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Abstract

Let X be an n-element set, where n is even. We refute a conjecture of J. Gordon and Y.
Teplitskaya, according to which, for every maximal intersecting family F of n

2 -element subsets
of X, one can partition X into n

2 disjoint pairs in such a way that no matter how we pick one
element from each of the first n

2 − 1 pairs, the set formed by them can always be completed to
a member of F by adding an element of the last pair.

The above problem is related to classical questions in extremal set theory. For any t ≥ 2, we
call a family of sets F ⊂ 2X t-separable if there is a t-element subset T ⊆ X such that for every
ordered pair of elements (x, y) of T , there exists F ∈ F such that F ∩ {x, y} = {x}. For a fixed
t, 2 ≤ t ≤ 5 and n → ∞, we establish asymptotically tight estimates for the smallest integer
s = s(n, t) such that every family F with |F| ≥ s is t-separable.

1 Introduction

Given an n-element set X, a family F ⊂ 2X is called intersecting if any two members of F have
nonempty intersection. In their seminal work [6], P. Erdős, C. Ko, and R. Rado determined the
maximum size of an intersecting family F of k-element subsets of X, for all k ≤ n

2 . In particular,
if n is even and k = n

2 , they proved that |F| ≤ 1
2

(
n
n
2

)
, where equality holds for every maximal (that

is, non-extendable) intersecting family of n
2 -element subsets of X.

Motivated by a problem from mathematical finance, J. Gordon and Y. Teplitskaya [14] made
the following conjectures:

Conjecture A. If n is even, then for any maximal intersecting family F of n
2 -element subsets of X,

there exists a perfect matching {x1, x2}, {x3, x4}, . . . , {xn−1, xn} with the property that no matter
how we select one element from each of the first n

2 − 1 pairs, together with xn−1 or xn, they always
form a member of F .
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‡Rényi Institute, P.O.Box 127 Budapest, 1364 Hungary; pach@cims.nyu.edu, partially supported by NKFIH

Élvonal (Frontier) program KKP 133864.
§IST Austria, Vienna, partially supported by Austrian Science Fund (FWF), grant Z 342-N31.
¶MIPT, Moscow, partially supported by the Ministry of Education and Science of the Russian Federation in the

framework of MegaGrant no 075-15-2019-1926.

1



Conjecture B. If n is odd, then for any maximal intersecting family F consisting of n−1
2 -element

and n+1
2 -element subsets of X, there exists a matching {x1, x2}, {x3, x4}, . . . , {xn−2, xn−1} with the

property that no matter how we select one element from each pair, together with the last element
xn ∈ X, they always form a member of F .

Gordon and Teplitskaya verified these conjectures for n ≤ 6.
In this note, we disprove the above conjectures for all n ≥ 14. For n even, we will establish a

more general result which contradicts Conjecture A in a strong way. For odd n, the problem will
be settled using the even case. To formulate our first result, we need to agree on some terminology.

An unordered collection {x1, x2}, {x3, x4}, . . . , {x2k−1, x2k} of pairwise disjoint 2-element sub-
sets of X is called a matching of size k (2k ≤ n = |X|). If we pick one element from each pair, the
k-element set formed by them is called a snake with respect to this matching.

Definition 1 A matching {x1, x2}, {x3, x4}, . . . , {x2k−1, x2k} ⊂ X is said to be shattered by a
family F ⊂ 2X if for every snake S with respect to this matching, there exists F ∈ F such that
F ∩ {x1, x2, . . . , x2k} = S.

Our main result is the following.

Theorem 2 Let X be an n-element set, where n ≥ 28 is even. Let k(n) denote the largest integer
k such that for every maximal intersecting family of n

2 -element subsets of X, there exists a shattered
matching of size k. Then we have

bn
4
c ≤ k(n) ≤ n

2
− 1

2
log2 n + 1.

The fact that the upper bound is smaller than n
2 − 1 shows that the Gordon-Teplitskaya con-

jecture is not true if n is large enough.

The above question is closely related to a classical result from extremal set theory [8, 12, 13].
A family F of subsets of X is said to shatter a set A if for every subset B ⊂ A, there is F ∈ F
with F ∩ A = B. It was shown by Vapnik and Chervonenkis and a little later, independently,
by Sauer and Shelah that if F is large, then there is a large subset A ⊂ X shattered by F . The
size of the largest shattered subset of X is called the Vapnik-Chervonenkis dimension of F , and is
denoted by VC-dim(F). This notion plays a central role in statistics, learning theory, discrete and
computational geometry, and elsewhere.

More precisely, the following is true.

Theorem 3 (Sauer [19], Shelah [20], Vapnik-Chervonenkis [23]) Let |X| = n and let F be a family
of subsets of X with |F| >

∑k−1
i=0

(
n
i

)
.

Then there is a k-element set A ⊂ X shattered by F , i.e., VC-dim(F) ≥ k. This bound is tight.

Obviously, if A is shattered and |A| is even, then any perfect matching of A (that is, any partition
of A into 2-element subsets) is a shattered matching. Using this idea, one can easily obtain the lower
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bound k(n) ≥ (14 − o(1))n, which is only slightly weaker than the bound in Theorem 2. However,
this proof only uses that F has many members, without taking into account the assumption that
F is a maximal intersecting family.

In the spirit of Theorem 3, we can ask how large F must be in order to guarantee the existence
of a shattered matching of size k.

Problem 4 Let n, k be positive integers, n ≥ 2k. Determine or estimate the smallest number
p = p(n, k) such that for every family F of at least p subsets of an n-element set, there is a
matching of size k shattered by F .

Obviously, if F shatters a 2k-element set A, then any partition of A into 2-element sets is a
shattered matching of size k. Thus, Theorem 3 immediately implies that

p(n, k) ≤ 1 +
2k−1∑
i=0

(
n

i

)
for every k ≥ 1.

This bound is tight for k = 1, and we will see that its order of magnitude is best possible for any
k, as n→∞. See Corollary 11.

Definition 5 A family F ⊂ 2X is said to be t-separable if there is a t-element subset T ⊂ X such
that for every ordered pair x, y ∈ T, x 6= y, there exists F ∈ F such that F ∩ {x, y} = x.

For any n ≥ t ≥ 2, let s(n, t) denote the smallest number s with the property that every family
F of at least s subsets of an n-element set is t-separable.

If {x1, x2}, . . . , {x2k−1x2k} is a matching of size k shattered by F , then F is 2k-separable, as
the set T = {x1, . . . , x2k} satisfies the above requirements. Therefore, we have

p(n, k) ≥ s(n, 2k).

The problem of determining or estimating s(n, t) appears to be a nontrivial task of independent
interest. We prove the following.

Theorem 6 Let n ≥ t ≥ 2, and let X be an n-element set. Let s(n, t) denote the smallest number
s with the property that every family F ⊂ 2X with |F| ≥ s is t-separable.

(i) For t = 2, we have s(n, 2) = n + 2.

(ii) For t = 3, we have s(n, 3) = bn2

4 c+ n + 2.
(iii) For t = 4 or 5, we have s(n, t) = ( n

t−1)t−1 + Θ(nt−2).

(iv) For t ≥ 6, we have ( n
t−1)t−1 < s(n, t) ≤ 1 +

∑t−1
i=0

(
n
i

)
.

A more precise form of parts (iii) and (iv) is stated and proved as Theorem 6’ in Section 3.

This note is organized as follows. In the next section, we prove Theorem 2. In Section 3, we
study the function s(n, t), and we establish Theorem 6 (and Theorem 6’). The last section contains
some open problems and related results.
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2 Shattered matchings—Proof of Theorem 2

Throughout this note, let AtB denote the disjoint union of the sets A and B. For any F, Y ⊂ X,
we call F ∩ Y the trace of F on Y . For a family F ⊂ 2X and Y ⊂ X, the set of traces F ∩ Y over
all F ∈ F is denoted by F|Y .

Proof of the lower bound. Let F ⊂ 2X be a maximal intersecting family of n
2 -element subsets of

X. By the maximality of F , if an n
2 -element set Y ⊂ X does not belong to F , then its complement

Y = X \ Y does.
Let M = {x1, x2} t . . . t {x2k−1, x2k} be any matching of size k in X. Extend it to a per-

fect matching of X by adding a perfect matching of the remaining n − 2k elements: M ′ =
{x2k+1, x2k+2} t . . . t {xn−1, xn}. If M is not a shattered matching, then we can choose a snake S
of M such that no member F ∈ F intersects {x1, . . . , x2k} precisely in the elements of S. Suppose
without loss of generality that {x1, x3, . . . , x2k−1} is such a snake. This implies that

{x1, x3, . . . , x2k−1} t {x2k+2−ε(1), x2k+4−ε(2), . . . , xn−ε(n
2
−k)}

does not belong to F for any ε(i) ∈ {0, 1}, 1 ≤ i ≤ n
2 − k. Hence, the complement of this set,

{x2, x4, . . . , x2k} t {x2k+1+ε(1), x2k+3+ε(2), . . . , xn−1+ε(n
2
−k)} ∈ F ,

for every ε(i) ∈ {0, 1}. This means, by definition, that M ′ is a shattered matching of size is n
2 − k.

Thus, either there is a shattered matching M of size k, or a shattered matching M ′ of size n
2 −k.

2

Proof of the upper bound. Two matchings of the same size in X are considered identical if
they differ only in the order of pairs. We need some simple facts.

Claim 7 The number of matchings of size k in X is smaller than n!
k!2k

.

Indeed, with each permutation (x1, x2, . . . , xn) associate the matching {x1, x2}, . . . , {x2k−1, x2k},
and note that we obtain every matching at least k!2k times.

Now we randomly generate a maximal intersecting family F ⊂ 2X consisting of n
2 -element

subsets of X, as follows. From each of the 1
2

(
n

n/2

)
unordered pairs (Y,X \ Y ) with |Y | = n/2, we

select either Y or X \ Y , independently with probability 1
2 . Let F consist of all the selected sets.

Obviously, any two members of F have nonempty intersection and F is maximal with respect to
this property.

Fix a matching (partition) M = {x1, x2} t . . . t {x2k−1, x2k} of size k in X. Let S be a snake
with respect to M . We say that S is carved out of M by a family F ⊂ 2X if there exists F ∈ F
whose trace on {x1, . . . , x2k} is S, i.e., if we have F ∩ {x1, . . . , x2k} = S. With a slight abuse of
notation, we write M \ S for the set {x1, . . . , x2k} \ S which is also a snake with respect to the
matching M .

In the sequel, for convenience, we write 2` for n− 2k, so that k + ` = n
2 .
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Claim 8 Let M be a fixed matching of size k = n
2 − ` in X. For any snake S with respect to M ,

the probability that S is not carved out of M by the randomly generated family F is equal to 2−(2`` ).

To see this, it is enough to notice that if Y ∩{x1, . . . , x2k} is not equal to S, nor to M \S, then
it does not matter which set we select from the pair (Y,X \ Y ), it can not separate S from M .
Therefore, it is enough to consider the

(
2`
`

)
pairs of complementary sets (Y,X \Y ), where Y = StT

for some `-element subset T ⊂ X \M . For each of these pairs, we have to select the set X \Y to be
contained in F , otherwise S will be carved out by Y and, hence, by F . This proves Claim 8. The

probability 2−(2`` ) may appear to be tiny, but for a fixed ` it is bounded away from 0, as n→∞.

Notice that if S and S′ are two distinct snakes with respect to M and S′ 6= M \ S, then the
events that “S is carved out of M” and “S′ is carved out of M” are independent, because they
depend on completely different random choices. On the other hand, for S′ = M \ S, we have

Pr[at least one of S and M \ S is not carved out of M ]

= Pr[precisely one of S and M \ S is not carved out of M ]

= 2 ·Pr[S is not carved out of M ] = 2 · 2−(2`` ).

The number of unordered pairs of snakes (S,M \ S) is 2k−1. Hence,

Pr[M is shattered]

= Pr[every pair of snakes (S,M \ S) are carved out of M ]

= (1− 2 · 2−(2`` ))2
k−1

< exp(−2k−(2`` )).

Combining this with Claim 7, we obtain that

Pr[there exists a shattered matching of size k]

≤
∑
M

Pr[M is shattered]

<
n!

k!2k
exp(−2k−(2`` )) < exp(n lnn− 2

n
2
−`−(2`` )).

To conclude, it is enough to show that the right-hand side of this inequality is smaller than 1, that

is, 2
n
2
−`−(2`` ) > n lnn holds, provided that k ≥ n

2 −
1
2 log2 n + 1.

According to the last condition, ` + 1 ≤ 1
2 log2 n, which implies that

2
n
2
−`−(2`` ) ≥ 2

n
2
−4` ≥ 2

n
4 > n lnn,

if n ≥ 28. This completes the proof of the upper bound and, hence, Theorem 2. 2

It is easy to verify using the above estimates that the probability that there exists a shattered
matching of size k = n

2 −1 is smaller than 1, for every n ≥ 14. Therefore, in these cases, Conjecture
A of Gordon and Teplitskaya fails.

Next, we turn to Conjecture B.
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Corollary 9 Let X be an n-element set, where n ≥ 15 is odd.
There is a maximal intersecting family F ⊂ 2X such that |F | = n−1

2 or n+1
2 for every F ∈ F ,

and the following condition is satisfied. There do not exist y ∈ X and a perfect matching M of
X \ {y} with the property that adding y to every snake with respect to M , we get a member of F .

Proof. Let |X| = n = 2k + 1, let F ⊂ 2X be a maximal intersecting family, and suppose that
every member of F has k or k + 1 elements. By the maximality of F , for each k-element subset
Y ⊂ X, either Y or X \ Y belongs to F . Therefore, we have |F| =

(
n
k

)
.

Fix a 2k-element subset V ⊂ X, and denote the unique element of X \ V by x. According to
the remark after the proof of Theorem 2, we can choose a maximal intersecting family G of 1

2

(
2k
k

)
k-element subsets of V such that G does not shatter any matching of size k − 1 in V . Let

F = G
⋃
{Y ∪ {x} |Y ∈ G }

⋃
{U |U ⊂ V, |U | = k + 1 }.

Obviously, F is a maximal intersecting family consisting of k-element and (k + 1)-element subsets
of X.

We claim that F meets the requirements of Corollary 9. Suppose for contradiction that there
are y ∈ X and a perfect matching M of X \ {y} such that every snake with respect to M can be
extended to a member of F by adding y. We distinguish two cases.

Suppose first that y = x. Then X \{y} = X \{x} = V , and M is a partition of V into 2-element
sets:

{x1, x2} t {x3, x4} t . . . t {x2k−1, x2k}.

It follows from the definition of G that only one of the snakes with respect to M , {x1, x3, . . . , x2k−1}
or {x2, x4, . . . , x2k} belongs to G. Hence, only one of the “extended” snakes {x1, x3, . . . , x2k−1, y}
or {x2, x4, . . . , x2k, y} belongs to F . The other one does not, contradicting our assumption.

Suppose next that y 6= x, and let M be the partition (perfect matching) of X \ {y} with the
above property,

X \ {y} = {x1, x2} t {x3, x4} t . . . t {x2k−1, x2k}.

We can assume, by symmetry, that x = x2k. It follows from the definition of G that the “partial”
matching M ′ of M ,

{x1, x2} t {x3, x4} t . . . t {x2k−3, x2k−2},

is not shattered by G.
We can assume without loss of generality that the snake {x1, x3, . . . , x2k−3} with respect to M ′ is

not the trace of any member of G on V \{x2k−1, y}. In particular, we have {x1, x3, . . . , x2k−3, y} 6∈ G.
By the definition of F , this implies that

{x1, x3, . . . , x2k−3, y, x} 6∈ F .

However, this means that the snake {x1, x3, . . . , x2k−3, x} with respect to the matching M , cannot
be extended to a member of F by adding y, contradiction. This completes the proof of the corollary.
2
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3 Separable families—Proof of Theorem 6

We start with a construction of non-t-separable families. Let x1, . . . , xn be the elements of a set
X, listed in an arbitrary order. The set-system

C = {∅, {x1}, {x1, x2}, . . . {x1, . . . , xn}}

is called a maximal chain on X.

Lemma 10 For n ≥ t ≥ 2, consider a partition of an n-element set X into t − 1 parts, X =
X1 t . . . tXt−1. Fix a maximal chain Ci on each Xi.

Then the family

D(X1, . . . , Xt−1) = {C1 t . . . t Ct−1 : Ci ∈ Ci for i = 1, . . . , t− 1}

is not t-separable.

Proof. Suppose for contradiction that D(X1, . . . , Xt−1) is t-separable, that is, there exists a t-
element subset T ⊂ X satisfying the conditions in Definition 6. By the pigeonhole principle, there
is an Xi, 1 ≤ i ≤ t − 1 which contains at least two elements, x, y ∈ T . Suppose without loss of
generality that x precedes y in the order that defines the chain Ci on Xi. Then Ci and, hence,
D(X1, . . . , Xt−1) has no member which contains y, but not x. 2

Similar constructions involving direct products of chains can be found, e.g., in [1, 2].

Corollary 11 Let n ≥ t ≥ 2, and let X1 t . . . t Xt−1 be a partition of an n-element set into
t − 1 parts, as equal as possible. That is, we have |Xi| = b n

t−1c or d n
t−1e for 1 ≤ i ≤ t − 1. Then

the smallest number s = s(n, t) with the property that every family of at least s subsets of X is
t-separable, satisfies

s(n, t) >
t−1∏
i=1

(|Xi|+ 1) > (
n

t− 1
)t−1.

Consequently, for every k ≤ n
2 , we have

p(n, k) ≥ s(n, 2k) > (
n

2k − 1
)2k−1.

2

For t = 2, the first part of Corollary 11 implies that s(n, 2) ≥ n + 2. On the other hand, it
follows from Theorem 3 that if |F| >

(
n
1

)
+
(
n
0

)
= n + 1 for a family F of subsets of an n-element

set X, then F shatters a 2-element subset of X, hence, F is 2-separable. Thus, s(n, 2) = n + 2,
which proves part (i) of Theorem 6.

In what follows, we use the “arrow” notation proposed by Hajnal (see [4, 5]). We write

(n,m)→ (a, b)
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if the following statement is true: For any family of m subsets F = {F1, . . . , Fm} of an n-element
set X, there is T ⊂ X with |T | = a such that the family of traces F|T = {F1 ∩ T, . . . , Fm ∩ T} has
at least b distinct members.

Using this notation, Theorem 3 can be reformulated as

(n, 1 +
k−1∑
i=0

(
n

i

)
)→ (k, 2k).

A family F is called downward closed if for any F ∈ F and G ⊂ F , we have G ∈ F . A crucial
property of the arrow relation was established by the first author [7].

Lemma 12 (Frankl [7]) The relation (n,m)→ (a, b) holds if and only if for any downward closed
family F of m subsets of a set X with |X| = n, there is T ⊂ X with |T | = a such that |F|T | ≥ b.

In other words, in order to show that there is T ⊂ X with |T | = a and |F|T | ≥ b, it is sufficient
to verify it for downward closed families.

Lemma 13 Suppose that (n,m)→ (t, 2t − 2t−2 + 1) holds.
Then every family F of subsets of an n-element set with |F| ≥ m is t-separable.

Proof. Assume that F ⊂ 2X satisfies the above condition, and let T be a t-element set of X with
|F|T | > 2t − 2t−2. For any x, y ∈ T, x 6= y, there are 2t−2 subsets of T that contain x, but not y.
At least one of them must belong to F|T , which proves the claim. 2

Now we can settle the case t = 3 in Theorem 6. The first part of Corollary 11 implies that

s(n, 3) ≥ (bn
2
c+ 1)(dn

2
e+ 1) + 1 = bn

2

4
c+ n + 2.

On the other hand, the first author [7] proved that (n, bn2

4 c+n+ 2)→ (3, 7). Applying Lemma 13

with m = bn2

4 c+ n + 2 and t = 3, we obtain that s(n, 3) = bn2

4 c+ n + 2, which proves part (ii) of
Theorem 6.

For the rest of the argument, we need some further results from extremal set theory.
Consider again a partition of the n-element set X into t − 1 parts, X = X1 t . . . t Xt−1. A

family G ⊂
(

X
t−1
)

of (t− 1)-element subsets of X is called a (t− 1)-uniform hypergraph or, simply,
a (t − 1)-graph. If every edge E ∈ G intersects each Xi in precisely 1 point, then G is said to be
(t− 1)-partite.

For graphs, i.e., for t = 3, Mantel [17] and Turán [22] proved that if a graph (2-graph) G
has more than bn2

4 c edges (sets), then it contains a triangle, i.e., there are x, y, z ∈ X with
{x, y}, {x, z}, {y, z} ∈ G. This bound is best possible, as is shown by a 2-partite (bipartite) graph
whose parts are of size bn2 c and dn2 e.

For a fixed t ≥ 3, a generalized triangle consists of 3 distinct (t−1)-elements sets E1, E2, E3 such
that |E1∩E2| = t−2 and E3 ⊇ (E1 \E2)∪ (E2 \E1). For t = 3, the only generalized triangle is the
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usual triangle. For t ≥ 4, however, there are t− 2 non-isomorphic generalized triangles, depending
on the value of |E1 ∩ E2 ∩ E3|, which can be 0, 1, . . . , t − 3. Obviously, none of these generalized
triangles is (t− 1)-partite.

The Mantel-Turán theorem was extended to 3-graphs and 4-graphs by Bollobás and Sidorenko,
respectively, as follows.

Lemma 14 Let X be an n-element set, n ≥ 4. For any k ≥ 2, let g(n, k) denote the maximum
size of a k-graph G which does not contain any generalized triangle. Then we have

(i) (Bollobás [3]) g(n, 3) ≤ bn3 cb
n+1
3 cb

n+2
3 c;

(ii) (Sidorenko [21]) g(n, 4) ≤ bn4 cb
n+1
4 cb

n+2
4 cb

n+3
4 c.

Both results are best possible as is shown by the complete 3-partite (4-partite) 3-graphs (resp.,
4-graphs) whose parts are as equal as possible.

It is not hard to see that part (i) of Lemma 14 implies the Mantel-Turán theorem for ordinary
triangles [15]. It was proved by Frankl and Füredi [9] (see also [16]) that, if G ⊂

(
X
3

)
is a 3-graph

with |G| > g(n, 3) and X is sufficiently large, then G also contains a generalized triangle with
E1 ∩ E2 ∩ E3 = ∅.

One might hope that analogous results hold for k > 4. However, this is not the case. For
k = 5 and 6, Frankl and Füredi [10] determined all largest k-graphs on n > n0 vertices that do
not contain a generalized triangle. These turned out to have substantially more edges than the
balanced complete k-partite k-graphs, and one can obtain them by “blowing up” certain Steiner
systems called Witt designs. For a survey on this fascinating problem, consult [18].

It remains to establish parts (iii) and (iv) of Theorem 6. With the notation of Lemma 14, they
can be rephrased in the following form.

Theorem 6’ Let n ≥ t ≥ 4 and X = {1, 2, . . . , n}. Let s = s(n, t) denote the smallest number
with the property that every family F ⊂ 2X with |F| ≥ s is t-separable. Then we have

(
n

t− 1
)t−1 < s(n, t) ≤ g(n, t− 1) + 1 +

t−2∑
i=0

(
n

i

)
.

According to Lemma 14, for t = 4 and 5, the lower bound and the upper bound are asymptotically
the same. For t > 5, the two bounds are asymptotically different, but their order of magnitude is
the same, Θ(nt−1).

Proof. Let F ⊂ 2X be a family satisfying

|F| > g(n, t− 1) +

t−2∑
i=0

(
n

i

)
.

We will show that F is t-separable. By Lemma 13, it is sufficient to prove that there is a t-element
subset T ⊂ X such that |F|T | ≥ 2t − 2t−2 + 1. According to Lemma 12, we can assume that F is
downward closed.
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Therefore, if F has a member of size at least t, then it also has a member F of size precisely t.
In this case, choosing T to be F , we have |F|T | = 2t, and we are done.

Thus, we can assume that the number of (t−1)-element members in F is larger than g(n, t−1).
By the definition of g(n, t−1), the (t−1)-graph G ⊂ F formed by these edges contains a generalized
triangle E1, E2, E3. We can assume without loss of generality that E1 = {1, 2, . . . , t−2, t−1}, E2 =
{1, 2, . . . , t − 2, t}, and {t − 1, t} ⊂ E3. Set T = {1, 2, . . . , t}. Then we have |T | = t and F|T ⊃
(2E1 ∪ 2E2) t {t− 1, t}. As

|2E1 ∪ 2E2 | = 2|E1| + 2|E2| − 2|E1∩E2| = 2t−1 + 2t−1 − 2t−2 = 2t − 2t−2,

we obtain that |F|T | ≥ 2t − 2t−2 + 1, as required. This completes the proof of the upper bound in
Theorem 6’. The lower bound is given by Corollary 11. 2

4 Open problems, concluding remarks

It would be interesting to close the gaps between the lower and upper bounds in Theorems 2 and 6.

4.1. What happens if, instead of concentrating on maximal intersecting families of n
2 -element

subsets of an n element set, as we did in Theorem 2, we consider all maximal intersecting families of
subsets of X, with no restriction on the sizes of the subsets? In particular, we can ask the following.

Problem 15 Determine or estimate the largest integer k∗ = k∗(n) such that for every maximal
intersecting family F of subsets of an n-element set, one can find a shattered matching of size k∗.

4.2. Given a family F ⊂ 2X and a system M of pairwise disjoint r-element subsets of X for
some r ≥ 3, we say that M is shattered by F if no matter how we pick one element from each
r-tuple of M, there is a member F ∈ F which carves out precisely these elements of ∪M.

Problem 16 For any even integer n ≥ 4 and r ≥ 3, determine or estimate kr(n), the largest
integer k such that for every maximal intersecting family F of n

2 -element subsets of an n-element
set, one can find a system M of k pairwise disjoint r-element sets which is shattered by F .

We trivially have kr(n) < n
2(r−1) , whenever n is a multiple of 2(r−1). If we take n

2(r−1) r-tuples
and pick one element from each, then there is a unique way how to add further elements from the
remainder to obtain an n

2 -element set.

As in Problem 15, here we can also relax the condition that every member of our maximal
intersecting family is of size n

2 . Furthermore, in the spirit of Problem 4, we can completely drop
the restriction that F is intersecting, and we can ask how large F needs to be in order to ensure
that it shatters some system of k pairwise disjoint r-element sets.

4.3. Following [11], we call a family of t sets F1, . . . , Ft ⊂ X disjointly representable if there
exist x1, . . . , xt ∈ X with the property that xi ∈ Fj if and only if i = j. In other words, a family
of sets is disjointly representable if and only if none of its members is completely covered by the
union of the others.

Modifying the question addressed in Theorem 6, we can ask the following.
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Problem 17 Let n ≥ t ≥ 2. Determine or estimate the smallest number r = r(n, t) with the
property that every family F of at least r subsets of an n-element set has t disjointly representable
members.

It follows from the definition that if a family has t disjointly representable members, then it is
t-separable. Therefore, we have r(n, t) ≥ s(n, t) for every n and t.

The proof of part (i) of Theorem 6 also gives r(n, 2) = s(n, 2) = n + 2.

Claim 18 r(n, 3) =
(
n
2

)
+ n + 2 > s(n, 3) for every n ≥ 3.

Proof. The upper bound immediately follows from Theorem 3.
To prove the lower bound, consider the following subsets of X = {1, 2, . . . , n}. For any two

elements a < b of the auxiliary set A = {12 , 1 + 1
2 , . . . , n + 1

2}, let

F (a, b) = {x ∈ X : x < a} ∪ {x ∈ X | x > b}.

The family F = {F (a, b) : a, b ∈ A and a < b} ∪ {∅} has
(
n+1
2

)
+ 1 =

(
n
2

)
+ n + 1 members, and it

has no 3 disjointly representable members. Indeed, given any 3 elements x1 < x2 < x3 ∈ X, there
is no F ∈ F with F ∩ {x1, x2, x3} = {x2}. 2
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