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Abstract. We prove that the number of edges of a multigraph G with n
vertices is at most O(n2 logn), provided that any two edges cross at most
once, parallel edges are noncrossing, and the lens enclosed by every pair
of parallel edges in G contains at least one vertex. As a consequence, we
prove the following extension of the Crossing Lemma of Ajtai, Chvátal,
Newborn, Szemerédi and Leighton, if G has e ≥ 4n edges, in any drawing

of G with the above property, the number of crossings is Ω
(

e3

n2 log(e/n)

)
.

This answers a question of Kaufmann et al. and is tight up to the loga-
rithmic factor.
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1 Introduction

A topological graph is a graph drawn in the plane such that its vertices are
represented by points, and the edges are represented by simple continuous arcs
connecting the corresponding pairs of points. In notation and terminology, we do
not distinguish between the vertices and the points representing them and the
edges and the arcs representing them. The edges are allowed to intersect, but
they cannot pass through any vertex other than their endpoints. If two edges
share an interior point, then they must properly cross at that point, i.e., one
edge passes from one side of the other edge to its other side.

A multigraph is a graph in which two vertices can be joined by several edges.
Two edges that join the same pair of vertices are called parallel.

According to the crossing lemma of Ajtai, Chvátal, Newborn, Szemerédi [1]
and Leighton [4], every topological graph G with n vertices and e > 4n edges
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has at least c e3

n2 edge crossings, where c > 0 is an absolute constant. In notation,
we have

cr(G) ≥ c · e
3

n2
. (1)

In a seminal paper which was an important step towards the solution of
Erdős’s famous problem on distinct distances [2], Székely [10] generalized the
crossing lemma to multigraphs: for every topological multigraph G with n ver-
tices and e > 4n edges, in which the multiplicity of every edge is at most m, we
have

cr(G) ≥ c e3

mn2
. (2)

As the maximum multiplicity m increases, (2) gets weaker. However, as was
shown in [7] and [3], under certain special conditions on the multigraphs, the
inequality (1) remains true, independently of m. Some related results were estab-
lished in [8]. In all of these papers, one of the key elements of the argument was
to find an analogue of Euler’s theorem for the corresponding classes of “nearly
planar” multigraphs.

Throughout this paper, we consider only single-crossing topological multi-
graphs, i.e., we assume that any two edges cross at most once. Hence, two edges
that share an endpoint may also have a common interior point. Two edges are
said to be independent if they do not share an endpoint, and they are called
disjoint if they are independent and do not cross.

Definition 1. A multigraph G is called separated if no two parallel edges of G
cross, and the “lens” enclosed by them has at least one vertex in its interior.

It was conjectured in [3] that any separated single-crossing topological multi-
graph with n vertices has at most O(n2) edges. The aim of this note is to verify
this conjecture apart from a logarithmic factor.

Theorem 1. The number of edges of a separated single-crossing topological
multigraph G on n vertices satisfies |E(G)| ≤ O(n2 log n).

Note that in a separated multigraph, any pair of vertices can be connected by
at most n− 1 edges. This immediately implies the bound |E(G)| ≤

(
n
2

)
(n− 1) =

O(n3).
If we plug in Theorem 1 into the machinery of [3] and [7], a routine calculation

gives the following.

Corollary 1. Every separated single-crossing topological multigraph on n ver-

tices and e ≥ 4n edges has at least c e3

n2 log(e/n) crossings, where c > 0 is a suitable
constant.

For simplicity, we will assume that a multigraph does not have loops. It is
easy to see that Theorem 1 also holds for topological multigraphs with loops,
assuming that each loop contains a vertex.
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Theorem 1 does not remain true if we replace the assumption that G is
single-crossing by the weaker one that any two edges cross at most twice. To see
this, let the vertices of G lie on the x-axis: set V (G) = {1, 2, . . . , n}. Let each
edge consist of a semicircle in the upper half-plane and a semicircle below it that
meet at a point of the x-axis. More precisely, for any pair of integers i, j ∈ V (G)
with i < j, and for any k with i ≤ k < j, pick a distinct point pikj in the open
interval (k, k+1). Let γikj be the union of two semicircles centered at the x-axis:
an upper semicircle connecting i to pikj and a lower one connecting pikj to j.
Let E(G) consist of all arcs γikj over all triples i ≤ k < j. Observe that any
two edges of G cross at most twice: once above the x-axis and once below it. No
two parallel edges, γihj and γikj with h < k, cross each other, and the region
enclosed by them contains the vertex k ∈ V (G). Therefore, G is a separated
topological multigraph with

∑
i,j(i<j)(j − i) = Ω(n3).

The proof of Theorem 1 is presented in the next section.
All logarithms used in the sequel are of base 2. We omit all floor and ceiling

signs wherever they are not crucially important.

2 Proof of Theorem 1

We will need the following simple lemma.

Lemma 1. Let G be a single-crossing topological graph on n vertices with no
parallel edges, in which every pair of independent edges cross. Then we have
|E(G)| ≤ 4n.

Proof. Let V (G) = A ∪ B be a bipartition of the vertex set such that at least
half of the edges of G run between A and B. Denote the corresponding bipartite
graph by G(A,B). Any pair of independent edges of G(A,B) cross once, that
is, an odd number of times. Assume without loss of generality that A and B
are separated by a horizontal line. By “flipping” one of the half-planes bounded
by this line from left to right, we obtain a drawing of G(A,B), in which any
pair of independent edges cross an even number of times. According to the
Hanani-Tutte theorem [11, 9], this implies that G(A,B) is a planar graph. Any
bipartite planar graph on n ≥ 3 vertices has at most 2n − 4 edges. Therefore,
|E(G)| ≤ 2|E(G(A,B))| ≤ 4n− 8.

Proof (Proof of Theorem 1). Let G = (V,E) be a separated single-crossing topo-
logical multigraph on n vertices. If two vertices, u and v, are joined by j > 1
parallel edges, then they cut the plane into j pieces, one of which is unbounded.
The bounded pieces are called lenses. Each lens is bounded by two adjacent
edges joining a pair of vertices. Let L denote the set of lenses determined by G.

If |L| ≤ |E(G)|
2 , then keeping only one edge between every pair of adjacent

vertices, we obtain a simple graph G′ whose number of edges satisfies

|E(G)|
2

≤ |E(G′)| ≤
(
n

2

)
.
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This implies that |E(G)| < n2, and we are done.
From now on, we can and will assume that

|L| ≥ |E(G)|
2

. (3)

For any lens ` ∈ L, let |`| denote the number of vertices in the interior of
`. For t = log n, we partition L into t parts, L1 ∪ L2 ∪ · · · ∪ Lt, where ` ∈ Li

if and only of 2i−1 ≤ |`| < 2i. By the pigeonhole principle, there is an integer
k, 1 ≤ k ≤ t, such that

|Lk| ≥
|L|

log n
. (4)

Fix an integer k with the above property, and let dk(v) denote the number
of lenses in Lk that contain vertex v in its interior. Then we have∑

v∈V
dk(v) =

∑
`∈Lk

|`| ≥ |Lk|2k−1.

Hence, there is a vertex v ∈ V that lies in the interior of at least |Lk| 2
k−1

n
lenses from Lk. Assume without loss of generality that v is located at the origin
o, and let Lo denote the set of lenses in Lk which contain the origin. Hence, we
have

|Lo| ≥ |Lk| ·
2k−1

n
.

Combining this with (3) and (4), we obtain

|Lo| ≥ |E(G)|
n log n

· 2k−2. (5)

Let Go denote the subgraph of G consisting of all vertices and the edges that
bound a lens in Lo. Any two vertices of Go are connected by 0 or 2 edges of Go.

Now we use the idea of the probabilistic proof of the crossing lemma; see [5].
Let W be a random subset of V in which each vertex is picked independently
with probability p = 2−k. Let Go[W ] be the subgraph of Go induced by W . Let
Lo(W ) denote the set of empty lenses in Go[W ] (that is, the set of lenses with
empty interiors). For the expected values of |W | and |Lo(W )|, we have

E[|W |] = pn

and
E[|Lo(W )|] ≥ p2(1− p)2

k

|Lo|.
By linearity of expectation, there is a subset W ′ of V such that

|Lo(W ′)| − 4|W ′| ≥ E[|Lo(W )|]− 4E[|W |] ≥ p2(1− p)2
k

|Lo| − 4pn. (6)

For each lens in ` ∈ Lo(W ′), we arbitrarily pick one of the two edges enclosing
`, and denote the resulting simple topological graph by G′. We now make the
following observation.
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Lemma 2. Any two independent edges of G′ cross each other.

Proof. Suppose, for contradiction, that G′ has two independent edges, e and e′,
which do not cross. Let ` and `′ be the corresponding empty lenses in Go[W ′].
Since the interiors of ` and `′ are empty, neither of them can contain an end-
point of the other. Both of these lenses contain the origin o, which implies that
they cannot be disjoint. Therefore, both sides of ` must cross both sides of `′,
contradicting the choice of e and e′. Here, we used the assumption that G and,
hence, G′ are single-crossing.

In view of Lemma 2, we can apply Lemma 1 to G′. We obtain |E(G′)| =

|Lo(W ′)| ≤ 4|W ′| and hence by (6) we have p2(1 − p)2k |Lo| ≤ 4pn. It follows
that

|Lo| ≤ 4p−1(1− p)−2
k

n.

Substituting p = 2−k, we get

|Lo| ≤ 16 · 2kn.

Comparing this with (5), we conclude that

|E(G)| ≤ O(n2 log n).

This completes the proof of Theorem 1.
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