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Abstract

The crossing number, cr(G), of a graph G is the least number of crossing points in any
drawing of G in the plane. Denote by x(n,e) the minimum of cr(G) taken over all graphs with
n vertices and at least e edges. We prove a conjecture of P. Erdés and R. Guy by showing that
k(n,e)n?/e® tends to a positive constant as n — oo and n < e < n?. Similar results hold for
graph drawings on any other surface of fixed genus.

We prove better bounds for graphs satisfying some monotone properties. In particular, we
show that if G is a graph with n vertices and e > 4n edges, which does not contain a cycle of
length four (resp. siz), then its crossing number is at least ce?/n® (resp. ce®/n*), where ¢ > 0
is a suitable constant. These results cannot be improved, apart from the value of the constant.
This settles a question of M. Simonovits.

1 Introduction

Let G be a simple undirected graph with n(G) nodes (vertices) and e(G) edges. A drawing of G in
the plane is a mapping f that assigns to each vertex of G a distinct point in the plane and to each
edge uv a continuous arc connecting f(u) and f(v), not passing through the image of any other
vertex. For simplicity, the arc assigned to uwv is also called an edge, and if this leads to no confusion,
it is also denoted by uv. We assume that no three edges have an interior point in common. The
crossing number, cr(G), of G is the minimum number of crossing points in any drawing of G.

The determination of cr(G) is an NP-complete problem [GJ83]. It was discovered by Leighton
[L84] that the crossing number can be used to estimate the chip area required for the VLSI circuit
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layout of a graph. He proved the following general lower bound for cr(G), which was discovered
independently by Ajtai, Chvétal, Newborn, and Szemerédi. The best known constant, 1/33.75, in
the theorem is due to Pach and Téth.

Theorem A. [ACNS82], [L84], [PT97] Let G be a graph with n(G) = n nodes and e(G) = e edges,
e > 7.5n. Then we have
(G) > Li
) = 53T

Theorem A can be used to deduce the best known upper bounds for the number of unit distances
determined by n points in the plane [S98], for the number of different ways how a line can split a
set of n points into two equal parts [D98], and it has some other interesting corollaries [PS98].

It is easy to see that the bound in Theorem A is tight, apart from the value of the constant.
However, as it was suggested by Miklés Simonovits [S97], it may be possible to strengthen the
theorem for some special classes of graphs, e.g., for graphs not containing some fixed, so-called
forbidden subgraph. In Sections 2 and 3 of the present paper we verify this conjecture.

A graph property P is said to be monotone if

e whenever a graph G satisfies P, then every subgraph of G also satisfies P;
e whenever G1 and G+ satisfy P, then their disjoint union also satisfies P.

For any monotone property P, let ex(n,P) denote the maximum number of edges that a graph
of n vertices can have if it satisfies P. In the special case when P is the property that the graph
does not contain a subgraph isomorphic to a fixed forbidden subgraph H, we write ex(n, H) for

ex(n, P).

Theorem 1. Let P be a monotone graph property with ex(n,P) = O(n'*?®) for some a > 0.
Then there exist two constants ¢,d > 0 such that the crossing number of any graph G with
property P, which has n vertices and e > cnlog?n edges, satisfies

I€2+1/a
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If ex(n, P) = O(n'*®), then this bound is asymptotically tight, up to a constant factor.

In some interesting special cases when we know the precise order of magnitude of the function
ex(n,P), we obtain some slightly stronger results. The girth of a graph is the length of its shortest
cycle.

Theorem 2. Let G be a graph with n vertices and e > 4n edges, whose girth is larger than 2r, for
some T > 0 integer. Then the crossing number of G satisfies
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where ¢, > 0 is a suitable constant. For r = 2,3, and 5, these bounds are asymptotically tight, up
to a constant factor.

What happens if the girth of G is larger than 2r 4+ 17 Since one can destroy every odd cycle of
a graph by deleting at most half of its edges, even in this case we cannot expect an asymptotically
better lower bound for the crossing number of G than the bound given in Theorem 2.

Theorem 3. Let G be a graph with n vertices and e > 4n edges, which does not contain a complete
bipartite subgraph K, s with r and s vertices in its classes, s > r.
Then the crossing number of G satisfies

Q) > e3t1/(r-1)

cr(G) > Cr,sm,

where ¢, s > 0 is a suitable constant. These bounds are tight up to a constant factor if r = 2,3, or
if v is arbitrary and s > (r — 1)\

The bisection width, b(G), of a graph G is defined as the minimum number of edges whose
removal splits the graph into two roughly equal subgraphs. More precisely, b(G) is the minimum
number of edges running between Vi and Vs, over all partitions of the vertex set of G into two parts
Vi U V; such that [V, |Va| > n(G)/3.

Leighton [L83] observed that there is an intimate relationship between the bisection width and
the crossing number of a graph, which is based on the Lipton—Tarjan separator theorem for planar
graphs [LT79]. The proofs of Theorems 1-3 are based on repeated application of the following
version of this relationship.

Theorem B. [PSS96] Let G be a graph of n vertices, whose degrees are dy,da,...,d,. Then

b(G) < 104/cr(G) + 2 idf

Let x(n,e) denote the minimum crossing number of a graph G with n vertices and at least e
edges. That is,

k(n,e) = n(gl)i:r:ln cr(G).
e(G)>e

It follows from Theorem A that, for e > 4n, x(n,e)n?/e? is bounded from below and from above
by two positive constants. Paul Erdés and Richard K. Guy [EG73] conjectured that if e > n then

lim k(n, e)n? /e3 exists. (We use the notation f(n) > g(n) to express that lim, . f(n)/g(n) = co.)
In Section 4, we settle this problem.



Theorem 4. If n < e K n?, then

. n?
lim ,‘<a(n,e)e—3 =C>0

n—oo
exists.

We call the constant C' > 0 in Theorem 4 the midrange crossing constant. It is necessary to
limit the range of e from below and from above. (See the Remark at the end of Section 4.)

All of the above problems can be reformulated for graph drawings on other surfaces. Let Sy
denote a torus with g holes, i.e., a compact oriented surface of genus g with no boundary. Define
crg(G), the crossing number of G on Sy, as the minimum number of crossing points in any drawing
of G on §. Let

Kg(n,e) = n(g;il;n crg(G).
e(G)>e

With this notation, cro(G) is the planar crossing number and kg (n, €) = k(n,e).
In Section 5, we prove that there is a midrange crossing constant for graph drawings on any
surface S, of fixed genus g > 0.

Theorem 5. For every g > 0, if n < e K n? then the limit

n2
nli_)rglomg(n,e)e—3
erists and is equal to the constant C > 0 in Theorem 4.
To prove this result, we have to generalize Theorem B.

Theorem 6. Let G be a graph with n vertices, whose degrees are di,da,...,d,. Then

n

b(G) < 300(1 + g3/4)\l crg(G) + Y d2.

=1

2 Crossing numbers and monotone properties
— Proof of Theorem 1

Let P be a monotone graph property with ex(n,P) < An'T® for some A,a > 0. Let G be a

graph with vertex set V(G) and edge set E(G), where |V(G)| = n(G) =n and |E(G)| = e(G) =e.

Suppose that G satisfies property P and e > cnlog?n. To prove Theorem 1, we assume that
€2+1/a
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and, if ¢ and ¢’ are suitable constant, we will obtain a contradiction.
We break G into smaller components, according to the following procedure.

DECOMPOSITION ALGORITHM

STEP 0. LetGO—GGO GMo—lm()—l

Suppose that we have already executed STEP 4, and that the resulting graph, G*, consists of M;
components, G}, G%, . Gﬁvf , each of at most (2/ 3) n vertices. Assume, without loss of generality,
that the first m; components of G* have at least (2/3)"*!n vertices and the remaining M; —m; have
fewer. Then

(2/3)"'n(G) < n(G) < (2/3)'n(G) (G =1,2,...,mj).
Thus, we have that m; < (3/2)+1.

STEP 7+ 1. If
; 1 el/a
(2/3) < (2A)1/a ' nl+l/e’ (1)

then sToOP. (1) is called the stopping rule.
Else, for j = 1,2,...,m;, delete b(G;-) edges from G such that G falls into two components,

each of at most (2/ 3)n(G;) vertices. Let G*t! denote the resulting graph on the original set of n
vertices. Clearly, each component of G**! has at most (2/3)**1n vertices.

Suppose that the DECOMPOSITION ALGORITHM terminates in STEP k + 1. If £ > 0, then

el/a
/3" < Gy e < /9

First, we give an upper bound on the total number of edges deleted from G.
Using that, for any non-negative reals a1, as, ..., apm,

m m
Do Vaj < \|m Y ag, (2)
we obtain that, for any 0 <1 < k,

- C'€2+1/a
jzl,/ r(G) < i) lchZ ) < \/(3/2)i1 fer(@) < \/(3/2)Z+1‘/W'

Denoting by d(v, GZ the degree of vertex v in G we have

iJ Y 20,6 < /327 [ Y 2@,

Jj=1 UEV(G;) veV(G?)




vev(a?) VeV (Gi)

< \/(3/2)i+1\/ max d(v,G) Y d(v,G%) < 1/(3/2)+11/(2/3)in(2¢) = V3en.

In view of Theorem B in the Introduction, the total number of edges deleted during the procedure

kzl%bal <1okzl%,/ (G%) +2kzl%¢ > (v, GY)

=0 j=1 1=0 j=1 =0 j=1 vEV(G’j.)

e2+1a nltl/a
<10V 1+1/a2~/3/2 )i + 2k+/3en <25o\/_\/ 1+1/\/ )/ + 2kV/3en

provided that ¢’ is sufficiently small and c is sufficiently large.
Therefore, the number of edges of the graph G¥ obtained in the final STEP of the algorithm
satisfies

l\.')l('b

e(G*) >

(Note that this inequality trivially holds if the algorithm terminates in the very first STEP, i.e.,
when k£ = 0.)

Next we give a lower bound on e(G¥). The number of vertices of each connected component of
G* satisfies

Ok < . 1 ella e 1/a . v
n(G) < (2/3n < iz oirzan = (%) G=1,2,..., M)

Since each Gf has property P, it follows that

e

k< 1+O¢ k k
e(G}) < An' T (GF) < An(G)) - 5.

Therefore, for the total number of edges of Gy, we have

(G =Y e(Gh) < Aﬁ gn(G;?) = g

the desired contradiction. This proves the bound of Theorem 1.

It remains to show that the bound is tight up to a constant factor. Suppose that ex(n,P) >
A'n!te For every e (cn < e < An't?®), we construct a graph G of at most n vertices and at least e
edges, which has property P and crossing number

€2+1/a
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for a suitable constant ¢’ = (4, a).
Let

Q=

2e
k =
[A’nw ’
and let Gj, denote a graph of k vertices and at least A’k'T® edges, which has property P. Clearly,
cr(G) < €2(Gy) < (Ak1Te)2 = A2E2 T2
Let G be the union of [n/k| disjoint copies of Gi. Then n(G) = [n/k|k < n,

e(G) = {%J e(Gp) > %A’kk"‘ > e,

1\ 20 osiont1/a g2 241/a
cr(G) = {%J CI‘(Gk) < EAQkQ—FQa < A2n (2 ( 2e ) ) _ 2 A e

Q

; An (A)2+i/a g’

as required. O

3 Forbidden subgraphs
— Proofs of Theorems 2 and 3

In Section 1, we established Theorem 1 under the assumption e > cn log? n, where c is a suitable
constant depending on property P. It seems very likely that the same result is true for every e > cn.
The appearance of the log? n factor was due to the fact that to estimate the total number of edges
deleted during the DECOMPOSITION ALGORITHM, we applied Theorem B. We used a poor upper
bound on the term 3" d?, because some of the degrees d; may be very large. However, in some
interesting special cases, this difficulty can be avoided by a simple trick. We can split each vertex
of high degree into vertices of ‘average degree,’ unless the new graph ceases to have property P.

We illustrate this technique by proving the following result, which is the r = s = 2 special case
of Theorem 3 and a slight modification of Theorem 2 for r = 2.

Theorem 3.1. Let G be a Ko o-free (Cy-free) graph with n(G) = n vertices and e(G) = e edges,
e > 1000n. Then

1 et
G) > ——.
(@) 2 {55 3
This bound is tight up to a constant factor.
Proof. Let G be a graph with n vertices and e > 1000n edges, which does not contain Ks5 as a
subgraph. Suppose, in order to obtain a contradiction, that

1 et

CI‘(G) < Wﬁ’



and G is drawn in the plane with cr(G) crossings.

First, we split every vertex of G whose degree exceeds d := 2e/n into vertices of degree at most d,
as follows. Let v be a vertex of G with degree d(v, G) = d(v) = d > d, and let vwy, vws,...,vwy be
the edges incident to v, listed in clockwise order. Replace v by [d/d] new vertices, v1, va, - . . s Vlasd)
placed in clockwise order on a very small circle around v. Without introducing any new crossings,
connect w; to v; if and only if d(i — 1) < j < di (1<j <d,1<1i<[d/d]). Repeat this procedure
for every vertex whose degree exceeds d, and denote the resulting graph by G'.

Obviously, G' is also K o-free, e(G’') = ¢(G) = e, and

1 *(G)
108 n3(G)

Since all but at most n vertices of G’ have degree d, we have n(G') < 2n(G) = 2n.
Apply the DECOMPOSITION ALGORITHM described in the previous section to the graph G’ with
the difference that, instead of (1), use the following stopping rule: STOP in STEP ¢ + 1 if

Suppose that the algorithm terminates in STEP k + 1. If £ > 0, then

PG y
/3" < oy < /)

Just like in the proof of Theorem 1, for every i < k, we have that

e2

m;
> /er(G)) <324 fur(C) < /B2
J:

and, using the fact that the maximum degree in G is at most d,

Zz\l > 2(v,GY) < \/(3/2)i+1\/ > &2(v,G6) < \/(3/2)241\/326(@) < 2\/(3/2)”1%_

7=1'\| veV(G?) V(&)

Hence, by Theorem B, the total number of edges deleted during the algorithm is

k—1 m k—1 m; k—1 m;

ZZ b(G%) <10> D 4y Jer(Gh) +2) Z d?(v, G%)

1=0 j= 1=0 j=1 =07 veV(GZ)

2k1

(3/2) 1 Py VB/2F -1 e 4e
1000 n3/? Z 2 4 0 @ = 32 V3/2-1 (1000715"/2 i ﬁ)




n3/2 e? 4e e e
100 — — +400 =.
<0 o002 T m) <10 TP S 2
Therefore, for the resulting graph,
e
G*) > -.
(6" 2 2
On the other hand, each component of G* has relatively few vertices:

e? e?

< 2@~ 162G

n(G¥) < (2/3)"n(G") §=1,2,..., My).

Claim C. [R58] Let ex(n, Ko2) denote the mazimum number of edges that a Ko 2-free graph with
n vertices can have. Then

n(1+\/M)

ex(n, Ko 2) < 1 <n32,
Applying the Claim to each Gi, we obtain
k 3/2( vk k e?
therefore,
k L k e L k €

the desired contradiction. The tightness of Theorem 3.1 immediately follows from the fact that
Theorem 1 was tight. O

Theorems 2 and 3 can be proved similarly. It is enough to notice that splitting a vertex of high
degree does not decrease the girth of a graph G and does not create a subgraph isomorphic to K, ,.
Instead of Claim C, now we need

Claim C’. [BS74], [B66], [Be66], [S66], [W91] For a fized positive integer r, let Gop denote the
property that the girth of a graph is larger than 2r.
Then the mazimum number of edges of a graph with n vertices, which has property Gor, satisfies

ex(n, Gor) = O(n! /7).
For r =2,3 and 5, this bound is tight.

Claim C”. [KST54], [F96], [ER62], [B66], [ARS98] For any integers s > r > 2, the mazimum
number of edges of a K, s-free graph of n vertices, satisfies

ex(n, Ky s) = O(n?71/7).



This bound is tight for s > (r — 1)l
In case r = 3, we obtain the following slight generalization of Theorem 2.

Theorem 3.2. Let G be a graph of n vertices and e > 4n edges, which contains no cycle Cg of
length 6.
Then, for a suitable constant cg > 0, we have

5
; €

cr(G) > G, 7"

To establish Theorem 3.2, it is enough to modify the proof of Theorem 2 at one point. Before
splitting the high-degree vertices of G and running the DECOMPOSITION ALGORITHM, we have to
turn G into a bipartite graph, by deleting at most half of its edges. After that, splitting a vertex
cannot create a Cg, and the rest of the above argument shows that the crossing number of the
remaining graph still exceeds c%i—i.

We do not see, however, how to obtain the analogous generalization of Theorem 2 for r > 3.

4 Midrange crossing constant in the plane
— Proof of Theorem 4

Lemma 4.1. (i) For any a > 0, the limit

v[a] = lim K(n, na)

n—00 n

exists and s finite.
(ii) y[a] is a convex continuous function.
(iii) For any a >4,1> 6 > 0,

~la] = yla(l = 6)] < A[a(1 + )] — yla] < 10°§7a].

Proof. Clearly, any two graphs, G; and G5, can be drawn in the plane so that the edges of G do
not intersect the edges of Go. Therefore,

k(n1 +ng,e1 +e2) < Kk(n1,er) + K(n2, e). 3)
In particular, the function f,(n) = k(n,na) is subadditive and hence the limit

v[a] = lim r{n, na)

n—00 n

10



exists and is finite for every fixed a > 0. It also follows from (3) that for any a,b > 0and 1 > a > 0,
if n and an are both integers,

k(n, (aa + (1 — a)b)n) < k(an,aan) + ((1 — a)n, (1 — a)bn),
so for any 1 > « > 0 rational,
Yea + (1 - a)b] < ayla] + (1 — a)y[b].
But since the function 7[a] is monotone increasing, it follows that for any 1 > « > 0,
Ylaa + (1 — a)b] < ayfa] + (1 — a)y[b). (4)
That is, the function «y[a] is convez. In particular, for every 1 > § > 0, we have
7la] = yla(1 = )] <~a(1 + )] — 7lal.

It is known that for any a > 4,

3 3

<k(m,an) <a’n = o <la) <a® (5)

a
10

(see e.g. [PTI97]). Let a >4, 1> 46 > 0. By (4),

N

=]

vla(1 +6)] < (1 — é)v[a] + d7[2a].
Therefore, using (5),
7la(l +8)] —~[a] < 6y[2a] < 88a* < 10%6y[a]. O

Set
7[a]

C :=limsup —=.
a

a—o0

By (5), we have that C < 1.

Lemma 4.2. For any 0 < € < 1, there exists N = N(¢) such that k(n,e) > CfL—i(l —¢€), whenever
min{n,e/n,n%/e} > N.

Proof. Let A > 1—603% be a rational number satisfying

% > 01— 15—0). (6)

11



Let N = N(e) > A such that, if n > N, e =nA’, and |A — A'| < Ae, then

A(nye) > A[AN(1L = {5)n. (")

Let n and e be fixed, min{n,e/n,n?/e} > N and let G = (V, E) be a graph with |[V| = n
vertices and |E| = e edges, drawn in the plane with x(n,e) crossings. Set p = An/e. Let U be a
randomly chosen subset of V' with Pr[v € U] = p, independently for all v € V. Let v = |U|, and let
n (resp. &) be the number of edges (resp. crossings) in the (drawing of the) subgraph of G induced
by the elements of U.

v has mean pn and variance p(1 — p)n < pn, so, by the Chebyshev Inequality,

Pr[|1/— n|>i n] <=
PrE=104P") < 100

Write n = > I, where the sum is taken over all edges uv = vu € E, and I, denotes the
indicator for the event u,v € U. Obviously, E[n] = > ,cp Ellw] = ep?. We decompose

Var[n] = Y Var[ln]+ Y. Covlly,Iuwl,

weE uv,uwel

as Cov[lyy, Iy,] = 0 when all four indices are distinct. As always with indicators, we have

Z Var [Iuv] < Z E[Iuv] = E["’] = ep2.
wveE weE

Using the bound Cov|[Iyy, Iyw] < E[luyLuw] = p°, we obtain
d(v)
2 3
Var[n] < p“e+p Z ( 5 >,
veEV
where d(v) is the degree of vertex v in G. But ), .y d(v) = 2e and all d(v) < n, so
d(v) 1 2
< = < en.
Z( 5 >_2Zd(v)_en
veV veV

Thus, we have
Var [n] < p’e + pPen < 2p3en,

as pn = An?/e > 1. Again, by the Chebyshev Inequality,

2 € 2 €

12



With probability at least 1 — £,

€ 2
1— = <
pn( 104)<1/<pn(1+104) and pZe(l— 104)<77<p e(1—|—104)
so with probability at least 1 — £,
3e i 3¢
Al— )< = =A< AQ + —).
( 104) v <A 104)

Therefore, in view of (7), with probability at least 1 — £, the subgraph of G induced by U has at
least pn(1 — 5)7[A'](1 — {5) crossings. But then, we have

Bl > (1 - Spnll— SR — ) > (1= Spn(l - 1Al - 20)(1 — =)
> (1= Spnll - )41 - D)1= D)1 - ) 2 (1 - £)CApn,
5 10 10 10
where the second and third inequalities follow from Lemma 4.1 (iii) and from the choice of A,
respectively.
On the other hand,
E [5] = p4l§(n, 6)7
as every crossing lies in U with probability p*. Thus
K(n,e) > (1 — e)p”;Ag - 02—2(1 —¢)

as desired. O
To complete the proof of Theorem 4, we have to establish the “counterpart” of Lemma, 4.2.

Lemma 4.3. For any 1 > € > 0, there exists M = M () such that k(n,e) < 02—2(1 +¢), whenever
min{n, e/n, n2/e} > M.

Proof. Let A > 10 " be a rational number satisfying
(4] 2
1-— 14+ —).
O 10) < 3 < C(1+ 10)

Let My = My(e) > A such that, if n > M; and e = nA, then
CA3n(1 — g) < K(n,e) < CA3n(1 + g).

Let G1 = G1(n1,e1) be a graph with ny > M; vertices, e; = Any edges, and suppose that G
is drawn in the plane with x(n1,e1) crossings, where CA®ni(1 — £) < k(ni,e1) < CAPni(1+ £).

13



For each vertex v of G with degree d(v) > A%/, we do the following. Let d(v) = rA%? + s, where

0 < s < A%/2. Substitute v with r 4+ 1 vertices, each of degree A3/2, except one which has degree s,

each drawn very close to the original position of v. Clearly, this can be done without creating any
additional crossing. We obtain a graph Ga(ng,e2) such that

2 €

np <ng <ni(l+—=) §n1(1+ﬁ

VA

ez = e1, and Gy is drawn in the plane with k(n1,e1) crossings.
Suppose that n and e are fixed, min{n,e/n,n?/e} > M(c) = 105&_ Let

)7

2
L= e/n and K = nZ/e’
e2/na n3/es
so that
n=KLny and e = KL%e,.
Let
L= {L(l + 3)J and K = {K(l — i)J
10 10
and let

fi = KLny and é = K L%es.
Then n(l — £) <n <n and ey <& < ex(l + %), so we have s(n,e) < K(n, €).

Substitute each vertex of Gy with L very close vertices, and substitute each edge of Gy with the
corresponding L? edges, all running very close to the original edge. Make K copies of this drawing,
each separated from the others. This way we got a graph é(ﬁ, €) drawn in the plane. We estimate
the number of crossings X in this drawing.

A crossing in the original drawing of Gy corresponds to KL* crossings in the present drawing
of G. For any two edges of Gy with common endpoint, uv and uw, the edges arise from them have
at most K L* crossings with each other. So

X <KI* (/ﬁ(nl,el) + Z (d(;)))
)

’UGV(GQ

But 3,cv(q,) d(v) = 265 and d(v) < A2, so

Z <d(2U)> < 3A5/2’I’L2.
)

vEV (G2

14



Therefore,

K(n,e) < K(71,€) < ¢ < KL*(ny,e1) + KL*3A%?ny < KL*k(n1,e1)(1 + i)

10
3
KLACAm (14 2)A+ —) =KL (1+ 2)1 + —
3 3
KLI'CZ2(1+ )0+ 5)(1+2)<Cl+e)=. O

Remark 4.4. It was shown in [PT97] that .06 > C > .029.

We cannot decide whether Theorem 4 remains true under the weaker condition that Cin < e < Cyn?

for suitable positive constants C; and Cs. If the answer were in the affirmative, then, clearly, C; > 3.
3

We would also have that Cy < 1/2, because, by [G72], for e = (3), cx(Ky,) > (15 — &)< for any

e > 0 if n is large enough.

5 Midrange crossing constants on other surfaces
— Proof of Theorem 5

Lemma 5.1. For any integer g > 0 and for any 1 > ¢ > 0, there exists N = N(g,¢) such that
Kg(n,e) > C%Sg(l — €), whenever min{n, e/n,n%?/e} > N.
Proof. For g = 0, the assertion follows from Lemma 4.2. Suppose tlslat g > 0 is fixed and we have
already proved the lemma for g — 1. For any ¢ > 0, let N(g,¢) = I—EOQ—QN(g —1,¢/10). Suppose, in
order to get a contradiction, that min{n,e/n,n3?/e} > N, and let G(n,e) be a graph drawn on
Sy with crg(G) = Kg(n,e) < Ci—i(l — €) crossings.

As long as there is an edge with at least 4C Z—z crossings, delete it. Let the resulting graph be
G1(n1,e1). Suppose that we deleted € edges. Then G7 has n; = n vertices, e; = e — €' edges,
and the number of crossings in the resulting drawing of G is at most cry(G) —4C Z—Ze’ . Therefore,

¢ < ef4,s0e>e; > 3e/4. It is not hard to check that cry(G1) < Cz—i(l —¢) and G contains no
1

2
edge with more than 40;—22 < 8C 2—12 crossings.
1

Consider all cycles of G1, as they are drawn on S,. If each cycle is trivial, i.e., each cycle is
contractible to a point of Sy, then every connected component of G is contractible to a point. That
is, in this case, our drawing of G' on §j is equivalent to a drawing of G'1 on the plane. Consequently,
crg—1(Gh) < crp(Gr) < C’%Sg(l — ¢) contradicting the induction hypothesis.

£ nf

Suppose that there is a non-trivial (i.e., non-contractible) cycle C of G; with at mos 80C o

edges. Clearly, C contains a non-trivial closed curve, C’, which does not intersect itself. The total
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number of crossings along C’ is at most

e ni_ el €

80C & 2007 = 10°"

Delete all edges that cross C'. Cut S, along C'. Replace every vertex (resp. edge) C' by two
vertices, one on each side of the cut. Every edge of G arriving at a vertex v of C' from a given
side of the cut will be connected to the copy of v lying on the same side. Thus, we obtain a
graph Ga(ng, e2), drawn with fewer than cry(G1) crossings. Attaching a half-sphere to each side of
the cut, we obtain either a surface of genus ¢ — 1 or two surfaces whose genuses are smaller than
g. We discuss only the former case (the calculation in the latter one is very similar) Since we

2
doubled at most We_l =en e SOC < eny+ N < nis 10 vertices and deleted at most e edges, we
have ny < ni(1 + {5) and ey > 61(1 — 75)- In the resulting drawing there are fewer than cry(Gh)
crossings, therefore

3

crg_1(Gs) < crg(Gy) < CA(1—e) < C2 (1 —e)(1 - f—o)—3(1 n
1 2

€
10

3

2 <o £y
= nl 107

contradicting the induction hypothesis.

Thus, we can assume that every non-trivial cycle of G; contains at least 800 edges For each
vertex v of G1 with degree d(v) > 1081, we do the following. Let d(v) = rloel +s, where 0<s< 0,

ENni
Without creating any new crossing, replace v by r + 1 nearby vertices, each of degree 1321, except

one, whose degree is s. We obtain a graph G3(ns,e3) drawn on S, with nqy < ng < ni(1 + £),
es = e1, and with the same number of crossings as G;. Hence,

e € e €
crg(G3) < crg(Gr) < C— (1 —¢) <C (1—5)(1+—) <C—=5(1-3)
ny n3 5 ng 2

The maximum degree D in G'3 cannot exceed 15(3:311 < 1687183, and the length of each non-trivial cycle

2
is at least We_l > 1000 P . Apply to G3 the DECOMPOSITION ALGORITHM described in Section 2
with the difference that, instead of (1), use the following stopping rule: STOP in STEP i + 1 if

(2/3)" <

ng
1000 es

Suppose that the algorithm terminates in STEP k£ + 1. Then

(/3" < g e < @/
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First, we give an upper bound on the total number of edges deleted from G3. Let G° = GY = G3
and mg = 1. Using (2), we obtain that, for every 0 < i < k,

m; m; 63
> \ery (@) <\ [mi Yo erg(Gh) < \/(3/2)1 ferg(Gs) < wsmﬁlm-
j=1 j=1

Denoting by d(v, G;) the degree of vertex v in G;-, we have

iJ S 2,6y < J3/2H [ @6l

J=1\|veV(G?) veV(G?)
- 18e3
<4/(3/2)*! | max d(v,G?) d(v, GY) 32Z+1 3( 32z+1
<\/6/2) \/UEW ) 3 Ve 5 e = 12/l3/27+ 2

By Theorem 6 (proved in the last section), the total number of edges deleted during the algorithm
is

i=0 j=1 1=0 j=1 vEV(Gl)

k—1 m; k—1 m;
b(GE) < 300(1 + g*/) erg(G) &2 (v, G%)
g

1=0 j=1 1=0 j=1 ueV(G)

k—1
< 300(1 + g*/4) ; V62 (\/Cjia‘z’z‘ili_ggfr 6\/66373>

< 300(1 3/4\/7”3/2_1< cB1-5)+6

n% 2 \ /5n3>

<20001+g3/4\/7\[<1/0%1— )_ 310

Therefore, the number of edges e(G*) of the graph G* obtained in the final STEP of the algorithm
satisfies e(Gk) > e3(1 — ). Consider the drawing of G* on S, inherited from the drawing of Gs.

k—1 m; k—1 m;
<3001+ g%*) Y0 \Jery (G +3001+g3/4ZZJ Y d?(v,Gi)

2
Each connected component of G* has fewer than W% vertices, therefore, each cycle of G¥, a
drawn on Sy, is contractible to a point. Consequently, this drawing is equivalent to a planar drawing

of G*. Hence,

crg_1(G*) < cro(G*) < eryg(Gs) < ;% 2 e3(Gk) (1- E)(1 - i)_3 <C



a contradiction. This concludes the proof of Lemma 5.1. O

Lemma 5.2. For any integer ¢ > 0 and for any ¢ > 0, there exists N' = N'(g,¢) such that
Kg(n,e) > 0%32'(1 —€), whenever min{n,e/n,n%/e} > N'.
Proof. The proof is analogous to that of Lemma 4.2. O

Lemma 5.3. For any integer g > 0 and for any € > 0, there exists M = M(g,e) such that
Kg(n,e) < C%;(l + ¢€), whenever min{n, e/n,n?/e} > M.

Proof. Clearly, for any graph G and for any g > 0, we have cro(G) > cry(G). Therefore, Lemma
5.3 is a direct consequence of Lemma 4.3. O

Theorem 5 now readily follows from Lemmas 5.2 and 5.3.

6 A separator theorem
— Proof of Theorem 6

For the proof of Theorem 6, we need a slight variation of the notion of bisection width. The weak
bisection width, b(G), of a graph G is defined as the minimum number of edges whose removal splits
the graph into two components, each of size at least |V (G)|/5. That is,

b(G) = i E(Va, Vi),
(O) = s POV V)

where E(Vy4, Vp) denotes the number of edges between V4 and Vg, and the minimum is taken over
all partitions V(G) = V4 U Vg with |V4|,|Ve| > |V(G)|/5.

Lemma 6.1 For any graph G, we have

b(G) < b(G) < 2 max b(H).

Proof. The first inequality is obviously true. To prove the second one, let |V (G)| = n and consider
a partition V(G) = V4 U Vp such that n/5 < |Va|,|Vg| < 4n/5 and |E(V4, V)| = b(G). Suppose
that |Va| < |Vg|. If n/3 < |Val, then b(G) = b(G) and we are done. So we can assume that
n/5 < |Va| <n/3 and 2n/3 < |Vg| < 4n/5.

Let H be the subgraph of G induced by Vp. By definition, there is a partition Vg = VU Vg
such that |Vp|/5 < |V, |VE| < 4|Vp|/5 and |E(VE,VE)| = b(H). We can assume that [V5| < [VA].
Then

3> 5 S 25 -3
Letting Vi = V4 UV} and Vo =V}, we have V(G) = V1 U Vs, n/3 < V1], |Va] < 2n/3,
|E(V1,V2)| < |E(Va, Vi)| + |E(VE, VE)| < b(G) + b(H),
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and the result follows. O
Theorem 6 is an immediate consequence of Lemma, 6.1 and the following statement.

Theorem 6.2. Let G be a graph with n vertices of degrees dy,da,...,d,. Then

n

B(G) < 150(1 + g3/4)\l crg(G) + Y d2.

i=1

Proof. Clearly, we can assume that G contains no isolated vertices, that is, d; > O forall 1 <i <mn.
Consider a drawing of G on S, with exactly cry(G) crossings. Let vy,vs,. .., vy, be the vertices of G
with degrees di,do, . .., d,, respectively. Introduce a new vertex at each crossing. Denote the set of
these vertices by V). Replace each v; € V(G) (i = 1,2...,n) by a set V; of vertices forming a d; x d;
piece of a square grid, in which each vertex is connected to its horizontal and vertical neighbors.
Let each edge incident to v; be hooked up to distinct vertices along one side of the boundary of V;
without creating any crossing. These d; vertices will be called the special boundary vertices of V;.

Figure 1.

H n
Hhus, we obtain a graph £ of Zizo Vil = erg(G) + Z?:l d? vertices and no crossing (see Fig.
1.). For each 1 < i < n, assign weight 1/d; to each special boundary vertex of V;. Assign weight 0
to all other vertices of H. For any subset v of the vertex set of H, let w(v) denote the total weight
of the vertices belonging to v. With this notation, w(V;) = 1 for each 1 < i < n. Consequently,
w(V(H)) = n.
Since; |HRY 6¥jawphen, by witbant 6Foadig, Seymees, notdcuHeiiad|A ST g0 Iihervemicss of H
t4utbypartitioned into three sets, A, B and C, such that w(A),w(B) > n/3 and |C| < 25(1 +
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93/4)\/crg(G) + 37, d?, and there is no edge from A to B. Let 4; = ANV;, B, = BNV;, C; = CNV;
(1=0,1,...,n).

For any 1 < i < n, we say that V; is of type A (resp. type B) if w(A;) > 5/6 (resp. w(B;) > 5/6),
and it is of type C, otherwise.

Define a partition V(G) = V4 UVp of the vertex set of G, as follows. For any 1 < i < n, let v; €
V4 (resp. v; € V) if V; is of type A (resp. type B). The remaining vertices, {v; | V; is of type C }
are assigned either to V4 or to Vp so as to minimize ||V4| — |V3||.
Claim 1. n/5 < |V4|,|VB| < 4n/5

To prove the claim, define another partition V(H) = AU BU C such that ANV; = ANV; and
BNV;=BnNYV,fori=0 and for every V; of type C. If V; is of type A (resp. type B), then let
V; = A; C A (resp. V; = B; C B), finally, let C = V(H) — A — B.

For any V; of type A, w(4;)—w(A;) < w(A;)/5. Similarly, for any V; of type B, w(B;) —w(B;) <
w(B;)/5. Therefore,

|lw(A) — w(A)| < max{w(A),w(B)}/5 < 2n/15.

Hence, n/5 < w(A) < 4n/5 and, analogously, n/5 < w(B) < 4n/5. In particular, |w(A) — w(B)| <
3n/5. Using the minimality of ||V4| — |VB||, we obtain that ||[V4| — |VB|| < 3n/5, which implies
Claim 1.

AO BO cCe

Figure 2.

Claim 2. For any 1 <i<mn,
(i) if Vi is of type A (resp. of type B), then w(B;)d; < |Cy| (resp. w(4;)d; < |Cy]);
(i) if V; is of type C, then d;/6 < |Cj|.
In Vj, every connected component belonging to A; is separated from every connected component
belonging to B; by vertices in C;. There are w(A;)d; (resp. w(B;)d;) special boundary vertices in
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Vi, which belong to A; (resp. B;). It can be shown by an easy case analysis that the number of
separating points |C;| > min{w(A4;),w(B;)}d;, and Claim 2 follows (see Fig. 2.).

In order to establish Theorem 6.2 (and hence Theorem 6), it remains to prove the following
statement.

Claim 3. The total number of edges between V4 to Vg satisfies

|E(Va, V)| < 150(1 +g3/4)\l crg(G) + ) d7.
i=1

To see this, denote by Ey the set of all edges of H adjacent to at least one element of Cj. For
any 1 <i < n, define E; C E(H) as follows. If V; is of type A (resp. type B), let E; consist of all
edges leaving V; and adjacent to a special boundary vertex belonging to B; (resp. A;). If V; is of
type C, let all edges leaving V; belong to FE;.

For any 1 < 4 < n, let E} denote the set of edges of G corresponding to the elements of E;
(0 < i < n). Clearly, we have |E!| < |E;|, because distinct edges of G give rise to distinct edges of
H. Tt is easy to see that every edge between V4 and Vi belongs to Ul (E;.

Obviously, |Ej| < |Ey| < 4|Cy|. By Claim 2, if V; is of type A or of type B, then |E}| < |E;| <
|Ci|. I V; is of type C, then |E}| < |E;| = d; < 6|C;|. Therefore,

n n
|E(Va, VB)| < |Uo Bl < ) 1E;| < 6]C| < 150(1 +93/4)¢Crg(G) +_d;.
1=0 i=1

This concludes the proof of Claim 3 and hence Theorem 6.2 and Theorem 6. O

Acknowledgement. We would like to express our gratitude to Zoltan Szabé for his help in writing
Section 5, and to Laszlé Székely for many very useful remarks.
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