On well-connected sets of strings

Peter Frankl^{*} János Pach[†]

Abstract

Given n sets X_1, \ldots, X_n , we call the elements of $S = X_1 \times \ldots \times X_n$ strings. A nonempty set of strings $W \subseteq S$ is said to be *well-connected* if for every $v \in W$ and for every $i(1 \le i \le n)$, there is another element $v' \in W$ which differs from v only in its *i*th coordinate. We prove a conjecture of Yaokun Wu and Yanzhen Xiong by showing that every set of more than $\prod_{i=1}^n |X_i| - \prod_{i=1}^n (|X_i| - 1)$ strings has a well-connected subset. This bound is tight.

1 Introduction

Let X_1, \ldots, X_n be pairwise disjoint sets with $|X_i| = d_i > 1$ for $1 \le i \le n$. Let

$$S = X_1 \times \ldots \times X_n = \{(x_1, \ldots, x_n) : x_i \in X_i \text{ for every } i \in [n]\}$$

be the set of strings $x = (x_1, \ldots, x_n)$, where x_i is called the *i*th coordinate of x and $[n] = \{1, \ldots, n\}$.

A subset $W \subseteq S$ is called *well-connected* if for every $x \in W$ and for every $i \in [n]$, there is another element $x' \in W$ which differs from x only in its *i*th coordinate. That is, $x'_j \neq x_j$ if and only if j = i.

The following statement was conjectured by Yaokun Wu and Yanzhen Xiong [4].

Theorem 1. Let T be a subset of $S = X_1 \times \ldots \times X_n$ with $|X_i| = d_i > 1$ for every $i \in [n]$. If

$$|T| > \prod_{i=1}^{n} d_i - \prod_{i=1}^{n} (d_i - 1),$$

then T has a nonempty well-connected subset. This bound cannot be improved.

To see the tightness of the theorem, fix an element y_i in each X_i and let $X'_i = X_i \setminus \{y_i\}$. We claim that the set of strings

$$T_0 = (X_1 \times \ldots \times X_n) \setminus (X'_1 \times \ldots \times X'_n)$$
(1)

^{*}Rényi Institute, P.O.Box 127 Budapest, 1364 Hungary and MIPT, Moscow, partially supported by the Ministry of Education and Science of the Russian Federation in the framework of MegaGrant 075-15-2019-1926. Email: peter.frankl@gmail.com.

[†]Rényi Institute, P.O.Box 127 Budapest, 1364 Hungary and MIPT, Moscow, partially supported by ERC Advanced Grant GeoScape, NKFIH (Hungarian National Research, Development and Innovation Office) grant K-131529, and by the Ministry of Education and Science of the Russian Federation in the framework of MegaGrant 075-15-2019-1926. Email: pach@cims.nyu.edu

does not have any nonempty well-connected subset. Suppose for contradiction that there is such a subset $W \subseteq T_0$, and let $x = (x_1, \ldots, x_n)$ be an element of W with the minimum number of coordinates *i* for which $x_i = y_i$ holds. Obviously, this minimum is positive, otherwise $x \notin T_0$. Pick an integer *k* with $x_k = y_k$. Using the assumption that *W* is well-connected, we obtain that there exists $x' \in W$ that differs from *x* only in its *k*th coordinate. However, then x' would have one fewer coordinates with $x_i = y_i$ than *x* does, contradicting the minimality of *x*.

In the next section, we establish a result somewhat stronger than Theorem 1: we prove that under the conditions of Theorem 1, T also has a subset W such that for every $x \in W$ and $i \in [n]$, the number of elements $x' \in W$ which differ from x only in its *i*th coordinate is *odd* (see Theorem 6). In Section 3, we present a self-contained argument which proves this stronger statement.

Shortly after learning about our proof of the conjecture of Wu and Xiong, another proof was found by Chengyang Qian.

2 Exact sequence of maps

In this section, we introduce the necessary definitions and terminology, and we apply a basic topological property of simplicial complexes to establish Theorem 1. We will assume throughout, without loss of generality, that the sets X_i are pairwise disjoint.

For every $k (0 \le k \le n)$, let

$$S_k = \{A \subseteq X_1 \cup \ldots \cup X_n : |A| = k \text{ and } |A \cap X_i| \le 1 \text{ for every } i\}.$$

Clearly, we have $|S_n| = |S| = \prod_{i=1}^n |X_i|$. With a slight abuse of notation, we identify S_n with S. The set system $\bigcup_{k=0}^n S_k$ is an abstract simplicial complex, that is, for each of its elements A, every subset of A also belongs to $\bigcup_{k=0}^n S_k$. This simplicial complex has a geometric realization in \mathbb{R}^{2n-1} , where every element A is represented by an (|A|-1)-dimensional simplex. (See [1], part II, Section 9 or [3], Section 1.5. Note that not all textbooks consider the empty set a -1-dimensional simplex, but we do.)

Assign to each $A \in S_k$ a different symbol v_A , and define V_k as the family of all formal sums of these symbols with coefficients 0 or 1. Then

$$V_k = \{\sum_{A \in S_k} \lambda_A v_A : \lambda_A = 0 \text{ or } 1\}$$

can be regarded as a vector space over GF(2) whose dimension satisfies

dim
$$V_k = |S_k| = \sum_{1 \le j_1 < j_2 < \dots < j_k \le n} d_{j_1} d_{j_2} \cdot \dots \cdot d_{j_k}.$$
 (2)

We use the standard definition of the boundary operations ∂_k . (See [2], Section 2.1.) Informally, the boundary of each (k-1)-dimensional simplex that corresponds to a member $A \in S_k$ consists of all (k-2)-dimensional simplices corresponding to (k-1)-element subsets $B \subset A$. This definition naturally extends to any collection ("chain") of (k-1)-dimensional simplices that correspond to members of S_k , with multiplicities taken modulo 2.

Definition 2. Let $\partial_0 : V_0 \to 0$. For every $k \in [n]$ and every $A \in S_k$, let

$$\partial_k(v_A) = \sum_{\substack{B \subset A \\ |B| = k-1}} v_B$$

Extend this map to a homomorphism $\partial_k : V_k \to V_{k-1}$ by setting

$$\partial_k (\sum_{A \in S_k} \lambda_A v_A) = \sum_{A \in S_k} \lambda_A \partial_k (v_A)$$

where the sum is taken over GF(2).

Let $\ker(\partial_k) \subseteq V_k$ and $\operatorname{im}(\partial_k) \subseteq V_{k-1}$ denote the *kernel* and the *image* of ∂_k , respectively. Our proof is based on the following lemma.

Lemma 3. The sequence of homomorphisms $V_n \xrightarrow{\partial_n} V_{n-1} \xrightarrow{\partial_{n-1}} \dots \xrightarrow{\partial_1} V_0 \xrightarrow{\partial_0} 0$ is an exact sequence, *i.e.*, $\operatorname{im}(\partial_k) = \operatorname{ker}(\partial_{k-1})$ holds for every $k \in [n]$.

Proof. Before proving the statement, we show that $im(\partial_k) \subseteq ker(\partial_{k-1})$ for every $k \in [n]$. The statement is obviously true for k = 1. If $k \ge 2$, then for every $A \in S_k$, we have

$$\partial_{k-1}\partial_k v_A = \sum_{\substack{B \subset A \\ |B|=k-1}} \sum_{\substack{C \subset B \\ |C|=k-2}} v_C = \sum_{\substack{C \subset A \\ |C|=k-2}} 2v_C = 0.$$

Thus, $\partial_{k-1}\partial_k(v) = 0$ for every $v \in V_k$, as claimed. In fact, the containment $\operatorname{im}(\partial_k) \subseteq \operatorname{ker}(\partial_{k-1})$ holds for *every* simplicial complex.

We prove that in our case, all the above containments hold with equality. For every $i \in [n]$, let K_i denote the 0-dimensional abstract simplicial complex consisting of the 1-element subsets of X_i and the empty set. Consider now their join $K = K_1 * \ldots * K_n$; see [2], Chapter 0. By definition, K is the same as the simplicial complex $\bigcup_{i=0}^{n} S_i$.

Let $j \ge -1$ be an integer. We need three well known properties of the notion of *j*-connectedness of complexes; see Proposition 4.4.3 in [3].

- (i) A complex is -1-connected if and only if it contains a nonempty simplex.
- (ii) If K_1 is *a*-connected and K_2 is *b*-connected, then their join $K_1 * K_2$ is (a + b 2)-connected.
- (iii) If a complex is j-connected, then $im(\partial_k) = ker(\partial_{k-1})$ holds for every $k, 1 \le k \le j+2$.

In our case, each X_i is nonempty, hence, by property (i), each K_i is -1-connected. By repeated application of (ii), we obtain that $K = K_1 * \ldots * K_n$ is (n-2)-connected. In view of (iii), this implies that $\operatorname{im}(\partial_k) = \operatorname{ker}(\partial_{k-1})$ for every $k \in [n]$, as required. \Box

Corollary 4. For every k $(0 \le k \le n)$, we have dim ker $(\partial_k) = \sum_{i=0}^k (-1)^{k-i} \dim V_i$. **Proof.** By induction on k. According to the Rank Nullity Theorem, we have

$$\dim V_i = \dim \ker(\partial_i) + \dim \operatorname{im}(\partial_i), \tag{3}$$

for every $i \leq n$. Since dim $V_0 = 1$ and dim $im(\partial_0) = \dim 0 = 0$, the corollary is true for k = 0.

Assume we have already verified it for some k < n. To show that it is also true for k+1, we use that dim $im(\partial_{k+1}) = \dim ker(\partial_k)$, by Lemma 3. Plugging this into (3) with i = k + 1, we obtain

 $\dim V_{k+1} = \dim \ker(\partial_{k+1}) + \dim \ker(\partial_k).$

Hence, using the induction hypothesis, we have

dim ker
$$(\partial_{k+1})$$
 = dim V_{k+1} - dim ker (∂_k)
= dim $V_{k+1} - \sum_{i=0}^k (-1)^{k-i} \dim V_i = \sum_{i=0}^{k+1} (-1)^{k+1-i} \dim V_i$,

as required.

By (2), we know the value of dim V_i for every *i*. Therefore, Corollary 4 enables us to compute dim ker (∂_n) and, hence, dim V_n – dim ker (∂_n) .

Corollary 5. We have

dim
$$V_n$$
 - dim ker $(\partial_n) = \prod_{i=1}^n d_i - \prod_{i=1}^n (d_i - 1).$

Proof. From Corollary 4, we get

dim
$$V_n$$
 - dim ker $(\partial_n) = \sum_{i=0}^{n-1} (-1)^{n-1-i}$ dim V_i .

Using (2) and the fact that dim $V_0 = 1$, this is further equal to

$$\sum_{i=1}^{n-1} (-1)^{n-1-i} \sum_{1 \le j_1 < j_2 < \dots < j_i \le n} d_{j_1} d_{j_2} \cdots d_{j_i} + (-1)^{n-1} = \prod_{i=1}^n d_i - \prod_{i=1}^n (d_i - 1).$$

Now we are in a position to establish the following statement, which is somewhat stronger than Theorem 1.

Theorem 6. Let T be a subset of $S = X_1 \times \ldots \times X_n$ with $|X_i| = d_i > 1$ for every $i \in [n]$. If

$$|T| > \prod_{i=1}^{n} d_i - \prod_{i=1}^{n} (d_i - 1),$$

then there is a nonempty subset $W \subseteq T$ with the property that for every $x \in W$ and $i \in [n]$, the number of elements $x' \in W$ which differ from x only in their ith coordinate is odd. This bound cannot be improved.

Proof. The tightness of the bound follows from the tightness of Theorem 1 shown at the end of the Introduction.

Let T be a system of strings of length n satisfying the conditions of the theorem. Using the notation introduced at the beginning of this section, let

$$V(T) = \{\sum_{A \in T} \lambda_A v_A : \lambda_A = 0 \text{ or } 1\}.$$

Then V(T) can be regarded as a linear subspace of V_n with dim V(T) = |T|. Comparing the size of T with the value of dim V_n – dim ker (∂_n) given by Corollary 5, we obtain that there is a nonzero vector $v = \sum_{A \in T} \lambda_A v_A$ that belongs to $V(T) \cap \ker(\partial_n)$. Let $W = \{A \in T : \lambda_A = 1\}$. Then we have

$$0 = \partial_n(v) = \sum_{A \in W} \partial_n(v_A) = \sum_{A \in W} \sum_{\substack{B \subset A \\ |B| = n-1}} v_B = \sum_{\substack{B \subset [n] \\ |B| = n-1}} |\{A \in W : A \supseteq B\}| v_B.$$

Thus, for each B, the coefficient of v_B is *even*. This means that the set of strings $W \subset T$ meets the requirements of the theorem.

3 Direct proof of Theorem 6

In this section, we prove Corollary 5 and, hence, Theorem 6 directly, without using Lemma 3.

As in the Introduction, fix an element $y_i \in X_i$ and let $X'_i = X_i \setminus \{y_i\}$, for every $i \in [n]$. Defining T_0 as in (1), we have that $|T_0| = \prod_{i=1}^n d_i - \prod_{i=1}^n (d_i - 1)$.

Suppose that $|T| > |T_0|$. To prove Corollary 5, it is sufficient to show that there exists a nonzero vector $v = \sum_{A \in T} \lambda_A v_A$ with suitable coefficients $\lambda_A \in \{0, 1\}$ such that $v \in \ker(\partial_n)$, *i.e.*, we have $\partial_n v = \sum_{A \in T} \lambda_A(\partial_n v_A) = 0$. Thus, it is enough to establish the following statement.

Lemma 7. Let T be a subset of $S = X_1 \times \ldots \times X_n$ with $|X_i| > 1$ for every $i \in [n]$. If $|T| > |T_0|$, then the set of vectors $\{\partial_n v_A : A \in T\}$ is linearly dependent over GF(2).

Proof. First, we show that the set of vectors $\{\partial_n v_A : A \in T_0\}$ is linearly independent. Suppose, for a contradiction, that there is a nonempty subset $W \subset T_0$ such that $\sum_{A \in W} \partial_n v_A = 0$. Pick an element $A = \{x_1, \ldots, x_n\}$ of W for which the number of coordinates i with $x_i = y_i$ is as small as possible. By the definition of T_0 , there is at least one such coordinate $x_k = y_k$. In view of Definition 2, one of the terms of the formal sum $\partial_n v_A$ is v_B with $B = A \setminus \{y_k\}$, and this term cannot be canceled out by a term of $\partial_n v_{A'}$ for any other $A' \in W$, because in this case A' would have fewer coordinates that are equal to some y_i than A does. Hence, $\sum_{A \in W} \partial_n v_A \neq 0$, contradicting our assumption.

It remains to prove that $\{\partial_n v_A : A \in T_0\}$ is a *base* of $\operatorname{im}(\partial_n)$, that is, there exists no set of strings $T \supset T_0$ with $|T| > |T_0|$ such that the set of vectors $\{\partial_n v_A : A \in T\}$ is linearly independent over $\operatorname{GF}(2)$.

To see this, consider any string $C = \{z_1, \ldots, z_n\} \in S \setminus T_0$. Since $C \notin T_0$, we have $z_i \neq y_i$ for every *i*. Define T(C) as the set of all strings $A = \{x_1, \ldots, x_n\} \in S$ whose every coordinate x_i is either y_i or z_i . Then we have $\sum_{A \in T(C)} \partial_n v_A = 0$. As we have $T(C) \subseteq T_0 \cup \{C\}$, this means that the set of vectors $\{\partial_n v_A : A \in T_0 \cup \{C\}\}$ is linearly dependent over GF(2). This completes the proof of the lemma and, hence, of Theorem 6.

Acknowledgement. We thank Gábor Tardos and an anonymous referee for several helpful suggestions.

References

- A. Björner: Topological Methods, in: Handbook of Combinatorics, R. Graham, M. Grötschel, L. Lovász (eds.), Vol. 2, 1819–1872.
- [2] A. Hatcher: Algebraic Topology, Cambridge University Press, Cambridge, 2001.
- [3] J. Matoušek: Using the Borsuk-Ulam Theorem, Springer, Berlin, 2003.
- [4] Y. Wu and Y. Xiong: Sparse (0,1) arrays and tree-like partition systems, submitted, 2020.