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Abstract

Given a family F of k-element sets, S1, . . . , Sr ∈ F form an r-sunflower if Si ∩Sj = Si′ ∩Sj′

for all i 6= j and i′ 6= j′. According to a famous conjecture of Erdős and Rado (1960), there is
a constant c = c(r) such that if |F| ≥ ck, then F contains an r-sunflower.

We come close to proving this conjecture for families of bounded Vapnik-Chervonenkis di-
mension, VC-dim(F) ≤ d. In this case, we show that r-sunflowers exist under the slightly

stronger assumption |F| ≥ 210k(dr)
2 log∗ k

. Here, log∗ denotes the iterated logarithm function.
We also verify the Erdős-Rado conjecture for families F of bounded Littlestone dimension

and for some geometrically defined set systems.

1 Introduction

An r-sunflower is a collection of r sets whose pairwise intersections are the same. That is, r distinct
sets S1, . . . , Sr form an r-sunflower if Si ∩ Sj = Si′ ∩ Sj′ for all i 6= j and i′ 6= j′. The term was
coined by Deza and Frankl [11]. For brevity, a k-element set is called a k-set.

Let fr(k) be the minimum positive integerm such that every family of k-sets whose size is at least
m contains r members that form an r-sunflower. Erdős and Rado [13] proved that fr(k) ≤ k!(r−1)k.
The Erdős-Rado “sunflower conjecture” states that there is a constant C = C(r) depending only
on r such that fr(k) ≤ Ck. Over the years, some small improvements have been made on the upper
bound k!(r − 1)k, see [1, 18]. Very recently, a breakthrough has been achieved by Alweiss, Lovett,
Wu, and Zhang [5], who proved that

fr(k) ≤ (cr3 log k log log k)k,

where c is an absolute constant. For an alternative proof of this result, using Shannon capacities,
see [22]. Some weaker versions of the conjecture are discussed in [3, 14, 20].

The aim of this note is to study the Erdős-Rado sunflower conjecture for families of bounded
dimension. Apart from set systems realized in low-dimensional Euclidean spaces, we consider two
additional notions of dimension: the Vapnik-Chervonenkis dimension (in short, VC-dimension)
and the Littlestone dimension (LS-dimension), introduced in [29] and [19], respectively. Both are
important combinatorial parameters that measure the complexity of graphs and hypergraphs, and
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play important roles in statistics, algebraic geometry, PAC learning, and in model theory. There
is a growing body of results in extremal combinatorics and Ramsey theory which give much better
bounds or stronger conclusions under the additional assumption of bounded dimension (see [15, 16]).

Given a family of sets F with ground set V , the VC-dimension of F , denoted by VC-dim(F),
is the maximum d for which there exists a d-element set S ⊂ V such that for every subset B ⊂ S,
one can find a member A ∈ F with A ∩ S = B. In this case, we say that S is shattered by F .

Let fdr (k) denote the least positive integer m such that every family F of k-sets with |F| ≥ m
and VC-dim(F) ≤ d contains an r-sunflower. Clearly, we have fdr (k) ≤ fr(k), and the Erdős-Rado
sunflower conjecture implies the following weaker conjecture.

Conjecture 1.1. For d ≥ 1 and r ≥ 3, there is a constant C = C(d, r) such that fdr (k) ≤ Ck.

It is not difficult to see that, even for d = 1, the function f1r (k) grows at least exponentially
in k. More precisely, we have f1r (k) > (r − 1)k−1. Indeed, consider a rooted complete (r − 1)-ary
tree T with the root on level 0 and with (r − 1)k−1 leaves on level k − 1. Let F be the family of
k-sets consisting of the vertex sets of the root-to-leaf paths in T . Obviously, F does not contain
any r-sunflower, and its VC-dimension is at most 1.

More generally, we have the recursive lower bound

fdr (k1 + k2) > (fdr (k1)− 1)(fdr (k2)− 1).

Indeed, for i = 1, 2, let Fi be a family of ki-sets of size fdr (ki) − 1 with VC-dimension at most d
and without any r-sunflower. For each set S in F1, make a new copy of F2 and add S to each set
in F2. The ground set of copies of F2 are pairwise disjoint for distinct sets of F1. The resulting set
system F is (k1 + k2)-uniform with size (fdr (k1)− 1)(fdr (k2)− 1), VC-dimension at most d, and has
no r-sunflower. This implies that if fr(k

′) > Ck
′
+ 1 for some k′ and C, then there is d depending

on k′ such that for all sufficiently large k, fdr (k) > Ck. Thus, any exponential lower bound for
the classical sunflower problem (with unbounded VC-dimension) can be achieved by a construction
with bounded (but sufficiently large) VC-dimension.

Using a result of Ding, Seymour, and Winkler [12], we settle Conjecture 1.1 for families of k-sets
with VC-dimension d = 1.

Theorem 1.2. For integers r ≥ 3 and k ≥ 1, every family of k-sets with VC-dimension d = 1 and
cardinality at least r10k has an r-sunflower. That is, we have

f1r (k) ≤ r10k.

Let log∗ k denote the iterated logarithm of k, i.e., the minimum i for which the i times iterated
logarithm of k satisfies log(i) k ≤ 2. All logarithms used in this note are of base 2.

For d ≥ 2, our upper bound on fdr (k) is not far from the one stated in Conjecture 1.1.

Theorem 1.3. For integers d, k, r ≥ 2, every family of k-sets with VC-dimension at most d and

cardinality at least 210k(dr)
2 log∗ k

has an r-sunflower. In notation,

fdr (k) ≤ 210k(dr)
2 log∗ k

.
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The Littlestone dimension of F ⊆ 2V is defined as follows. Consider a rooted complete binary
tree Td, with the root at level 0 and with 2d leaves at the last level. Let the leaves of Td be labeled
by sets in F , and all other vertices by elements of V . We say that Td is shattered by F if for every
root-to-leaf path with labels v0, v1, . . . , vd−1, F, we have vi ∈ F if and only if the (i + 1)st vertex
along the path is the left-child of vi, for all 0 ≤ i < d. The Littlestone dimension of F , denoted by
LS-dim(F), is the largest d for which there is a labeling of Td which is shattered by F .

Obviously, we have VC-dim(F) ≤ LS-dim(F), because if the S = {s0, . . . , sd−1} ⊆ V is shat-
tered by F , then the labeling of Td in which all vertices at level i are labeled by si, 0 ≤ si < d, and
the leaves by the corresponding sets in F with the appropriate intersection with S, is also shattered
by F .

Let hdr(k) denote the least positive integer m such that every family F of k-sets with |F| ≥ m
and LS-dim(F) ≤ d contains an r-sunflower. Since the Littlestone dimension of a set system is at
least as large as its VC-dimension, we have

hdr(k) ≤ fdr (k) ≤ fr(k).

It turns out that hdr(k), as a function of k, grows much more slowly than fdr (k). Its growth rate is
only polynomial in k, albeit the degree of this polynomial depends on d.

Theorem 1.4. For positive integers d, r, k, every family of k-sets with LS-dimension at most d
and cardinality at least (rk)d has an r-sunflower. Using our notation, we have

hdr(k) ≤ (rk)d.

On the other hand, for integers d, r ≥ 3, and k ≥ 4d, we have

hdr(k) ≥ (rk/d)d−o(d),

where the o(d) term goes to 0 as d→∞.

For several geometrically defined set systems, one can verify the sunflower conjecture by explor-
ing the special properties of the underlying configurations.

A collection D of Jordan regions in the plane is called a family of pseudo-disks if the boundaries
of any two members in D intersect in at most two points. For simplicity, we will assume that D is
in general position, that is, no point lies on the boundary of three regions and no two regions are
tangent. It is well known that the VC-dimension of the set system obtained by restricting D to
V is at most 3 (see [8]) and, hence, Theorem 1.3 applies. However, in this case, we can verify the
sunflower conjecture.

Theorem 1.5. Let V be a planar point set and let D = {D1, . . . , DN} be a family of pseudo-disks
such that the size of every set Si = Di ∩ V is equal to k. If N ≥ (500 + r)900k, where r > 2, then
there are r distinct sets Si1 , . . . , Sir that form an r-sunflower.

Our paper is organized as follows. Sections 2 and 3 contain the proofs of Theorems 1.2 and 1.3,
respectively. Theorem 1.4 about set systems of bounded Littlestone dimension is established in
Section 4. Section 5 is devoted to low-dimensional geometric instances of the sunflower conjecture,
while the last section contains some concluding remarks.

For the clarity of presentation, throughout this paper we make no attempt to optimize the
absolute constants occurring in the statements.
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2 VC-dimension 1–Proof of Theorem 1.2

Given a family F of subsets of a ground set V , as usual, let ν(F) denote the packing number of
F , i.e., the maximum number of pairwise disjoint members of F . Also, let τ(F) be the transversal
number of F , i.e., the minimum number of elements that can be selected from V such that every
member of F contains at least one of them. Finally, let λ(F) denote the maximum integer l
such that there are l sets S1, . . . , Sl ∈ F with the property that for any 1 ≤ i < j ≤ l, there is
v = vij ∈ Si ∩ Sj such that v 6∈ St for t ∈ [m] \ {i, j}. It is easy to verify that λ(F) is at least as
large as the VC-dimension of the set system (hypergraph) F∗ dual to F .

We need the following result of Ding, Seymour, and Winkler [12] which bounds the transversal
number of F in terms of its packing number and λ(F).

Lemma 2.1 (Ding, Seymour, Winkler). Let F be a set system with ground set V , and let ν(F) =
ν, τ(F) = τ and λ(F) = λ. Then we have

τ ≤ 11λ2(λ+ ν + 3)

(
λ+ ν

λ

)2

.

Notice that VC-dim(F) = 1 implies that λ(F) ≤ 3. Hence, Theorem 1.2 is an immediate
corollary to the following result.

Theorem 2.2. Let r ≥ 3 and let F be a family of k-sets with λ(F) = λ which does not contain an
r-sunflower. Then we have |F| ≤ (λ+ r)6λk.

Proof. We proceed by induction on k. The base case k = 1 follows from the trivial bound |F| ≤ r−1.
The induction hypothesis is that the bound holds for families of (k−1)-sets. For the inductive step,
let F ⊆ 2V be a family of k-sets with no r-sunflower. In particular, F has no r disjoint members,
so that ν(F) < r. By Lemma 2.1,

τ(F) ≤ 11λ2(λ+ r + 3)
(
λ+r
λ

)2 ≤ 11λ2(λ+ r + 3)(λ+ r)2λ(λ!)−2

≤ 11(λ+ r + 3)(λ+ r)2λ ≤ 20(λ+ r)2λ+1.

Therefore, there is v ∈ V incident to at least |F|/τ(F) ≥ |F|/
(
20(λ+ r)2λ+1

)
members of F .

Let F ′ = {S \ {v} : S ∈ F , v ∈ S}. Then we have |F ′| ≥ |F|/
(
20(λ+ r)2λ+1

)
, λ(F ′) ≤ λ(F),

and F ′ does not contain any r-sunflower. By the induction hypothesis, we have |F ′| ≤ (λ+r)6λ(k−1).
Thus, we obtain

|F| ≤ 20(λ+ r)2λ+1|F ′| ≤ 20(λ+ r)2λ+1(λ+ r)6λ(k−1) ≤ (λ+ r)6λk,

as required.

3 Bounded VC-dimension–Proof of Theorem 1.3

In this section, we prove Theorem 1.3, which is the main result of this paper. We need the
following lemma due to Sauer [23], Shelah [25], Perles, and, in a slightly weaker form, to Vapnik
and Chervonenkis [29]. See also [21, 17].

Lemma 3.1 (Sauer, Shelah, Perles). Let F be a set system with ground set V and VC-dimension
at most d. Then we have |F| ≤

∑d
i=0

(|V |
i

)
.
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Before turning to the proof, we need to discuss some closely related variants of the sunflower
problem.

First, we could ask the same question for multifamilies of sets, that is, for collections of not
necessarily distinct sets. Let gr(k) be the minimum positive integer m such that every multifamily of
k-sets of size m contains an r-sunflower. It is an easy exercise to prove that gr(k) = (r−1)fr(k)+1.

Analogously, for any d ≥ 1, let gdr (k) be the minimum positive integer m such that every
multifamily of k-sets of size m with VC-dimension at most d contains an r-sunflower. We similarly
have gdr (k) = (r − 1)fdr (k) + 1.

To obtain upper bounds for gdr (k) and fdr (k), we define the following related function. Let αdr(k)
denote the maximum α such that for every nonempty multifamily F of k-sets with VC-dimension
at most d, if we select r members uniformly at random from F with replacement, the probability
that they have pairwise equal intersections is at least α.

Next, notice that the value of fr(k) remains the same if we change the definition from families
of k-sets to families of sets with at most k elements. Indeed, this can be achieved by adding distinct
“dummy” vertices to each set of size smaller than k so that it will have size exactly k. The same
holds for the functions fdr (k), gr(k), gdr (k), and αdr(k) because adding dummy vertices does not
affect the VC-dimension of the family.

Considering a family of VC-dimension d which consists of fdr (k)− 1 sets of size k and contains
no r-sunflower, we immediately obtain the following upper bound on αdr(k) as the r-tuples of sets
from the family that have pairwise equal intersections are those that consist of the same set r times.

αdr(k) ≤ (fdr (k)− 1)1−r. (1)

The following lemma implies that this bound on αdr(k) is tight within a factor err−1.

Lemma 3.2. For integers d, k, r ≥ 2 we have

αdr(k) ≥ gdr (k)1−r/e.

Proof. Let Sdr (m, k) denote the minimum possible number of r-sunflowers in a multifamily F of
at most k-element sets with cardinality m and VC-dimension at most d. From the definition, if
m < gdr (k), then Sdr (m, k) = 0, while if m ≥ gdr (k), then Sdr (m, k) ≥ 1.

Our argument is based on the proof technique used to obtain the “crossing lemma” [2], see
also [27]. The idea is to use an averaging (or, equivalently, probabilistic) argument to amplify a
weak bound to a better bound. By deleting one set from each r-sunflower, we get the trivial bound
Sdr (m, k) ≥ m− gdr (k) + 1. For M ≥ m, by averaging over all subfamilies of size m, we obtain

Sdr (M,k) ≥ Sdr (m, k)

(
M

r

)
/

(
m

r

)
.

In particular, Sdr (m, k)/
(
m
r

)
is a monotone increasing function of m. Set m0 = (1 + 1/r)gdr (k)− 1.

Then we have Sdr (m0, k) ≥ m0 − gdr (k) + 1 = gdr (k)/r. Thus, for m ≥ m0, we have

Sdr (m, k) ≥ Sdr (m0, k)

(
m

r

)
/

(
m0

r

)
≥ 1

r
gdr (k)

(
m

r

)
/

(
(1 + 1/r)gdr (k)

r

)
(2)

≥ 1

er
gdr (k)1−rmr.
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Let αdr(m, k) be the maximum α with the property that for every multifamily F of at most
k-element sets with cardinality m and VC-dimension at most d, if we uniformly at random choose
r sets from F with replacement, the probability that they have pairwise equal intersections is at
least α. Thus,

αdr(m, k) ≥ Sdr (m, k)/

(
m

r

)
+m1−r, (3)

where the first term comes from possibly choosing r different sets (in terms of label, if we view the
m not necessarily distinct sets as labeled from 1 to m), and the second term comes from possibly
choosing the same set r times.

For m ≥ m0, by using (3) and then (2), we have

αdr(m, k) ≥ Sdr (m, k)/

(
m

r

)
≥ r!Sdr (m, k)m−r ≥ (r − 1)!gdr (k)1−r/e.

For m < m0, using the trivial bound Sdr (m, k) ≥ 0, we have

αdr(m, k) ≥ m1−r > m1−r
0 =

(
(1 + 1/r)gdr (k)− 1

)1−r
≥ gdr (k)1−r/e.

As αdr(k) = infm α
d
r(m, k), we have the desired bound αdr(k) ≥ gdr (k)1−r/e.

Combining the previous lemma with the Erdős-Rado bound fr(k) ≤ k!(r−1)k, and the inequal-
ity gdr (k) ≤ gr(k) = (k − 1)fr(k) + 1, we obtain the following corollary.

Corollary 3.3. For any integers d, k, r ≥ 2, we have

αdr(k) ≥
(
k!(r − 1)k+1 + 1

)1−r
/e.

We are now in a position to prove the following result which, together with (1), immediately
implies Theorem 1.3.

Theorem 3.4. For any d, k, r ≥ 2, we have

αdr(k) ≥ 2−10k(dr)
2 log∗ k

.

Proof. If r = 2, then we have αd2(k) = 1 and the result follows. Therefore we can assume r ≥ 3.
We use induction on k. For the base cases k < 8, by Corollary 3.3, we have

αdr(k) ≥
(
k!(r − 1)k+1 + 1

)1−r
/e ≥ 2−10k(dr)

2 log∗ k
.

For the inductive step, let k ≥ 8 and assume that the statement holds for all k′ < k. Let F
be a non-empty multifamily of at most k-element sets with VC-dimension at most d. Without loss
of generality, we may assume that the ground set is N. Let εi be the fraction of sets in F that
contain i. By reordering the elements of the ground set, if necessary, we may also assume that
ε1 ≥ ε2 ≥ . . ., that is, the elements of the ground set are ordered in decreasing frequency.

As each member of F has size at most k, the expected size of the intersection of [s] = {1, 2, . . . , s}
with a randomly selected member of F is at most k. On the other hand, this expectation is
ε1 + · · ·+ εs ≥ sεs. Therefore, we have εs ≤ k/s.
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Set s = d4k4/αdr(log k)e. Define two multifamilies, F1 and F2, as follows. Let

F1 = {S : S ∈ F and |S ∩ [s]| ≤ log k}, F2 = F \ F1.

Thus, we have |F| = |F1|+|F2|. We select at random, uniformly and independently with repetition,
r sets S1, . . . , Sr ∈ F . Let X denote the event that the r sets form an r-sunflower. The proof now
falls into two cases.

Case 1: Suppose that |F1| ≥ (1− 1/r)|F|. Let Y denote the event that S1, . . . , Sr ∈ F1. Let Z be
the event that S1 ∩ [s], . . . , Sr ∩ [s] have pairwise equal intersections, and let W be the event that
S1 \ [s], . . . , Sr \ [s] are pairwise disjoint. Hence,

P[X] ≥ P[Y ∩ Z ∩W ] = P[Y ∩ Z]− P[Y ∩ Z ∩ W̄ ] ≥ P[Y ∩ Z]− P[W̄ ]. (4)

Clearly, we have

P[Y ] ≥ (1− 1/r)r ≥ 1

4
, (5)

and, by definition,

P[Z | Y ] ≥ αdr(log k). (6)

Therefore, by (5) and (6), we have

P[Y ∩ Z] = P[Y ]P[Z | Y ] ≥ 1

4
αdr(log k). (7)

Fixing Si \ [s], which has size at most k, the probability that Sj \ [s] contains at least one of the
elements of Si \ [s] is at most kεs+1 ≤ k2/(s+ 1). Hence, by the probability union bound, we have

P[W̄ ] ≤
(
k
2

)
k2

s+ 1
<
k4

2s
≤ αdr(log k)

8
. (8)

Combining (4), (7), and (8), we obtain

P[X] = P[Y ∩ Z]− P[W̄ ] ≥ αdr(log k)

4
− αdr(log k)

8
=
αdr(log k)

8
.

Hence, by the induction hypothesis, we have

αdr(k) ≥ P[X] ≥ 1

8
αdr(log k) ≥ 1

8
2−10(log k)(dr)

2 log∗ k−2 ≥ 2−10k(dr)
2 log∗ k

.

Case 2 : Suppose that |F2| ≥ |F|/r. Since F has VC-dimension at most d, by the Sauer-Shelah-
Perles lemma, Lemma 3.1, the number of distinct sets in {S ∩ [s] : S ∈ F} is at most sd. By the
pigeonhole principle, there is a subset A ⊂ [s] with |A| ≥ log k such that the family

F ′ = {S ∈ F : S ∩ [s] = A}

has at least |F2|/sd ≥ |F|/(rsd) members.
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Select r sets S1, . . . , Sr from F uniformly at random with repetition. Let Y ′ denote the event
that S1, . . . , Sr ∈ F ′ and let Z ′ denote the event that S1 \ [s], . . . , Sr \ [s] form an r-sunflower.
Hence,

P[X] ≥ P[Y ′ ∩ Z ′]

= P[Y ′] · P[Z ′ | Y ′]

≥
(

1
rsd

)r
αdr(k − log k)

≥ 1
rr(5k4)dr

(
αdr(log k)

)dr
αdr(k − log k).

By the induction hypothesis, we obtain

P[X] ≥ 1

rr(5k4)dr

(
2−10(log k)(dr)

2 log∗ k−2
)dr (

2−10(k−log k)(dr)
2 log∗ k

)
.

Since dr ≥ 6 and k ≥ 8, we have

P[X] ≥ 1

rr(5k4)dr
2−10k(dr)

2 log∗ k+8 log k(dr)2 log∗ k ≥ 2−10k(dr)
2 log∗ k

.

This completes the proof.

4 Littlestone dimension–Proof of Theorem 1.4

Originally, the Littlestone dimension was introduced for the characterization of regret bounds in
online learning, see [4, 19, 7]. As Chase and Freitag [9] pointed out, the notion is equivalent to
Shelah’s model theoretic rank. The definition can also be reformulated as follows.

For a finite family F of sets with ground set V , define LS-dim(F), the Littlestone dimension
of F , recursively. If |F| ≤ 1, then let LS-dim(F) = 0. For an element x of the ground set, let
Fx = {S \ {x} : x ∈ S and S ∈ F} and F ′x = {S : x 6∈ S and S ∈ F}. If |F| > 1, then let

LS-dim(F) = 1 + max
x∈V

min
(
LS-dim(Fx),LS-dim(F ′x)

)
.

For d ≥ 1, let hdr(k) be the minimum positive integer m such that every family of k-sets with
size at least m and Littlestone dimension at most d contains an r-sunflower.

Lemma 4.1. For positive integers k and r, we have h1r(k) = k + r − 1.

Proof. We have h1r(k) > k + r − 2 by considering the following family Fr,k of k-sets. For k = 1,
let the family consist of r − 1 singleton sets. For k > 1, we obtain Fr,k from Fr,k−1 by adding one
new ground element to all sets in Fr,k−1, and then including one additional k-set with entirely new
ground elements. It is straightforward to check that this family of k-sets has k + r − 2 members,
its Littlestone dimension is 1, and it does not contain any r-sunflower.

We prove the upper bound inductively on k, with the base case k = 1 being trivial. Let k ≥ 2
and let F be a family of k-sets with size h1r(k)− 1 which has Littlestone dimension at most 1 and
does not contain an r-sunflower. A family of sets has Littlestone dimension at most 1 if and only
if every element x of the ground set belongs to at most one or to all but at most one set in the
family, that is, if |Fx| ≤ 1 or |F ′x| ≤ 1 for all x. If there is an element x for which |F ′x| ≤ 1, then
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|Fx| = |F| − 1 = h1r(k) − 2 and Fx is a family of (k − 1)-sets of Littlestone dimension at most 1
which does not contain an r-sunflower, from which we obtain h1r(k − 1) ≤ h1r(k − 1) + 1. If there
is no ground element x in more than one set in F , then all members of F are disjoint. Therefore,
|F| < r and h1r(k) ≤ r.

Lemma 4.2. For any family F of sets of size at most k with no (r + 1)-sunflower, there is an
element of the ground set which belongs to at least a 1

kr -fraction of the sets.

Proof. Consider a maximum family {S1, . . . , Ss} of sets in F which are pairwise disjoint. Such a
family forms a sunflower and hence s ≤ r. In particular, any set in F contains at least one element
from

⋃s
i=1 Si, which has a total of ks ≤ kr elements. By the pigeonhole principle, there is an

element of the ground set which belongs to at least a fraction 1
kr of the sets in F .

Lemma 4.3. For integers k, r ≥ 1 and d ≥ 2, we have

hdr(k) ≤ max
(
k(r − 1)

(
hd−1r (k − 1)− 1

)
+ 1, hdr(k − 1) + hd−1r (k)− 1

)
.

Proof. Let F be a family of k-sets with size hdr(k) − 1 which has Littlestone dimension at most d
and does not contain an r-sunflower. By Lemma 4.2, there is an element x of the ground set in at
least a fraction 1

k(r−1) of the sets in F . As F has Littlestone dimension d, at least one of Fx or F ′x
has Littlestone dimension at most d− 1.

If Fx has Littlestone dimension at most d− 1, then Fx is a family of (k − 1)-sets which has no
r-sunflower, and hence

1

k(r − 1)

(
hdr(k)− 1

)
=

1

k(r − 1)
|F| ≤ |Fx| ≤ hd−1r (k − 1)− 1,

from which it follows that hdr(k) ≤ k(r − 1)
(
hd−1r (k − 1)− 1

)
+ 1.

If F ′x has Littlestone dimension at most d − 1, then we have |F ′x| ≤ hd−1r (k) − 1 and |F ′x| ≤
hdr(k − 1)− 1, from which it follows that

hdr(k)− 1 = |F| = |Fx|+ |F ′x| ≤ hd−1r (k)− 1 + hdr(k − 1)− 1,

and, hence, hdr(k) ≤ hd−1r (k) + hdr(k − 1)− 1.

We can now prove Theorem 1.4.

Proof of Theorem 1.4. For the upper bound, the proof is by induction on the Littlestone dimension
d. In the base case d = 1, we have h1r(k) = k + r − 1 ≤ kr. Suppose d ≥ 2. Consider the recursive
upper bound on hdr(k) from Lemma 4.3. We split the proof into two cases depending on the
maximum of the two functions in the upper bound on hdr(k). In each case, we use the induction
hypothesis.

In the first case, we have

hdr(k) ≤ k(r − 1)
(
hd−1r (k − 1)− 1

)
+ 1 ≤ kr(kr)d−1 = (kr)d.

In the latter case, we have

hdr(k) ≤ hd−1r (k) + hdr(k − 1)− 1 < (kr)d−1 + ((k − 1)r)d ≤ (kr)d−1 + (1− 1

k
)(kr)d < (kr)d.
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In either case, we obtained the desired bound.

For the lower bound, let d ≥ 6, r ≥ 3, k be sufficiently large with k ≥ 4d, n = k2r/(500d log k),
t = dlog de and m = n−1(n/k)d−t. We use the probabilistic method to show that there exists
a family F of k-element subsets of [n] := {1, . . . , n} with |F| ≥ m/2, F does not contain any
r-sunflower, and the Littlestone dimension of F is at most d. This implies the desired lower bound
on hdr(k).

We will show that F satisfies four properties each with high probability. This means that the
probability is of the form 1− o(1) with the o(1) term tending to 0 as k tends to infinity. Hence, all
four properties hold with high probability. These four properties guarantee that F has the desired
properties and hence there is a choice of F with the desired properties.

Pick m subsets S1, . . . , Sm ⊂
([n]
k

)
uniformly and independently at random. Let F be the family

of distinct Si. Since m�
(
n
k

)
, it is easy to see that, with high probability, we have |F| ≥ m/2.

We next show that, with high probability, F does not contain any r-sunflower. Consider a
subsequence of r of these random sets, say S1, . . . , Sr. The number of sequences of r sets in

([n]
k

)
which have pairwise equal intersection, and this intersection has size s, is(

n

s

) r∏
i=1

(
n− s− (i− 1)(k − s)

k − s

)
= s!−1(k − s)!−rn!/ (n− s− r(k − s))!

This is because there are
(
n
s

)
ways of choosing the common intersection of size s, and given the Sj

with j < i, the remaining k − s elements from Si not in the common intersection must be chosen
from the n− s− (i− 1)(k − s) elements not in any of the Sj with j < i. As there are

(
n
k

)
ways to

pick each Si, the probability that the r random sets S1, . . . , Sr have pairwise equal intersection of
size s is(

n

k

)−r
s!−1(k − s)!−r n!

(n− s− r(k − s))!
=

(
k

s

)
· (k!/(k − s)!)r−1 · n!/(n− s− r(k − s))!(

k!
(
n
k

))r . (9)

Note that the expression in the right hand side of (9) is the product of three factors. The
middle factor is at most ks(r−1). In the third factor in the right hand side of (9), the numerator
can be expressed as the product of factors (n − j) for j = 0, . . . , s + r(k − s)− 1, which is a total
of s+ r(k − s) factors, while the denominator can be expressed as the product of rk factors which
are of the form (n− h) with h ≤ k. It follows that the third factor in the right hand side of (9) is
at most

(n− k)−s(r−1)
(r−1)(k−s)−1∏

j=1

(
1− j

n− k

)
≤ (n− k)−s(r−1)e−(r−1)

2(k−s)2/(4n),

where we used the inequality 1− x ≤ e−x for x ≥ 0 to bound each factor in the product.
It follows that the expression on the right hand side of (9) is at most(

k (k/(n− k))r−1
)s
· e−(r−1)2(k−s)2/(4n). (10)

Thus, the probability that S1, . . . , Sr form an r-sunflower is at most

k∑
s=0

(
k (k/(n− k))r−1

)s
e−(r−1)

2(k−s)2/(4n).
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We bound the probability that there is an r-sunflower in F by taking the union bound over all the(
m
r

)
choices of r sets from S1, . . . , Sm. Note that (10) is the product of two factors which are each

at most 1. We bound (10) for s ≥ 2d by the first factor, and for s < 2d by the second factor. We
also use the inequality

(
m
r

)
≤ (em/r)r. Substituting in the chosen values for n and m, we get a

o(1) probability that there is an r-sunflower in F .
Finally, we bound the probability that F has Littlestone dimension greater than d. If F has

Littlestone dimension greater than d, in the rooted complete binary tree realizing the Littlestone
dimension, going down from the root by taking the left-child each time for d− t levels, we see that
there are at least 2t ≥ d sets that each contain the same d− t vertices. So the probability that F
has Littlestone dimension greater than d is at most the probability that there are d sets in F that
each contain the same d− t elements from [n]. This probability in turn is at most(

m

d

)(
n

d− t

)(
k

n

)(d−t)d
<
(em
d

)d( en

d− t

)d−t(k
n

)(d−t)d
= o(1).

Here we used the union bound over all
(
m
d

)
choices of d indices from [m] and over all

(
n
d−t
)

choices
of d− t distinct integers in [n]. We also used that the probability that a given set of d− t elements
in [n] is in a random k-set is at most (k/n)d−t. The last inequality is by substituting in the chosen
values of n and m.

5 Geometric versions of the sunflower conjecture

We start with the proof of Theorem 1.5. We need the following lemma due to Sharir [24].

Lemma 5.1. Let D = {D1, . . . , Dt} be a family of pseudo-disks in the plane, and let P denote the
set of all intersection points of the boundaries of Di. Then the number of points in P covered by
the interior of at most k other regions Di is at most 26kt.

Proof of Theorem 1.5. Given r > 2, let N = (500 + r)900k. We proceed by induction on k. The
base case k = 1 is trivial. Now assume the statement holds for k′ < k.

Let V be a planar point set and let D = {D1, . . . , DN} be a family of pseudo-disks in the plane
such that |Di∩V | = k for all i. By slightly perturbing each region Di, we can assume that no point
in V lies on the boundary of Di for all i. Set Si = Di ∩ V and F = {S1, . . . , SN}.

Let t = λ(F) and suppose the sets S1, . . . , St ∈ F have the property that for any 1 ≤ i < j ≤ t,
there is a vertex v ∈ Si ∩ Sj from V such that v 6∈ S` for ` ∈ [t] \ {i, j}. Then, by letting Ci denote
the boundary of Di, there are at least

(
t
2

)
connected components in R2 \

⋃
iCi that are covered by

at most two regions Di. On the other hand, by Lemma 5.1, there are at most 4(52)t such regions,
since every point in the arrangement

⋃
iCi is incident to at most four such connected components.

Therefore, we have (
t

2

)
≤ 208t,

which implies that t ≤ 417.
Further, we can assume that ν(F) ≤ r − 1, since otherwise we would be done. By Lemma 2.1,

we have

11



τ(F) ≤ 11(417)2(419 + r)

(
416 + r

417

)2

≤ (500 + r)900.

There is a vertex v ∈ V which is incident to at least N/τ(F) members in F . Let D′ = {Di ∈ D :
v ∈ Di}, V ′ = V \ {v}, and S′i = V ′ ∩ D′i. Hence, |D′| ≥ N/τ(F) ≥ (500 + r)900(k−1). By the
induction hypothesis, there are r sets S′i1 , . . . , S

′
ir

in D′ that form an r-sunflower. Together with
vertex v, we obtain an r-sunflower in F .

Replacing Lemma 5.1 with Clarkson’s theorem on levels in arrangement of hyperplanes [10],
the argument above gives the following.

Theorem 5.2. Given r > 2, there is a constant C = C(r) for which the following statement is
true. If V is a point set in R3 and H = {H1, . . . ,HN} is a family of N ≥ Ck half-spaces such that
the size of the set Si = Hi ∩ V is k for all i, then there are r distinct sets Si1 , . . . , Sir that form an
r-sunflower.

6 Concluding Remarks

The Erdős-Rado sunflower conjecture remains an outstanding open problem. Although we made
progress in this paper, it still remains open for families of bounded VC-dimension.

We were able to prove the conjecture in a geometric setting in the plane (Theorem 1.5). We
think it would be interesting to prove the conjecture in other geometric settings, such as for families
of sets that are the intersection of the ground set with semi-algebraic sets of bounded description
complexity. Such families are of bounded VC-dimension. The following conjecture is a natural
special case to consider.

Conjecture 6.1. For each integer r ≥ 3, there is a constant C = C(r) such that the following
holds. If V ⊂ R3 and F is a family of subsets of V each of size k with |F| ≥ Ck such that every
set in F is the intersection of V with a unit ball in R3, then F contains an r-sunflower.

Acknowledgement. We would like to thank Amir Yehudayoff for suggesting working with the
Littlestone dimension, and the SoCG 2021 referees for helpful comments.
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