Problem set 5 - Due 04/02/2012Functional analysis - spring 2012

1) Show that if there is a nonegative k such that A^k is compact then I - A is Fredholm.

2) X and Y are B-space. Show that if $A \in B(X, Y)$ and $A' \in K(Y', X')$, then $A \in K(X, Y)$.

3) Suppose X is a B-space, dim $X = \infty$ and let $A \in K(X)$. Show that $0 \in \sigma(A)$ and that if R(A) is infinite dimensional, it is never closed.

4) Let $X = l^2$ and define $T: X \to X$ by

 $T(x_1, x_2, ...,) = (0, x_1/1, x_2/2, ..., x_n/n, ...).$

Show that T is compact. What is the spectrum of T?

Same question for

$$S(x_1, x_2, ...,) = (x_1/1, x_2/2, ..., x_n/n, ...).$$

5) $T \in B(X)$ and satisfies $T^2 = I$. Show that $\sigma(T) \in \{1, -1\}$. Show that if $T \neq \pm I$, then $\sigma(T) = \{1, -1\}$ and moreover we have the direct sum decomposition $X = N(T - I) \oplus N(T + I)$.

6) Let K be of rank 1, namely $K(x) = x'_1(x)x_1$ for some $x_1 \in X$ and $x'_1 \in X'$. What is $\sigma(K)$?