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Abstract

Given n sets X1, . . . , Xn, we call the elements of S = X1 × . . . × Xn strings. A nonempty
set of strings W ⊆ S is said to be well-connected if for every v ∈ W and for every i (1 ≤
i ≤ n), there is another element v′ ∈ W which differs from v only in its ith coordinate. We
prove a conjecture of Yaokun Wu and Yanzhen Xiong by showing that every set of more than∏n

i=1 |Xi| −
∏n

i=1(|Xi| − 1) strings has a well-connected subset. This bound is tight.

1 Introduction

Let X1, . . . , Xn be pairwise disjoint sets with |Xi| = di > 1 for 1 ≤ i ≤ n. Let

S = X1 × . . .×Xn = {(x1, . . . , xn) : xi ∈ Xi for every i ∈ [n]}

be the set of strings x = (x1, . . . , xn), where xi is called the ith coordinate of x and [n] = {1, . . . , n}.
A subset W ⊆ S is called well-connected if for every x ∈ W and for every i ∈ [n], there is

another element x′ ∈ W which differs from x only in its ith coordinate. That is, x′j 6= xj if and
only if j = i.

The following statement was conjectured by Yaokun Wu and Yanzhen Xiong [4].

Theorem 1. Let T be a subset of S = X1 × . . .×Xn with |Xi| = di > 1 for every i ∈ [n]. If

|T | >
n∏

i=1

di −
n∏

i=1

(di − 1),

then T has a nonempty well-connected subset. This bound cannot be improved.

To see the tightness of the theorem, fix an element yi in each Xi and let X ′i = Xi \ {yi}. We
claim that the set of strings

T0 = (X1 × . . .×Xn) \ (X ′1 × . . .×X ′n) (1)
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does not have any nonempty well-connected subset. Suppose for contradiction that there is such
a subset W ⊆ T0, and let x = (x1, . . . , xn) be an element of W with the minimum number of
coordinates i for which xi = yi holds. Obviously, this minimum is positive, otherwise x 6∈ T0. Pick
an integer k with xk = yk. Using the assumption that W is well-connected, we obtain that there
exists x′ ∈W that differs from x only in its kth coordinate. However, then x′ would have one fewer
coordinates with xi = yi than x does, contradicting the minimality of x.

In the next section, we establish a result somewhat stronger than Theorem 1: we prove that
under the conditions of Theorem 1, T also has a subset W such that for every x ∈ W and i ∈ [n],
the number of elements x′ ∈ W which differ from x only in its ith coordinate is odd (see Theorem
6). In Section 3, we present a self-contained argument which proves this stronger statement.

Shortly after learning about our proof of the conjecture of Wu and Xiong, another proof was
found by Chengyang Qian.

2 Exact sequence of maps

In this section, we introduce the necessary definitions and terminology, and we apply a basic
topological property of simplicial complexes to establish Theorem 1. We will assume throughout,
without loss of generality, that the sets Xi are pairwise disjoint.

For every k (0 ≤ k ≤ n), let

Sk = {A ⊆ X1 ∪ . . . ∪Xn : |A| = k and |A ∩Xi| ≤ 1 for every i}.

Clearly, we have |Sn| = |S| =
∏n

i=1 |Xi|. With a slight abuse of notation, we identify Sn with S.
The set system ∪nk=0Sk is an abstract simplicial complex, that is, for each of its elements A, every
subset of A also belongs to ∪nk=0Sk. This simplicial complex has a geometric realization in R2n−1,
where every element A is represented by an (|A|−1)-dimensional simplex. (See [1], part II, Section
9 or [3], Section 1.5. Note that not all textbooks consider the empty set a −1-dimensional simplex,
but we do.)

Assign to each A ∈ Sk a different symbol vA, and define Vk as the family of all formal sums of
these symbols with coefficients 0 or 1. Then

Vk = {
∑
A∈Sk

λAvA : λA = 0 or 1}

can be regarded as a vector space over GF(2) whose dimension satisfies

dim Vk = |Sk| =
∑

1≤j1<j2<...<jk≤n
dj1dj2 · . . . · djk . (2)

We use the standard definition of the boundary operations ∂k. (See [2], Section 2.1.) Informally,
the boundary of each (k−1)-dimensional simplex that corresponds to a member A ∈ Sk consists of
all (k − 2)-dimensional simplices corresponding to (k − 1)-element subsets B ⊂ A. This definition
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naturally extends to any collection (“chain”) of (k − 1)-dimensional simplices that correspond to
members of Sk, with multiplicities taken modulo 2.

Definition 2. Let ∂0 : V0 → 0. For every k ∈ [n] and every A ∈ Sk, let

∂k(vA) =
∑
B⊂A
|B|=k−1

vB.

Extend this map to a homomorphism ∂k : Vk → Vk−1 by setting

∂k(
∑
A∈Sk

λAvA) =
∑
A∈Sk

λA∂k(vA),

where the sum is taken over GF(2).

Let ker(∂k) ⊆ Vk and im(∂k) ⊆ Vk−1 denote the kernel and the image of ∂k, respectively.
Our proof is based on the following lemma.

Lemma 3. The sequence of homomorphisms Vn
∂n−→ Vn−1

∂n−1−−−→ . . .
∂1−→ V0

∂0−→ 0 is an exact
sequence, i.e., im(∂k) = ker(∂k−1) holds for every k ∈ [n].

Proof. Before proving the statement, we show that im(∂k) ⊆ ker(∂k−1) for every k ∈ [n]. The
statement is obviously true for k = 1. If k ≥ 2, then for every A ∈ Sk, we have

∂k−1∂kvA =
∑
B⊂A
|B|=k−1

∑
C⊂B
|C|=k−2

vC =
∑
C⊂A
|C|=k−2

2vC = 0.

Thus, ∂k−1∂k(v) = 0 for every v ∈ Vk, as claimed. In fact, the containment im(∂k) ⊆ ker(∂k−1)
holds for every simplicial complex.

We prove that in our case, all the above containments hold with equality. For every i ∈ [n], let
Ki denote the 0-dimensional abstract simplicial complex consisting of the 1-element subsets of Xi

and the empty set. Consider now their join K = K1 ∗ . . . ∗Kn; see [2], Chapter 0. By definition,
K is the same as the simplicial complex ∪ni=0Si.

Let j ≥ −1 be an integer. We need three well known properties of the notion of j-connectedness
of complexes; see Proposition 4.4.3 in [3].

(i) A complex is −1-connected if and only if it contains a nonempty simplex.

(ii) If K1 is a-connected and K2 is b-connected, then their join K1 ∗K2 is (a+ b− 2)-connected.

(iii) If a complex is j-connected, then im(∂k) = ker(∂k−1) holds for every k, 1 ≤ k ≤ j + 2.

In our case, each Xi is nonempty, hence, by property (i), each Ki is −1-connected. By repeated
application of (ii), we obtain that K = K1 ∗ . . . ∗ Kn is (n − 2)-connected. In view of (iii), this
implies that im(∂k) = ker(∂k−1) for every k ∈ [n], as required. 2
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Corollary 4. For every k (0 ≤ k ≤ n), we have dim ker(∂k) =
∑k

i=0(−1)k−idim Vi.

Proof. By induction on k. According to the Rank Nullity Theorem, we have

dim Vi = dim ker(∂i) + dim im(∂i), (3)

for every i ≤ n. Since dim V0 = 1 and dim im(∂0) = dim 0 = 0, the corollary is true for k = 0.
Assume we have already verified it for some k < n. To show that it is also true for k+1, we use

that dim im(∂k+1) = dim ker(∂k), by Lemma 3. Plugging this into (3) with i = k + 1, we obtain

dim Vk+1 = dim ker(∂k+1) + dim ker(∂k).

Hence, using the induction hypothesis, we have

dim ker(∂k+1) = dim Vk+1 − dim ker(∂k)

= dim Vk+1 −
k∑

i=0

(−1)k−idim Vi =
k+1∑
i=0

(−1)k+1−idim Vi,

as required. 2

By (2), we know the value of dim Vi for every i. Therefore, Corollary 4 enables us to compute
dim ker(∂n) and, hence, dim Vn − dim ker(∂n).

Corollary 5. We have

dim Vn − dim ker(∂n) =

n∏
i=1

di −
n∏

i=1

(di − 1).

Proof. From Corollary 4, we get

dim Vn − dim ker(∂n) =
n−1∑
i=0

(−1)n−1−idim Vi.

Using (2) and the fact that dim V0 = 1, this is further equal to

n−1∑
i=1

(−1)n−1−i
∑

1≤j1<j2<...<ji≤n
dj1dj2 · · · dji + (−1)n−1 =

n∏
i=1

di −
n∏

i=1

(di − 1). 2

Now we are in a position to establish the following statement, which is somewhat stronger than
Theorem 1.

Theorem 6. Let T be a subset of S = X1 × . . .×Xn with |Xi| = di > 1 for every i ∈ [n]. If

|T | >
n∏

i=1

di −
n∏

i=1

(di − 1),
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then there is a nonempty subset W ⊆ T with the property that for every x ∈ W and i ∈ [n], the
number of elements x′ ∈ W which differ from x only in their ith coordinate is odd. This bound
cannot be improved.

Proof. The tightness of the bound follows from the tightness of Theorem 1 shown at the end of
the Introduction.

Let T be a system of strings of length n satisfying the conditions of the theorem. Using the
notation introduced at the beginning of this section, let

V (T ) = {
∑
A∈T

λAvA : λA = 0 or 1}.

Then V (T ) can be regarded as a linear subspace of Vn with dim V (T ) = |T |. Comparing the size
of T with the value of dim Vn−dim ker(∂n) given by Corollary 5, we obtain that there is a nonzero
vector v =

∑
A∈T λAvA that belongs to V (T )∩ ker(∂n). Let W = {A ∈ T : λA = 1}. Then we have

0 = ∂n(v) =
∑
A∈W

∂n(vA) =
∑
A∈W

∑
B⊂A
|B|=n−1

vB =
∑
B⊂[n]
|B|=n−1

|{A ∈W : A ⊇ B}|vB.

Thus, for each B, the coefficient of vB is even. This means that the set of strings W ⊂ T meets
the requirements of the theorem. 2

3 Direct proof of Theorem 6

In this section, we prove Corollary 5 and, hence, Theorem 6 directly, without using Lemma 3.

As in the Introduction, fix an element yi ∈ Xi and let X ′i = Xi \{yi}, for every i ∈ [n]. Defining
T0 as in (1), we have that |T0| =

∏n
i=1 di −

∏n
i=1(di − 1).

Suppose that |T | > |T0|. To prove Corollary 5, it is sufficient to show that there exists a nonzero
vector v =

∑
A∈T λAvA with suitable coefficients λA ∈ {0, 1} such that v ∈ ker(∂n), i.e., we have

∂nv =
∑

A∈T λA(∂nvA) = 0. Thus, it is enough to establish the following statement.

Lemma 7. Let T be a subset of S = X1 × . . .×Xn with |Xi| > 1 for every i ∈ [n].
If |T | > |T0|, then the set of vectors {∂nvA : A ∈ T} is linearly dependent over GF(2).

Proof. First, we show that the set of vectors {∂nvA : A ∈ T0} is linearly independent. Suppose,
for a contradiction, that there is a nonempty subset W ⊂ T0 such that

∑
A∈W ∂nvA = 0. Pick an

element A = {x1, . . . , xn} of W for which the number of coordinates i with xi = yi is as small as
possible. By the definition of T0, there is at least one such coordinate xk = yk. In view of Definition
2, one of the terms of the formal sum ∂nvA is vB with B = A \ {yk}, and this term cannot be
canceled out by a term of ∂nvA′ for any other A′ ∈ W , because in this case A′ would have fewer
coordinates that are equal to some yi than A does. Hence,

∑
A∈W ∂nvA 6= 0, contradicting our

assumption.
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It remains to prove that {∂nvA : A ∈ T0} is a base of im(∂n), that is, there exists no set of
strings T ⊃ T0 with |T | > |T0| such that the set of vectors {∂nvA : A ∈ T} is linearly independent
over GF(2).

To see this, consider any string C = {z1, . . . , zn} ∈ S \ T0. Since C 6∈ T0, we have zi 6= yi for
every i. Define T (C) as the set of all strings A = {x1, . . . , xn} ∈ S whose every coordinate xi is
either yi or zi. Then we have

∑
A∈T (C) ∂nvA = 0. As we have T (C) ⊆ T0 ∪ {C}, this means that

the set of vectors {∂nvA : A ∈ T0 ∪ {C}} is linearly dependent over GF(2). This completes the
proof of the lemma and, hence, of Theorem 6. 2
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