tion in Continuous Time,” Cambridge Univ Press (on reserve in the CIMS library). It has
lots of examples and is very readable (though the version of the Merton optimal consump-
tion and investment problem considered there is a special case of the one considered here,
with maturity T =∞.)

****************************

Perturbation of a deterministic problem by small noise. We’ve discussed at length
the deterministic dynamic programming problem with state equation

dy/ds = f(y(s), α(s)) for t < s < T, y(t) = x,

controls α(s) ∈ A, and objective

max
α

{∫ T

t
h(y(s), α(s)) ds+ g(y(T ))

}
.

Its value function satisfies the HJB equation

ut +H(∇u, x) = 0 for t < T, u(x, T ) = g(x),

with Hamiltonian
H(p, x) = max

a∈A
{f(x, a) · p+ h(x, a)}. (1)

Let us show (heuristically) that when the state is perturbed by a little noise, the value
function of resulting stochastic control problem solves the perturbed HJB equation

ut +H(∇u, x) +
1
2
ε2∆u = 0 (2)

where H is still given by (1), and ∆u =
∑
i
∂2u
∂x2
i
.
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Our phrase “perturbing the state by a little noise” means this: we replace the ODE gov-
erning the state by the stochastic differential equation (SDE)

dy = f(y, α)ds+ εdw,

keeping the initial condition y(t) = x. Here dw is a standard, vector-valued Brownian
motion (each component wi is a scalar-valued Brownian motion, and different components
are independent).

The evolution of the state is now stochastic, hence so is the value of the utility. Our goal
in the stochastic setting is to maximize the expected utility. The value function is thus

u(x, t) = max
α

Ey(t)=x

{∫ T

t
h(y(s), α(s)) ds+ g(y(T ))

}
.

There is some subtlety to the question: what is the class of admissible controls? Of course
we still restrict α(s) ∈ A. But since the state is random, it’s natural for the control to be
random as well – however its value at time s should depend only on the past and present,
not on the future (which is after all unknown to the controller). Such controls are called
“non-anticipating.” A simpler notion, sufficient for most purposes, is to restrict attention
to feedback controls, i.e. to assume that α(s) is a deterministic function of s and y(s). One
can show (under suitable hypotheses, when the state equation is a stochastic differential
equation) that these two different notions of “admissible control” lead to the same optimal
value.

Courage. Let’s look for the HJB by applying the usual heuristic argument, based on the
principle of dynamic programming applied to a short time interval:

u(x, t) ≈ max
a∈A

{
h(x, a)∆t+ Ey(t)=xu(y(t+ ∆t), t+ ∆t)

}
.

The term h(x, a)∆t approximates
∫ t+∆t
t h(y(s), a) ds, because we assume h is smooth and

y(s) = x+ terms tending to 0 with ∆t. Notice that h(x, a)∆t is deterministic. The expres-
sion u(y(t+∆t), t+∆t) is the optimal expected utility starting from time t+∆t and spatial
point y(t + ∆t). We must take its expected value, because y(t + ∆t) is random. (If you
think carefully you’ll see that the Markov property of the process y(s) is being used here.)

We’re almost in familiar territory. In the deterministic case the next step was to express
u(y(t + ∆t), t + ∆t) using the state equation and the Taylor expansion of u. Here we do
something analogous: use Ito’s lemma and the stochastic differential equation. Ito’s lemma
says the process φ(s) = u(y(s), s) satisfies

dφ =
∂u

∂s
ds+

∑
i

∂u

∂yi
dyi +

1
2

∑
i,j

∂2u

∂yi∂yj
dyidyj

= ut(y(s), s)ds+∇u · (f(y(s), α(s))ds+ εdw) +
1
2
ε2∆u ds.

The real meaning of this statement is that

u(y(t′), t′)− u(y(t), t) =
∫ t′

t
[ut(y(s), s) +∇u(y(s), s) · (f(y(s), α(s)) +

1
2
ε2∆u(y(s), s)]ds

+
∫ t′

t
ε∇u(y(s), s) · dw.
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The expected value of the second integral is 0, so

Ey(t)=x[u(y(t+ ∆t), t+ ∆t)]− u(x, t) ≈ [ut(x, t) +∇u(x, t) · f(x, a) +
1
2
ε2∆u(x, t)]∆t.

Assembling these ingredients, we have

u(x, t) ≈ max
a∈A

{
h(x, a)∆t+ u(x, t) + [ut(x, t) +∇u(x, t) · f(x, a) +

1
2
ε2∆u(x, t)]∆t

}
.

This is almost identical to the relation we got in the deterministic case. The only difference
is the new term 1

2ε
2∆u(x, t)∆t on the right. It doesn’t depend on a, so the optimal a is

unchanged – it still maximizes h(x, a) + f(x, a) · ∇u – and we conclude, as asserted, that u
solves (2).

Before going to another topic, let’s link this discussion to the notion of “viscosity solution.”
We noted in Section 4 that the solution of the deterministic HJB equation can be nonunique.
(For example, our geometric Example 2 has the HJB equation |∇u| = 1 with boundary
condition u = 0 at the target; it clearly has many almost-everywhere solutions, none of
them smooth). We also mentioned in Section 4 that this difficulty can be resolved by
working with the “viscosity solution.” One characterization of the viscosity solution is
this: it is the solution obtained by including a little noise in the problem formulation (with
variance ε, as above), then taking the limit ε→ 0.

****************************

Optimal portfolio selection and consumption. This is the simplest of a class of
problems solved by Robert Merton in his paper “Optimal consumption and portfolio rules
in a continuous-time model”, J. Economic Theory 3, 1971, 373-413 (reprinted in his book
Continuous Time Finance.) As you’ll see, the math is almost the same as our Example 1
– though the finance is more interesting.

We consider a world with one risky asset and one risk-free asset. The risk-free asset grows
at a constant risk-free rate r, i.e. its price per share satisfies dp1/dt = p1r. The risky asset
executes a geometric Brownian motion with constant drift µ > r and volatility σ, i.e. its
price per share solves the stochastic differential equation dp2 = µp2dt+ σp2dw.

The control problem is this: an investor starts with initial wealth x at time t. His control
variables are

α1(s) = fraction of total wealth invested in the risky asset at time s
α2(s) = rate of consumption at time s.

It is natural to restrict these controls by 0 ≤ α1(s) ≤ 1 and α2(s) ≥ 0. We ignore transaction
costs. The state is the investor’s total wealth y as a function of time; it solves

dy = (1− α1)yrdt+ α1y(µdt+ σdw)− α2dt
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so long as y(s) > 0. We denote by τ the first time y(s) = 0 if this occurs before time T ,
or τ = T (a fixed horizon time) otherwise. The investor seeks to maximize the discounted
total utility of his consumption. We therefore consider the value function

u(x, t) = max
α1,α2

Ey(t)=x

∫ τ

t
e−ρsh[α2(s)] ds

where h[·] is a specified utility function (monotone increasing and concave, with h(0) = 0).
We shall specialize eventually to the power-law utility h(α2) = αγ2 with 0 < γ < 1. (We
have chosen, as in Example 1, to work with the utility discounted to time 0. It is also
possible, as in HW1, to work with the utility discounted to time t. The latter choice would
give an autonomous HJB equation, i.e. time would not appear explicitly in the equation.)

We find the HJB equation by essentially the same method used above. The principle of
dynamic programming applied on a short time interval gives:

u(x, t) ≈ max
a1,a2

{
e−ρth(a2)∆t+ Ey(t)=xu(y(t+ ∆t), t+ ∆t)

}
.

To evaluate the expectation term, we use Ito’s lemma again. Using the state equation

dy = [(1− α1)yr + α1yµ− α2]dt+ α1yσdw

and skipping straight to the conclusion, we have

u(y(t′), t′)−u(y(t), t) =
∫ t′

t
[ut+uy[(1−α1)yr+α1yµ−α2]+

1
2
uyyy

2α2
1σ

2]dt+
∫ t′

t
α1σyuydw.

The expected value of the second integral is 0, so

Ey(t)=x[u(y(t+ ∆t), t+ ∆t)]− u(x, t) ≈ [ut + uy[(1− α1)yr + α1yµ− α2 +
1
2
uyyy

2α2
1σ

2]∆t.

Assembling these ingredients,

u(x, t) ≈ max
a1,a2

{
e−ρth(a2)∆t+ u(x, t) + [ut + ux[(1− a1)xr + a1xµ− a2] +

1
2
uxxx

2a2
1σ

2]∆t
}
.

Cleaning up, and taking the limit ∆t→ 0, we get

ut + max
a1,a2

{
e−ρth(a2) + [(1− a1)xr + a1xµ− a2]ux +

1
2
x2a2

1σ
2uxx

}
= 0.

This is the relevant HJB equation. It is to be solved for t < T , with u(x, T ) = 0 since we
have associated no utility associated to final-time wealth.

That looks pretty horrible, but it isn’t really so bad. First of all, if we constrain a1 = 0 it
reduces to the HJB equation from Example 1. (Well, it has to: if a1 = 0 then all investment
is in the risk-free asset, and the problem is Example 1.) So we charge ahead.

Let us assume ux > 0 (practically obvious: larger initial wealth should produce larger total
utility; what comparison argument would you use to prove it?). Let’s also assume uxx < 0
(not quite so obvious: this reflects the concavity of the utility function; it will be easy to
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check it on our explicit solution at the end). Then the optimal a1 (ignoring the constraint
0 ≤ a1 ≤ 1) is

a∗1 = −(µ− r)ux
σ2xuxx

which is positive. We proceed, postponing till later the verification that a∗1 ≤ 1. The
optimal a2 satisfies

h′(a∗2) = eρtux;

we can be sure this a∗2 is positive by assuming that h′(0) =∞.

To go further we now specialize to the power-law utility h(a2) = aγ2 with 0 < γ < 1. The
same argument we used in the deterministic case shows that the solution must have the
form

u(x, t) = g(t)xγ .

The associated a∗1 and a∗2 are evidently

a∗1 =
(µ− r)
σ2(1− γ)

, a∗2 =
[
eρtg(t)

]1/(γ−1)
x.

We assume henceforth that µ− r < σ2(1−γ) so that a∗1 < 1. Substituting these values into
the HJB equation gives, after some arithmetic,

dg

dt
+ νγg + (1− γ)g(eρtg)1/(γ−1) = 0

with

ν = r +
(µ− r)2

2σ2(1− γ)
.

We must solve this with g(T ) = 0. This is the same nonlinear equation we dealt with in
Example 1 – with ν in place of r. So we can go straight to the answer: u = g(t)xγ with

g(t) = e−ρt
[

1− γ
ρ− νγ

(
1− e−

(ρ−νγ)(T−t)
1−γ

)]1−γ
.

It should not be surprising that we had to place some restrictions on the parameters to
get this solution. When these restrictions fail, inequalities that previously didn’t bother
us become important (namely the restrictions 0 ≤ a1 ≤ 1, which prohibit borrowing and
short-selling).

We have solved the HJB equation; but have we found the value function? The answer is
yes, as we now show using a verification argument.

*************************
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The verification argument. In the deterministic case we used a heuristic argument to
derive the HJB equation, but then showed completely honestly that a (sufficiently smooth)
solution of the HJB equation (satisfying appropriate boundary or final-time conditions)
provides a bound on the value attainable by any control. A similar result holds in the
stochastic setting.

Rather than give a general result at this time, let’s focus on the example just completed
(Merton’s optimal selection and consumption problem). All the ideas required for the
general case are already present here. Brief review of our task: the state equation is

dy = [(1− α1)yr + α1yµ− α2]dt+ α1yσdw

which we shall write for simplicity as

dy = f(y, α1, α2)dt+ α1yσdw.

The value function is

u(x, t) = max
α

Ey(t)=x

∫ τ

t
e−ρsh[α2(s)] ds

where τ is either the first time y = 0 (if this happens before time T ) or τ = T (if y doesn’t
reach 0 before time T ). The HJB equation is

vt + max
a1,a2

{
e−ρth(a2) + f(x, a1, a2)vx +

1
2
x2a2

1σ
2vxx

}
= 0

for t < T , with v = 0 at t = T . We didn’t fuss over it before, but clearly v should also
satisfy v(0, s) = 0 for all s. We write v instead of u, to reserve notation u for the optimal
value. The goal of the verification argument is to show that v ≥ u, i.e. to show that no
control strategy can achieve an expected discounted utility better than v. Our argument
will also show that the feedback strategy associated with the HJB calculation – namely

α1(s) = −(µ− r)vx
σ2xvxx

(y(s), s), h′(α2)(s) = eρsvx(y(s), s) (3)

does indeed achieve expected discounted value v; in other words v ≤ u. This suffices of
course to show v = u.

Consider any control α̃(s), and the associated state ỹ(s) starting from ỹ(t) = x. Of course
we assume α̃ is non-anticipating, i.e. it depends only on knowledge of ỹ(s) in the present
and past, not the future. (If this condition confuses you, just assume α̃ is given by a
feedback law, i.e. α̃(s) = F (y(s), s) for some deterministic function F (y, s). Such controls
are automatically non-anticipating.) We wish to show that

v(x, t) ≥ Ey(t)=x

∫ τ̃

t
e−ρsh[α̃2(s)] ds.

Consider φ(s) = v(ỹ(s), s)): by the Ito calculus it satisfies

dφ = vsds+ vydỹ +
1
2
vyydỹdỹ

= vsds+ vy[f(α̃, ỹ)ds+ α̃1(s)ỹ(s)σdw] +
1
2
vyyα̃

2
1(s)ỹ2(s)σ2ds.
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Therefore

v(ỹ(t′), t′)− v(ỹ(t), t) =
∫ t′

t
[vs + vyf +

1
2
vyyỹ

2α̃2
1σ

2]ds+
∫ t′

t
σα̃1ỹvydw

where each integrand is evaluated at y = ỹ(s), α = α̃(s) at time s. The expected value
of the second integral is 0 (here is where we use that α is nonanticipating; we will return
to this when we discuss stochastic integrals). Thus taking the expectation, and using the
initial condition:

E
[
v(ỹ(t′), t′)

]
− v(x, t) = E

[∫ t′

t
(vs + vyf +

1
2
vyyỹ

2α̃2
1σ

2)dt

]
.

Now from the definition of the Hamiltonian we have

vt(ỹ(s), s) +
{
e−ρsh(α̃2(s)) + f(ỹ(s), α̃(s))vy(ỹ(s), s) +

1
2
ỹ2(s)α̃2

1(s)σ2vyy(ỹ(s), s)
}
≤ 0.

(4)
Combining this with the preceding relation gives

E
[
v(ỹ(t′), t′)

]
− v(x, t) ≤ −E

[∫ t′

t
e−ρsh(α̃2(s)ds

]
.

Taking t′ = τ̃ and using the fact that v(ỹ(t′), t′) = 0, we conclude that

v(x, t) ≥ E
[∫ τ̃

t
e−ρsh(α̃(s)ds

]
.

Maximizing the right hand side over all α̃ we conclude that

v ≥ u

For the special feedback law associated with the HJB equation, which fixes the control α
by (3), relation (4) becomes equality. This shows that v ≤ u, since v is the value achieved
by a specific control strategy and u is the maximum value over all possible strategies. Thus
v = u. In summary: the function v, defined by solving the HJB equation with appropriate
boundary and initial conditions, is in fact the value function of this stochastic control
problem, and the control strategy (3) is indeed optimal.

Notice that this calculation rests on pretty much the same tools we used to derive the HJB:
(a) the Ito calculus, to get a representation of u(ỹ(s), s), and (b) the fact that any integral
“dw” has expected value 0.
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