On well-connected sets of strings

Peter Frank ${ }^{*} \quad$ János Pach ${ }^{\dagger}$

Abstract

Given n sets X_{1}, \ldots, X_{n}, we call the elements of $S=X_{1} \times \ldots \times X_{n}$ strings. A nonempty set of strings $W \subseteq S$ is said to be well-connected if for every $v \in W$ and for every $i(1 \leq$ $i \leq n$), there is another element $v^{\prime} \in W$ which differs from v only in its i th coordinate. We prove a conjecture of Yaokun Wu and Yanzhen Xiong by showing that every set of more than $\prod_{i=1}^{n}\left|X_{i}\right|-\prod_{i=1}^{n}\left(\left|X_{i}\right|-1\right)$ strings has a well-connected subset. This bound is tight.

1 Introduction

Let X_{1}, \ldots, X_{n} be pairwise disjoint sets with $\left|X_{i}\right|=d_{i}>1$ for $1 \leq i \leq n$. Let

$$
S=X_{1} \times \ldots \times X_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in X_{i} \text { for every } i \in[n]\right\}
$$

be the set of strings $x=\left(x_{1}, \ldots, x_{n}\right)$, where x_{i} is called the i th coordinate of x and $[n]=\{1, \ldots, n\}$.
A subset $W \subseteq S$ is called well-connected if for every $x \in W$ and for every $i \in[n]$, there is another element $x^{\prime} \in W$ which differs from x only in its i th coordinate. That is, $x_{j}^{\prime} \neq x_{j}$ if and only if $j=i$.

The following statement was conjectured by Yaokun Wu and Yanzhen Xiong [4].
Theorem 1. Let T be a subset of $S=X_{1} \times \ldots \times X_{n}$ with $\left|X_{i}\right|=d_{i}>1$ for every $i \in[n]$. If

$$
|T|>\prod_{i=1}^{n} d_{i}-\prod_{i=1}^{n}\left(d_{i}-1\right)
$$

then T has a nonempty well-connected subset. This bound cannot be improved.
To see the tightness of the theorem, fix an element y_{i} in each X_{i} and let $X_{i}^{\prime}=X_{i} \backslash\left\{y_{i}\right\}$. We claim that the set of strings

$$
\begin{equation*}
T_{0}=\left(X_{1} \times \ldots \times X_{n}\right) \backslash\left(X_{1}^{\prime} \times \ldots \times X_{n}^{\prime}\right) \tag{1}
\end{equation*}
$$

[^0]does not have any nonempty well-connected subset. Suppose for contradiction that there is such a subset $W \subseteq T_{0}$, and let $x=\left(x_{1}, \ldots, x_{n}\right)$ be an element of W with the minimum number of coordinates i for which $x_{i}=y_{i}$ holds. Obviously, this minimum is positive, otherwise $x \notin T_{0}$. Pick an integer k with $x_{k}=y_{k}$. Using the assumption that W is well-connected, we obtain that there exists $x^{\prime} \in W$ that differs from x only in its k th coordinate. However, then x^{\prime} would have one fewer coordinates with $x_{i}=y_{i}$ than x does, contradicting the minimality of x.

In the next section, we establish a result somewhat stronger than Theorem 1: we prove that under the conditions of Theorem $1, T$ also has a subset W such that for every $x \in W$ and $i \in[n]$, the number of elements $x^{\prime} \in W$ which differ from x only in its i th coordinate is odd (see Theorem 6). In Section 3, we present a self-contained argument which proves this stronger statement.

Shortly after learning about our proof of the conjecture of Wu and Xiong, another proof was found by Chengyang Qian.

2 Exact sequence of maps

In this section, we introduce the necessary definitions and terminology, and we apply a basic topological property of simplicial complexes to establish Theorem 1. We will assume throughout, without loss of generality, that the sets X_{i} are pairwise disjoint.

For every $k(0 \leq k \leq n)$, let

$$
S_{k}=\left\{A \subseteq X_{1} \cup \ldots \cup X_{n}:|A|=k \text { and }\left|A \cap X_{i}\right| \leq 1 \text { for every } i\right\} .
$$

Clearly, we have $\left|S_{n}\right|=|S|=\prod_{i=1}^{n}\left|X_{i}\right|$. With a slight abuse of notation, we identify S_{n} with S. The set system $\cup_{k=0}^{n} S_{k}$ is an abstract simplicial complex, that is, for each of its elements A, every subset of A also belongs to $\cup_{k=0}^{n} S_{k}$. This simplicial complex has a geometric realization in $\mathbb{R}^{2 n-1}$, where every element A is represented by an $(|A|-1)$-dimensional simplex. (See [1], part II, Section 9 or [3], Section 1.5. Note that not all textbooks consider the empty set a - 1 -dimensional simplex, but we do.)

Assign to each $A \in S_{k}$ a different symbol v_{A}, and define V_{k} as the family of all formal sums of these symbols with coefficients 0 or 1 . Then

$$
V_{k}=\left\{\sum_{A \in S_{k}} \lambda_{A} v_{A}: \lambda_{A}=0 \text { or } 1\right\}
$$

can be regarded as a vector space over $\mathrm{GF}(2)$ whose dimension satisfies

$$
\begin{equation*}
\operatorname{dim} V_{k}=\left|S_{k}\right|=\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{k} \leq n} d_{j_{1}} d_{j_{2}} \cdot \ldots \cdot d_{j_{k}} . \tag{2}
\end{equation*}
$$

We use the standard definition of the boundary operations ∂_{k}. (See [2], Section 2.1.) Informally, the boundary of each ($k-1$)-dimensional simplex that corresponds to a member $A \in S_{k}$ consists of all ($k-2$)-dimensional simplices corresponding to ($k-1$)-element subsets $B \subset A$. This definition
naturally extends to any collection ("chain") of $(k-1)$-dimensional simplices that correspond to members of S_{k}, with multiplicities taken modulo 2 .

Definition 2. Let $\partial_{0}: V_{0} \rightarrow 0$. For every $k \in[n]$ and every $A \in S_{k}$, let

$$
\partial_{k}\left(v_{A}\right)=\sum_{\substack{B \subset A \\|B|=k-1}} v_{B}
$$

Extend this map to a homomorphism $\partial_{k}: V_{k} \rightarrow V_{k-1}$ by setting

$$
\partial_{k}\left(\sum_{A \in S_{k}} \lambda_{A} v_{A}\right)=\sum_{A \in S_{k}} \lambda_{A} \partial_{k}\left(v_{A}\right)
$$

where the sum is taken over $\operatorname{GF}(2)$.
Let $\operatorname{ker}\left(\partial_{k}\right) \subseteq V_{k}$ and $\operatorname{im}\left(\partial_{k}\right) \subseteq V_{k-1}$ denote the kernel and the image of ∂_{k}, respectively.
Our proof is based on the following lemma.
Lemma 3. The sequence of homomorphisms $V_{n} \xrightarrow{\partial_{n}} V_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_{1}} V_{0} \xrightarrow{\partial_{0}} 0$ is an exact sequence, i.e., $\operatorname{im}\left(\partial_{k}\right)=\operatorname{ker}\left(\partial_{k-1}\right)$ holds for every $k \in[n]$.

Proof. Before proving the statement, we show that $\operatorname{im}\left(\partial_{k}\right) \subseteq \operatorname{ker}\left(\partial_{k-1}\right)$ for every $k \in[n]$. The statement is obviously true for $k=1$. If $k \geq 2$, then for every $A \in S_{k}$, we have

$$
\partial_{k-1} \partial_{k} v_{A}=\sum_{\substack{B \subset A \\|B|=k-1}} \sum_{\substack{C \subset B \\|C|=k-2}} v_{C}=\sum_{\substack{C \subset A \\|C|=k-2}} 2 v_{C}=0
$$

Thus, $\partial_{k-1} \partial_{k}(v)=0$ for every $v \in V_{k}$, as claimed. In fact, the containment $\operatorname{im}\left(\partial_{k}\right) \subseteq \operatorname{ker}\left(\partial_{k-1}\right)$ holds for every simplicial complex.

We prove that in our case, all the above containments hold with equality. For every $i \in[n]$, let K_{i} denote the 0-dimensional abstract simplicial complex consisting of the 1-element subsets of X_{i} and the empty set. Consider now their join $K=K_{1} * \ldots * K_{n}$; see [2], Chapter 0. By definition, K is the same as the simplicial complex $\cup_{i=0}^{n} S_{i}$.

Let $j \geq-1$ be an integer. We need three well known properties of the notion of j-connectedness of complexes; see Proposition 4.4.3 in [3].
(i) A complex is -1 -connected if and only if it contains a nonempty simplex.
(ii) If K_{1} is a-connected and K_{2} is b-connected, then their join $K_{1} * K_{2}$ is $(a+b-2)$-connected.
(iii) If a complex is j-connected, then $\operatorname{im}\left(\partial_{k}\right)=\operatorname{ker}\left(\partial_{k-1}\right)$ holds for every $k, 1 \leq k \leq j+2$.

In our case, each X_{i} is nonempty, hence, by property (i), each K_{i} is -1-connected. By repeated application of (ii), we obtain that $K=K_{1} * \ldots * K_{n}$ is $(n-2)$-connected. In view of (iii), this implies that $\operatorname{im}\left(\partial_{k}\right)=\operatorname{ker}\left(\partial_{k-1}\right)$ for every $k \in[n]$, as required.

Corollary 4. For every $k(0 \leq k \leq n)$, we have $\operatorname{dim} \operatorname{ker}\left(\partial_{k}\right)=\sum_{i=0}^{k}(-1)^{k-i} \operatorname{dim} V_{i}$.
Proof. By induction on k. According to the Rank Nullity Theorem, we have

$$
\begin{equation*}
\operatorname{dim} V_{i}=\operatorname{dim} \operatorname{ker}\left(\partial_{i}\right)+\operatorname{dim} \operatorname{im}\left(\partial_{i}\right), \tag{3}
\end{equation*}
$$

for every $i \leq n$. Since $\operatorname{dim} V_{0}=1$ and $\operatorname{dim} \operatorname{im}\left(\partial_{0}\right)=\operatorname{dim} 0=0$, the corollary is true for $k=0$.
Assume we have already verified it for some $k<n$. To show that it is also true for $k+1$, we use that $\operatorname{dim} \operatorname{im}\left(\partial_{k+1}\right)=\operatorname{dim} \operatorname{ker}\left(\partial_{k}\right)$, by Lemma 3. Plugging this into (3) with $i=k+1$, we obtain

$$
\operatorname{dim} V_{k+1}=\operatorname{dim} \operatorname{ker}\left(\partial_{k+1}\right)+\operatorname{dim} \operatorname{ker}\left(\partial_{k}\right) .
$$

Hence, using the induction hypothesis, we have

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker}\left(\partial_{k+1}\right) & =\operatorname{dim} V_{k+1}-\operatorname{dim} \operatorname{ker}\left(\partial_{k}\right) \\
& =\operatorname{dim} V_{k+1}-\sum_{i=0}^{k}(-1)^{k-i} \operatorname{dim} V_{i}=\sum_{i=0}^{k+1}(-1)^{k+1-i} \operatorname{dim} V_{i},
\end{aligned}
$$

as required.
By (2), we know the value of $\operatorname{dim} V_{i}$ for every i. Therefore, Corollary 4 enables us to compute $\operatorname{dim} \operatorname{ker}\left(\partial_{n}\right)$ and, hence, $\operatorname{dim} V_{n}-\operatorname{dim} \operatorname{ker}\left(\partial_{n}\right)$.
Corollary 5. We have

$$
\operatorname{dim} V_{n}-\operatorname{dim} \operatorname{ker}\left(\partial_{n}\right)=\prod_{i=1}^{n} d_{i}-\prod_{i=1}^{n}\left(d_{i}-1\right)
$$

Proof. From Corollary 4, we get

$$
\operatorname{dim} V_{n}-\operatorname{dim} \operatorname{ker}\left(\partial_{n}\right)=\sum_{i=0}^{n-1}(-1)^{n-1-i} \operatorname{dim} V_{i} .
$$

Using (2) and the fact that $\operatorname{dim} V_{0}=1$, this is further equal to

$$
\sum_{i=1}^{n-1}(-1)^{n-1-i} \sum_{1 \leq j_{1}<j_{2}<\ldots<j_{i} \leq n} d_{j_{1}} d_{j_{2}} \cdots d_{j_{i}}+(-1)^{n-1}=\prod_{i=1}^{n} d_{i}-\prod_{i=1}^{n}\left(d_{i}-1\right)
$$

Now we are in a position to establish the following statement, which is somewhat stronger than Theorem 1.
Theorem 6. Let T be a subset of $S=X_{1} \times \ldots \times X_{n}$ with $\left|X_{i}\right|=d_{i}>1$ for every $i \in[n]$. If

$$
|T|>\prod_{i=1}^{n} d_{i}-\prod_{i=1}^{n}\left(d_{i}-1\right)
$$

then there is a nonempty subset $W \subseteq T$ with the property that for every $x \in W$ and $i \in[n]$, the number of elements $x^{\prime} \in W$ which differ from x only in their ith coordinate is odd. This bound cannot be improved.

Proof. The tightness of the bound follows from the tightness of Theorem 1 shown at the end of the Introduction.

Let T be a system of strings of length n satisfying the conditions of the theorem. Using the notation introduced at the beginning of this section, let

$$
V(T)=\left\{\sum_{A \in T} \lambda_{A} v_{A}: \lambda_{A}=0 \text { or } 1\right\} .
$$

Then $V(T)$ can be regarded as a linear subspace of V_{n} with $\operatorname{dim} V(T)=|T|$. Comparing the size of T with the value of $\operatorname{dim} V_{n}-\operatorname{dim} \operatorname{ker}\left(\partial_{n}\right)$ given by Corollary 5 , we obtain that there is a nonzero vector $v=\sum_{A \in T} \lambda_{A} v_{A}$ that belongs to $V(T) \cap \operatorname{ker}\left(\partial_{n}\right)$. Let $W=\left\{A \in T: \lambda_{A}=1\right\}$. Then we have

$$
0=\partial_{n}(v)=\sum_{A \in W} \partial_{n}\left(v_{A}\right)=\sum_{A \in W} \sum_{\substack{B \subset A \\|B|=n-1}} v_{B}=\sum_{\substack{B \subset[n] \\|B|=n-1}}|\{A \in W: A \supseteq B\}| v_{B} .
$$

Thus, for each B, the coefficient of v_{B} is even. This means that the set of strings $W \subset T$ meets the requirements of the theorem.

3 Direct proof of Theorem 6

In this section, we prove Corollary 5 and, hence, Theorem 6 directly, without using Lemma 3.
As in the Introduction, fix an element $y_{i} \in X_{i}$ and let $X_{i}^{\prime}=X_{i} \backslash\left\{y_{i}\right\}$, for every $i \in[n]$. Defining T_{0} as in (1), we have that $\left|T_{0}\right|=\prod_{i=1}^{n} d_{i}-\prod_{i=1}^{n}\left(d_{i}-1\right)$.

Suppose that $|T|>\left|T_{0}\right|$. To prove Corollary 5 , it is sufficient to show that there exists a nonzero vector $v=\sum_{A \in T} \lambda_{A} v_{A}$ with suitable coefficients $\lambda_{A} \in\{0,1\}$ such that $v \in \operatorname{ker}\left(\partial_{n}\right)$, i.e., we have $\partial_{n} v=\sum_{A \in T} \lambda_{A}\left(\partial_{n} v_{A}\right)=0$. Thus, it is enough to establish the following statement.
Lemma 7. Let T be a subset of $S=X_{1} \times \ldots \times X_{n}$ with $\left|X_{i}\right|>1$ for every $i \in[n]$.
If $|T|>\left|T_{0}\right|$, then the set of vectors $\left\{\partial_{n} v_{A}: A \in T\right\}$ is linearly dependent over $\mathrm{GF}(2)$.
Proof. First, we show that the set of vectors $\left\{\partial_{n} v_{A}: A \in T_{0}\right\}$ is linearly independent. Suppose, for a contradiction, that there is a nonempty subset $W \subset T_{0}$ such that $\sum_{A \in W} \partial_{n} v_{A}=0$. Pick an element $A=\left\{x_{1}, \ldots, x_{n}\right\}$ of W for which the number of coordinates i with $x_{i}=y_{i}$ is as small as possible. By the definition of T_{0}, there is at least one such coordinate $x_{k}=y_{k}$. In view of Definition 2 , one of the terms of the formal sum $\partial_{n} v_{A}$ is v_{B} with $B=A \backslash\left\{y_{k}\right\}$, and this term cannot be canceled out by a term of $\partial_{n} v_{A^{\prime}}$ for any other $A^{\prime} \in W$, because in this case A^{\prime} would have fewer coordinates that are equal to some y_{i} than A does. Hence, $\sum_{A \in W} \partial_{n} v_{A} \neq 0$, contradicting our assumption.

It remains to prove that $\left\{\partial_{n} v_{A}: A \in T_{0}\right\}$ is a base of $\operatorname{im}\left(\partial_{n}\right)$, that is, there exists no set of strings $T \supset T_{0}$ with $|T|>\left|T_{0}\right|$ such that the set of vectors $\left\{\partial_{n} v_{A}: A \in T\right\}$ is linearly independent over GF (2).

To see this, consider any string $C=\left\{z_{1}, \ldots, z_{n}\right\} \in S \backslash T_{0}$. Since $C \notin T_{0}$, we have $z_{i} \neq y_{i}$ for every i. Define $T(C)$ as the set of all strings $A=\left\{x_{1}, \ldots, x_{n}\right\} \in S$ whose every coordinate x_{i} is either y_{i} or z_{i}. Then we have $\sum_{A \in T(C)} \partial_{n} v_{A}=0$. As we have $T(C) \subseteq T_{0} \cup\{C\}$, this means that the set of vectors $\left\{\partial_{n} v_{A}: A \in T_{0} \cup\{C\}\right\}$ is linearly dependent over GF(2). This completes the proof of the lemma and, hence, of Theorem 6.

Acknowledgement. We thank Gábor Tardos and an anonymous referee for several helpful suggestions.

References

[1] A. Björner: Topological Methods, in: Handbook of Combinatorics, R. Graham, M. Grötschel, L. Lovász (eds.), Vol. 2, 1819-1872.
[2] A. Hatcher: Algebraic Topology, Cambridge University Press, Cambridge, 2001.
[3] J. Matoušek: Using the Borsuk-Ulam Theorem, Springer, Berlin, 2003.
[4] Y. Wu and Y. Xiong: Sparse $(0,1)$ arrays and tree-like partition systems, submitted, 2020.

[^0]: *Rényi Institute, P.O.Box 127 Budapest, 1364 Hungary and MIPT, Moscow, partially supported by the Ministry of Education and Science of the Russian Federation in the framework of MegaGrant 075-15-2019-1926. Email: peter.frankl@gmail.com.
 ${ }^{\dagger}$ Rényi Institute, P.O.Box 127 Budapest, 1364 Hungary and MIPT, Moscow, partially supported by ERC Advanced Grant GeoScape, NKFIH (Hungarian National Research, Development and Innovation Office) grant K-131529, and by the Ministry of Education and Science of the Russian Federation in the framework of MegaGrant 075-15-2019-1926. Email: pach@cims.nyu.edu

