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Abstract

A drawing of a graph G is a mapping which assigns to each vertex a point of the plane and
to each edge a simple continuous arc connecting the corresponding two points. The crossing
number of G is the minimum number of crossing points in any drawing of G. We define two new
parameters, as follows. The pairwise crossing number (resp. the odd-crossing number) of G is
the minimum number of pairs of edges that cross (resp. cross an odd number of times) over all
drawings of G. We prove that the largest of these numbers (the crossing number) cannot exceed
twice the square of the smallest (the odd-crossing number). Our proof is based on the following
generalization of an old result of Hanani, which is of independent interest. Let G be a graph and
let E0 be a subset of its edges such that there is a drawing of G, in which every edge belonging
to E0 crosses any other edge an even number of times. Then G can be redrawn so that the
elements of E0 are not involved in any crossing. Finally, we show that the determination of each
of these parameters is an NP-hard problem and it is NP-complete in the case of the crossing
number and the odd-crossing number.

1 Introduction

The crossing number of a graph G is usually defined as “the minimum number of edge crossings in
any drawing of G in the plane” [BL84]. However, one has to be careful with this definition, because
it can be interpreted in several ways. Sometimes it is assumed that in a proper drawing no two
edges cross more than once, and if two edges share an endpoint, they cannot have another point in
common ([WB78], [B91]). Many authors do not make this assumption ([T70], [GJ83], [SSSV97]).
If two edges are allowed to cross several times, we may count their intersections with multiplicity
or without. We may also wish to impose some further restrictions on the drawings (e.g., the edges
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must be straight-line segments [J71], or polygonal paths of length at most k [BD93]). No matter
what definition we use, the determination of the crossing number of a graph appears to be an
extremely difficult task ([GJ83], [B91]). In fact, we do not even know the asymptotic value of any
of the above quantities for the complete graph Kn with n vertices and for the complete bipartite
graph Kn,n with 2n vertices, as n tends to infinity [RT97]. The latter question, raised more than
fifty years ago, is often referred to as Turán’s Brick Factory Problem [T77] or as Zarankiewicz’s
problem [G69].

In the present paper, we investigate the relationship between various crossing numbers. First
we agree on the terminology.

A drawing of a simple undirected graph is a mapping f that assigns to each vertex a distinct point
in the plane and to each edge uv a continuous arc (i.e., a homeomorphic image of a closed interval)
connecting f(u) and f(v), not passing through the image of any other vertex. For simplicity, the
arc assigned to uv is called an edge of the drawing, and if this leads to no confusion, it is also
denoted by uv. We assume that no three edges have an interior point in common, and if two edges
share an interior point p, then they cross at p. We also assume that any two edges of a drawing
have a only a finite number of crossings (common interior points). A common endpoint of two
edges does not count as a crossing.

Definition. Let G be a simple undirected graph.

(i) The rectilinear crossing number of G, lin-cr(G), is the minimum number of crossings in any
drawing of G, in which every edge is represented by a straight-line segment.

(ii) The crossing number of G, cr(G), is the minimum number of edge crossings in any drawing of
G.

(iii) The pairwise crossing number of G, pair-cr(G), is the minimum number of pairs of edges
(e, e′) such that e and e′ determine at least one crossing, over all drawings of G. (That is, now
crossings are counted without multiplicities.)

(iv) The odd-crossing number of G, odd-cr(G), is the minimum number of pairs of edges (e, e ′)
such that e and e′ cross an odd number of times.

Clearly, we have

odd-cr(G) ≤ pair-cr(G) ≤ cr(G) ≤ lin-cr(G),

It was shown by Bienstock and Dean [BD93] that there are graphs with crossing number 4,
whose rectilinear crossing numbers are arbitrarily large. On the other hand, we cannot rule out the
possibility that

odd-cr(G) = pair-cr(G) = cr(G)

for every graph G. The only result in this direction is the following remarkable theorem of Hanani
and Tutte (see also [LPS97]).
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Theorem A. [Ch34], [T70] If a graph G can be drawn in the plane so that any two edges which do
not share an endpoint cross an even number of times, then G is planar.

For a generalization of this result to other surfaces, see [CN99].

In a fixed drawing of a graph G, an edge is called even if it crosses every other edge an even
number of times. It follows from Theorem A that if all edges of G are even, i.e., if odd-cr(G) = 0,
then cr(G) = 0. (In this case, by Fáry’s theorem [F48], we also have lin-cr(G) = 0.) In the next
section, we establish the following generalization of this statement.

Theorem 1. For a fixed drawing of a graph G, let G0 ⊆ G denote the subgraph formed by all even
edges.

Then G can be drawn in such a way that the edges belonging to G0 are not involved in any
crossing.

At the end of the next section, we show how Theorem 1 implies that if the odd-crossing number
of a graph is bounded, then its crossing number cannot be arbitrarily large. More precisely, we
prove

Theorem 2. The crossing number of any graph G satisfies

cr(G) ≤ 2 (odd-cr(G))2 .

It was discovered by Leighton [L84] that the crossing number can be used to obtain a lower
bound on the chip area required for the VLSI circuit layout of a graph. For this purpose, he
proved the following general lower bound for cr(G), which was discovered independently by Ajtai,
Chvátal, Newborn, and Szemerédi. The best known constant, 1/33.75, in the theorem is due to
Pach and Tóth.

Theorem B. [ACNS82], [L84], [PT97] Let G be a graph with vertex set V (G) and edge set E(G)
such that |E(G)| ≥ 7.5|V (G)|. Then we have

cr(G) ≥
1

33.75

|E(G)|3

|V (G)|2
.

In Section 3, we prove that a similar inequality holds for the odd-crossing number.

Theorem 3. Let G be a graph with vertex set V (G) and edge set E(G) such that |E(G)| ≥ 4|V (G)|.
Then we have

odd-cr(G) ≥
1

64

|E(G)|3

|V (G)|2
.

It was shown by Garey and Johnson [GJ83] that, given a graph G and an integer K, it is an
NP-complete problem to decide whether cr(G) ≤ K. In the last section we show that the same is
true for the odd-crossing number.
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Theorem 4. Given a graph G and an integer K, it is an NP-complete problem to decide whether
odd-cr(G) ≤ K.

We can not prove the same for the pair-crossing number. (See Remark at the end of Section 4.)

2 Proofs of Theorems 1 and 2

First we establish Theorem 1. The proof somewhat resembles a proof of Kuratowski’s theorem (see
[BM76]).

Suppose that Theorem 1 is false. Then there exists a graph G with vertex set V (G) = V and
edge set E(G) = E, and there is a subset E0 ⊆ E such that G has a drawing, in which every edge
in E0 is even, but there is no drawing, in which none of these edges is involved in any crossing. Let
us fix a minimal counterexample to Theorem 1, i.e., a pair (G,E0) such that there exists no other
pair (G,E0), E0 ⊆ E, with the above property, for which the triple (|E|, |E 0|, |V |) would precede
(|E|, |E0|, |V |) in the lexicographic ordering. In particular, it follows from the minimality of (G,E0)
that G is connected.

If it leads to no confusion, throughout this section G will stand both for the graph and for a
particular drawing, in which all edges of E0 are even. Let G0 = (V,E0). A path (resp. cycle) in
G is said to be an E0-path (resp. E0-cycle), if all of its edges belong to E0. Two edges are called
independent, if they do not share an endpoint.

Claim 1. G and G0 = (V,E0) satisfy the following properties.
(i) There is no vertex of degree 1 in G0.
(ii) There are no two adjacent vertices of degree 2 in G0.
(iii) In any subdivision of K5 or K3,3 contained in G, there are two paths representing independent
edges, such that neither of them is an E0-path.

Proof. If v has degree 1 in G0 = (V,E0), and uv ∈ E0, then (G,E0 \ {uv}) is another
counterexample, (lexicographically) smaller than (G,E0). If u, v both have degree 2 in G0 and
uv ∈ E0, then contract the edge uv and remove all multiple edges (that is, keep only one copy
of each edge), to obtain a smaller counterexample. Finally, part (iii) is an immediate corollary to
Theorem A. 2

Let C be any E0-cycle of G. A connected subgraph B ⊂ G is a bridge of C (in G) if it consists
of either a single edge whose endpoints belong to V (C), or of a connected component of G− V (C)
together with all edges connecting it to C. The endpoints of these edges in C are called the
endpoints of bridge B. (See also [BM76].) In the following, P (x, y) will always denote a path in G
between two vertices, x and y.

Claim 2. G contains an E0-cycle which has at least two bridges.

Proof. First we show that there is an E0-cycle with a chord which is either a single E0-edge
or an E0-path of length two.
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Delete all isolated vertices of G0. For every vertex v, which is adjacent to exactly two vertices,
u and w, in G0, replace uv, vw, and v with the single edge uw. Call the resulting multigraph Ĝ0.
By Claim 1, the degree of every vertex of Ĝ0 is at least 3.

Let P = x0x1 . . . xm be a longest path in Ĝ0. Vertex x0 has at least 3 neighbors, and, by the
maximality of the path, all of them are on P . Hence, for some 1 < i < j, x0xi and x0xj are edges
of Ĝ0. Then x0x1 . . . xj is a cycle with chord x0xi in Ĝ0. Since every edge of Ĝ0 arose from either
an edge or a path of length two in G0, the corresponding edges of G0 form a cycle C with a chord
c which is either a single edge or an E0-path of length 2.

If C has at least two bridges, then we are done. Assume it has only one bridge, B. Now c is not
a single edge, otherwise B would be identical with c, and G = G0 = C ∪ c is not a counterexample.
Therefore, we can assume that c is an E0-path xvy of length 2.

The points x and y divide C into two complementary paths (arcs). If two vertices of C, a and
b (different from x and y) do not belong to the same arc, we say that the pair {x, y} separates a
from b on C. Equivalently, the pair {a, b} separates x from y.

We distinguish three cases.

Case 1. B has no two endpoints separated by the pair {x, y}.

Let P (x, y) denote the arc of C containing no endpoint of B in its interior. Let G ′ be the graph
obtained from G by replacing P (x, y) with a single edge xy, and let E ′

0 = E0 ∪ {xy}. It is easy to
see that (G′, E′

0) is also a counterexample. By the minimality of (G,E0), we have that G = G′, i.e.,
P (x, y) is a single edge xy ∈ E0.

Swapping xy with the chord xvy, we obtain an E0-cycle C ′ with a chord xy. Therefore, C ′ has
at least two bridges, and Claim 2 is true.

Case 2. There is a path P (a, b) ⊂ B, not passing through v, which connects two points, a and
b ∈ V (C), separated by the pair {x, y}.

Since v and P (a, b) belong to the same bridge, there is a path P (v, q) ⊂ B connecting v to
an interior point q of P (a, b). Then G contains a subdivision of K3,3 with vertex classes {x, y, q}
and {a, b, v}. Moreover, all paths representing the edges of K3,3 belong to E0, with the possible
exceptions of those adjacent to q. This contradicts Claim 1 (iii), which shows that this case cannot
occur.

Case 3. Every path in B, whose endpoints are separated on C by the pair {x, y}, passes through v.

Let P1(x, y) and P2(x, y) denote the two complementary arcs of C, and let Bi be the union of
all paths in B, which connect an internal point of Pi(x, y) to x, v, or y.

Suppose first that B = B1 ∪ B2. Then, by the minimality (G,E0), G − Bi, for i = 1, 2, has a
drawing where no edge belonging to E0 is involved in any crossing. In particular, in this drawing,
xvy and the edges of C are not crossed by any edge, so we can assume that all curves representing
the edges of Bi lie in the region bounded by Pi(x, y) and xvy (i = 1, 2). Redrawing G − B2, if
necessary, so that C and xvy are mapped to exactly the same curves as in the drawing of G−B1, the
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two drawings can be combined to give a drawing of G, contradicting our assumption that (G,E0)
is a counterexample.

We are left with the case when B 6= B1 ∪ B2. Then there is a vertex s of B which can not be
reached from any internal point of Pi(x, y) without passing through x, v, or y (i = 1, 2). Swapping
P1(x, y) with xvy, we obtain an E0-cycle C ′ with a chord P1(x, y), which can be arbitrarily long.
C ′ has at least two bridges, because P1(x, y) and s do not be in the same bridge. 2
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s

Case 3.

CC

yy

x

a
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x

v

Case 1. Case 2.

C C

Figure 1.

In the sequel, let C denote a fixed E0-cycle of G which has at least two bridges.

Claim 3. C has at least three bridges.

Proof. Suppose there are only two bridges of C, B1 and B2. By the minimality of G, G − B1

(resp. G − B2) can be drawn in the plane so that none of its edges belonging to E0 is involved
in any crossing. In particular, in this drawing none of the edges of C is involved in any crossing,
therefore B2 (resp. B1) lies entirely on one side of C, say, in its interior (resp. exterior). But then
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we can combine the two drawings and get a drawing of G. It is a contradiction since G is assumed
to be a counterexample. 2

Let B1 and B2 be two bridges of C. By the minimality of (G,E0), the graph C ∪ B1 ∪ B2 can
be drawn in the plane so that none of its edges belonging to E0 participates in any crossing. If in
all such drawings B1 and B2 are on different sides of C, then B1 and B2 are said to be conflicting.

Claim 4. C has exactly three bridges, at least one of which is a single edge.

Proof. Construct a graph Γ whose vertices correspond to the bridges of C, and two vertices are
connected by an edge if and only if the corresponding bridges are conflicting. By the minimality
of (G,E0), after the removal of any bridge the remaining graph can be drawn in the plane so that
none of its edges belonging to E0 is involved in any crossing. In other words, if we delete any vertex
of Γ , it becomes two-colorable (the two colors correspond to the bridges inside and outside C).
Therefore, any odd cycle of Γ passes through every vertex of Γ, hence Γ itself is an odd cycle.

Fix now any drawing of G, in which all edges belonging to E0 are even. The closed curve
representing C divides the plane into connected cells. Color them with black and white so that no
two cells that share a boundary arc receive the same color.

Let Bi be a bridge of C. We need the following observation, which is an immediate consequence
of the fact that every edge of Bi crosses all edges of C an even number of times. Assume that in a
small neighborhood of one of its endpoints some edge of Bi runs in the black (white) region. Then
every edge of Bi is black (resp. white) in a sufficiently small neighborhood of both of its endpoints.
In this case, Bi is said to be a black (resp. white) bridge. Every non-endpoint of a black (white)
bridge must lie in the black (resp. white) region.

Since Γ is an odd cycle, it has two consecutive vertices such that the corresponding bridges, say,
B1 and B2, are conflicting and they are of the same color, say, black. We will specify two edges,
b1 ∈ E(B1) and b2 ∈ E(B2). We distinguish two cases.

Suppose first that B1 and B2 have a common endpoint v. In a small neighborhood of v, all
edges of B1 and B2 emanating from v are disjoint and run in the black region. Therefore, we can
find two consecutive edges, b1 and b2, in the cyclic order around v such that bi ∈ Bi, i = 1, 2. In
this case, set w1 = w2 = v.

Suppose next that B1 and B2 do not have a common endpoint. Let vivi+1 . . . vj be a piece of
C such that vi is an endpoint of B1, vj is an endpoint of B2, and no vk (i < k < j) is an endpoint
of either B1 or B2. There may be several edges of B1 adjacent to vi, which lie in the black region
in a small neighborhood of vi; let b1 denote the last one in the cyclic order from the initial piece
of vivi−1 to that of vivi+1. Similarly, let b2 denote the first edge of B2 emanating from vj in the
cyclic order from the initial piece of vjvj−1 to that of vjvj+1. Now set w1 = vi and w2 = vj.

Consider the drawing of C ∪B1 ∪B2 inherited from the original drawing of G. In this drawing,
all edges belonging to E0∩ (E(C)∪E(B1)∪E(B2)) are even. We distinguish three cases depending
on whether B1 and B2 are single edges, and in each case we slightly modify the graph C ∪B1 ∪B2
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and its drawing. The modified graph and its drawing will be denoted by G = (V ,E), and we will
also specify a set of edges E0 ⊆ E.

z

w
w
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w  = w21

z
z2

1 1
z2

b b b

b

2
1

2

1

C C

Figure 2.

Case 1. Both B1 and B2 are single edges.

Then E(Bi) = {bi} = {wiui}, i = 1, 2. Split bi into two edges by adding an extra vertex zi very
close to wi, i = 1, 2. Connect z1 and z2 by an edge running very close to the path z1w1...w2z2, but
not intersecting it (see Fig. 2), and denote the resulting graph drawing by G. Since b1 and b2 are
conflicting, at least one of them (say, b1) belongs to E0. Then set E0 = E(C) ∪ {w1z1, z1u1}.

Case 2. B1 is a single edge, B2 is not.

Then E(B1) = {b1} = {w1u1}, E(B2) ⊃ {b2} = {w2z2}, where u1 ∈ V (C) and z2 6∈ V (C).
Split b1 into two edges by adding a vertex z1 very close to w1. As before, connect z1 and z2 by
an edge running very close to the path z1w1...w2z2, and denote the resulting graph drawing by G.
If b1 ∈ E0 then set E0 = E(C) ∪ {w1z1, z1u1}. Otherwise, let E0 = E0 ∩ (E(C) ∪ E(B2)), i.e., we
leave the set of specified edges unchanged.

Case 3. Neither B1 nor B2 is a single edge.

Then E(Bi) ⊃ {bi} = {wizi}, where zi 6∈ V (C), for i = 1, 2. Connect z1 and z2 by an edge
running very close to the path z1w1...w2z2, and denote the resulting graph drawing by G. As in
the previous case, let us leave the set of specified edges unchanged, i.e., set E 0 = E0 ∩ (E(C) ∪
E(B1) ∪ E(B2)).

It follows from the construction that in the above drawing of G, every edge belonging to E 0

is even. Recall that B1 and B2 were conflicting (see the last paragraph before Claim 4), which
implies that in every drawing of G with the property that no edge in E0 is involved in any crossing,
z1 and z2 lie on different sides of C. However, z1z2 ∈ E(G) = E, proving that (G,E0) is also a
counterexample to Theorem 1.

Suppose, to obtain a contradiction, that C has more than three bridges in G. Since Γ is an
odd cycle, the number of bridges is odd, i.e., C has at least five bridges. In the construction of G,
we kept only two of these bridges, so we deleted at least three bridges, hence at least three edges.
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In Cases 1 and 2, we added at most two new edges. Thus, in these cases, |E(G)| = |E| < |E|,
contradicting our assumption that (G,E0) is a minimal counterexample.

The only remaining possibility is that C has exactly five bridges, all of which are single edges.
It follows from the structure of Γ that at least three of these bridges (edges) belong to E0. On the
other hand, G has only two edges not in C that belong to E0. Thus, in this case, |E| = |E|, but
|E0| < |E0|. This again contradicts the minimality of our counterexample.

Therefore, we can assume that C has exactly three bridges in G, B1, B2, and B3. If none of
them is a single edge, then we can add one edge (as in Case 3) and delete a bridge, which contains
more than one edge, to obtain a counterexample smaller than (G,E0). 2

Claim 5. C has at least two bridges which are single edges.

Proof. Assume, to obtain a contradiction, that C has only one bridge which consists of a single
edge. Take a closer look at the transformation in the proof of Claim 4. By deleting B3 and adding
one, two, or three edges, we obtained another counterexample (G,E0).

If B1 or B2 was the bridge consisting of a single edge, then we added two edges (cf. Case 2 in the
proof of Claim 4) and deleted B3, which had at least three edges. This contradicts the assumption
that (G,E0) was a minimal counterexample.

Therefore, we can assume that B3 consists of a single edge xy. Then, during the above trans-
formation we deleted B3 and added an edge that does not belong to E0 (cf. Case 3). Therefore,
using the minimality of (G,E0) again, we obtain that xy 6∈ E0.

Since B1 and B3 are conflicting, it follows that there is an E0-path P (a, b) ⊂ B1 whose endpoints,
a and b, separate x and y on C. Let Px(a, b) and Py(a, b) denote the two complementary arcs of C
between a and b, containing x and y, respectively.

We distinguish two cases.

Case 1. All endpoints of B2 belong to the same arc, Px(a, b) or Py(a, b).

By symmetry, we can assume that all endpoints of B2 are on Px(a, b). Then all endpoints of
B1 must also belong to Px(a, b). Indeed, if an endpoint of B1 did not lie on this arc, then we could
delete all edges of B1 adjacent to it and obtain a smaller counterexample.

Consider the graph G constructed in the proof of Claim 4. In this graph, y is adjacent to only
two vertices, y′ and y′′, both of which belong to C. Let G′ denote the graph obtained from G by
deleting y and replacing the E0-path y′yy′′ by a single edge y′y′′. Set E′

0 = E0 \ {yy′, yy′′}∪{y′y′′}.
Clearly, (G′, E′

0) is a counterexample to Theorem 1, which precedes (G,E0), contradicting the
minimality of (G,E0).

Case 2. There exists a path P (p, q) ⊆ B2 such that p and q are interior points of Px(a, b) and
Py(a, b), respectively.

Consider again the graph G. Clearly, B1 contains a path connecting b1 to some internal point r of
P (a, b). (Note that r may be an endpoint of b1. Moreover, b1 may belong to P (a, b).) Similarly, B2

contains a path connecting b2 to some internal point s of P (p, q). However, in this case, G contains
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a subdivision of K3,3 with vertex classes {a, b, s} and {p, q, r}. Furthermore, with the exception
of the paths incident to s, all paths representing the edges of K3,3 belong to E0. However, this
contradicts Claim 1 (iii). 2

Now we can complete the proof of Theorem 1. By Claims 4 and 5, C has precisely three pairwise
conflicting bridges Bi, (i = 1, 2, 3) in G. Two of them, say, B1 and B2, are single edges, xy and ab,
respectively. Since B1 and B2 are conflicting, at least one of them, say xy, is in E0.

Using the fact that B3 is in conflict with xy ∈ E0, we obtain that it contains a path connecting
a pair of points {p, q} ⊂ V (C) which separates x from y. Similarly, since B3 is in conflict with ab, it
also contains a path connecting a pair of points {p′, q′} ⊂ V (C) which separates a from b, and this
path belongs to E0 unless ab ∈ E0. According to the position of these paths, we can distinguish
four different cases up to symmetry (see Fig. 3). P (p, q) always stands for a path connecting p and
q, whose internal vertices do not belong to C.

Case 1. B3 contains a path P (p, q); p, q ∈ V (C), such that the pair {p, q} separates a from b and
x from y, and ab or P (p, q) belongs to E0.

Then G has a subdivision of K3,3 with vertex classes {a, p, y} and {b, q, x}. Moreover, with the
exception of ab or P (p, q), all paths representing the edges of K3,3 belong to E0. This contradicts
Claim 1 (iii).

Case 2. B3 contains three internally disjoint paths, P (a, r), P (p, r) and P (q, r), such that r does
not belong to C; the pair {p, q} separates b from the set {a, x, y}; and ab or P (p, r)∪P (q, r) belongs
to E0.

Then G properly contains a subdivision of K3,3 with vertex classes {x, r, b}, and {a, p, q}. It is
easy to see that deleting from G the arc of C between a and y which does not contain {x, p, b, q},
we obtain a smaller counterexample. Thus, this case cannot occur.

Case 3. B3 contains three internally disjoint paths, P (p, r), P (q, r), and P (y, r), such that r
does not belong to C; the pair {p, q} separates x from the set {a, b, y}; and at least one of ab,
P (p, r) ∪ P (y, r) and P (q, r) ∪ P (y, r) belongs to E0.

Then G properly contains a subdivision of K3,3 with vertex classes {x, r, b}, and {y, p, q}. If ab
belongs to E0, then deleting from G the arc of C between a and y which does not contain {p, x, q, b},
we obtain a smaller counterexample. If ab does not belong to E0, but, say, P (p, r) ∪ P (y, r) does,
then, by the minimality of (G,E0), all paths depicted in Fig. 3 (3) are single edges, and G has no
further edges. However, this case cannot occur, because here b and q are two adjacent vertices of
degree 2 in G0, contradicting Claim 1 (ii).

Case 4. The endpoints of B3 are a, b, x, y.

Since B2, and B3 are conficting, B3 contains two intersecting paths, P (a, b) and P (x, y), such
that either ab or P (x, y) belongs to E0. It follows from the minimality of our counterexample
that P (a, b) and P (x, y) have only one vertex in common. Denoting it with r, we can write
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P (a, b) = P (a, r) ∪ P (b, r) and P (x, y) = P (x, r) ∪ P (y, r). Then G contains a subdivision of
K5 induced by a, b, x, y, r. Moreover, with the exception of ab, P (a, r), and P (b, r), all paths
representing the edges of K3,3 belong to E0. This contradicts Claim 1 (iii).

In each case, we arrived at a contradiction. Thus, there exists no (minimal) counterexample
(G,E0) to Theorem 1. The proof of Theorem 1 is complete. 2
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Figure 3.

Theorem 2 is an easy corollary to Theorem 1. Let G = (V,E) be a simple graph drawn in the
plane with λ = odd-cr(G) pairs of edges that cross an odd number of times. Let E0 ⊂ E denote
the set of even edges in this drawing. Since every edge not in E0 crosses at least one other edge an
odd number of times, we obtain that

|E \ E0| ≤ 2λ.

By Theorem 1, there exists a drawing of G, in which no edge of E0 is involved in any crossing.
Pick a drawing with this property such that the total number of crossing points between all pairs
of edges not in E0 is minimal. Notice that in this drawing, any two edges cross at most once.
Therefore, the number of crossings is at most

(
|E \ E0|

2

)
≤

(
2λ

2

)
≤ 2λ2,

and Theorem 2 follows.

3 Proof of Theorem 3

The proofs of Theorem B readily generalize to this case. We include a short argument, for com-
pleteness.

11



First, we show that for any graph G,

odd-cr(G) ≥ |E(G)| − 3|V (G)|. (1)

If |E(G)| ≤ 3|V (G)|, then (1) is trivially true. Let |E(G)| > 3|V (G)| and suppose that (1)
holds for any graph with |V (G)| vertices and less than |E(G)| edges. Consider a drawing of G with
exactly odd-cr(G) pairs of edges crossing an odd number of times. Since |E(G)| > 3|V (G)|, G
is not planar, so by Theorem A, odd-cr(G) ≥ 1. Let G denote the the graph obtained from G
by deleting one edge that crosses at least one other edge an odd number of times. Applying the
induction hypothesis to G, we get

odd-cr(G) ≥ odd-cr(G) + 1 ≥ |E(G)| − 3|V (G)| + 1 = |E(G)| − 3|V (G)|,

as required.
To prove Theorem 3, fix a drawing of G with exactly odd-cr(G) pairs of edges crossing an

odd number of times, and suppose that |E(G)| ≥ 4|V (G)|. Construct a random subgraph G ′ ⊆ G
by selecting each vertex of G independently with probability p, and letting G ′ be the subgraph
induced by the selected vertices. The expected number of vertices of G′, Exp[|V (G′)|] = p|V (G)|.
Similarly, Exp[|E(G′)|] = p2|E(G)|. The expected number of pairs of edges that cross an odd
number of times in the drawing of G′ inherited from G is p4odd-cr(G), hence the expected value
of the odd-crossing number of G′ cannot be larger than this.

By (1), odd-cr(G′) ≥ |E(G′)| − 3|V (G′)| for every particular G′. Taking expectations,

p4
odd-cr(G) ≥ Exp[odd-cr(G′)] ≥ Exp[|E(G′)|] − 3Exp[|V (G′)|] = p2|E(G)| − 3p|V (G)|.

Setting p = 4|V (G)|/|E(G)| we obtain

odd-cr(G) ≥
1

64

|E(G)|3

|V (G)|2
, (2)

whenever |E(G)| ≥ 4|V (G)|. 2

Remarks. 1. In case |E(G)| ≥ 6|V (G)|, Theorem 2 trivially follows from Theorem 3. Indeed, for
any graph G,

cr(G) ≤

(
|E(G)|

2

)
< |E(G)|2/2.

If |E(G)| ≥ 6|V (G)| then Theorem 3 implies

2(odd-cr(G))2 ≥ 2 ·

(
1

64

|E(G)|3

|V (G)|2

)2

≥
|E(G)|2

2
> cr(G).

12



2. Using the fact that Theorem A guarantees, in any non-planar graph, the existence of two
independent edges that cross an odd number of times, the above proof gives the same lower bound,
(1/64)|E(G)|3/|V (G)|2, for the minimum number of pairs of independent edges that cross an odd
number of times. This result is somewhat stronger than Theorem 3, because here we do not count
any odd crossing between two edges that share an endpoint.

4 Proof of Theorem 4

First, we prove that the Odd Crossing Number Problem, odd-cr(G) ≤ K, is in NP, and then
we show that there is an NP-complete problem that can be reduced to it in polynomial time.

Fix a graph G with vertex set V = {v1, v2, . . . , vn} and edge set E. Every drawing D of G can
be represented by an

(|E|
2

)
-dimensional (0, 1)-vector X̄D(G), in which each coordinate is assigned to

an unordered pair of edges {e, f} ⊆ E, and is equal to 1 if and only if e and f cross an odd number
of times. That is,

X̄D(G) = (xD{e, f})e6=f ;e,f∈E ,

where, for every e, f ∈ E,

xD{e, f} =

{
0 if e and f cross an even number of times,
1 if e and f cross an odd number of times.

We say that two drawings of G, D and D′ are equivalent if they are represented by the same
vector, i.e., if X̄D(G) = X̄D′(G). An

(|E|
2

)
-dimensional (0, 1)-vector X̄ is said to be realizable if

there exists a drawing D of G such that X̄D(G) = X̄
Using an idea of Tutte [T70], it is not hard to describe the set of all realizable vectors of G. We

need some further notation. For any v ∈ V , g ∈ E, let

Ȳv,g = (y{e, f})e6=f ;e,f∈E ,

where

y{e, f} =

{
1 if e = g and f is adjacent to v, or f = g and e is adjacent to v,
0 otherwise.

Let Φ denote the vector space over GF(2) generated by the vectors Ȳv,g, i.e.,

Φ =
〈
Ȳv,g | v ∈ V, g ∈ E

〉
gen ⊂ {0, 1}(

|E|
2
).
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Place the vertices v1, v2, . . . , vn on a circle in this clockwise order so that they form a regular
n-gon, and connect vi and vj (i 6= j) by a straight-line segment if and only if vivj ∈ E. This
drawing is said to be the convex drawing of G, and is denoted by C.

For any 1 ≤ i ≤ n let di be the degree of vi and let ei
1, e

i
2, . . . , e

i
di

be the list of edges adjacent
to vi, in clockwise in the convex drawing of G. Let σi : {1, 2, . . . , di} → {1, 2, . . . , di} be any
permutation. Define

Z̄vi,σi
= (z{e, f})e6=f ;e,f∈E ,

where

z{e, f} =

{
1 if e = ei

α, f = ei
β and (α − β)(σi(α) − σi(β)) < 0,

0 otherwise.

v

γ

p

g

Figure 4.

Lemma 4.1. Let Φ denote the vector space over GF(2) generated by the vectors Ȳv,g, v ∈ V, g ∈ E,
let X̄C(G) be the (0, 1)-vector representing the convex drawing of G, and let

Γ =

{
n∑

i=1

Z̄vi,σi
| σi is any permutation {1, 2, . . . , di} → {1, 2, . . . , di}

}
.

Then the set of all realizable vectors of G is

Ψ = X̄C(G) + Γ + Φ,
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where the sum is taken mod 2.

Proof. Let D be any drawing of G, let v ∈ V, g ∈ E. Consider the following two operations:

(i) Choose a simple smooth arc γ connecting any internal point p of g to v such that it does not
pass through any vertex, is not tangent to any edge, and crosses every edge a finite number of
times. Replace a small piece of g containing p by a path going around v and running extremely
close to γ (see Fig. 4). The (0, 1)-vector representing this new drawing is

X̄E (G) = X̄D(G) + Ȳv,g (mod 2).

(ii) Let σi be the clockwise order of ei
1, e

i
2, . . . , e

i
di

as they emanate from vi in drawing D. Change

the clockwise order of edges as they emanate from vi to ei
1, e

i
2, . . . , e

i
di

in a small neighborhood of
vi. (See Fig. 5.) The (0, 1)-vector representing this new drawing is

X̄F (G) = X̄D(G) + Z̄vi,σi
(mod 2).

This shows that any vector in Ψ is realizable.

v vii

Figure 5.

Next we prove that X̄D(G) ∈ Ψ, for any drawing D of G. Using a topological transformation of
the plane, if necessary, we can assume without loss of generality that the vertices of G, v1, v2, . . . , vn,
form a regular n-gon, in this clockwise order. First, for every 1 ≤ i ≤ n, in a small neighborhood of
vi, change the clockwise order of edges as they emanate from vi to ei

1, e
i
2, . . . , e

i
di

such that in a very
small neighborhood of vi, each egde vivj is represented by the corresponding part of the segment
vivj .

Then, pick an edge g = vivj , and transform it into the straight-line segment between vi and vj ,
by continuous deformation. Performing this operation for all edges, one by one, we obtain C the
convex drawing of G.

Let D′ denote the drawing after the first step. Then,
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X̄D′(G) = X̄D(G) +
n∑

i=1

Z̄vi,σi
(mod 2)

for some permutations σ1, σ2, . . . , σn.
During the second step, the representation vector of the drawing changes whenever a deforming

edge g hits a vertex v. Let E and F denote the drawing immediately before and after this event.
Clearly,

X̄F (G) = X̄E(G) + Ȳv,g (mod 2).

Finally, we obtain
X̄C(G) = X̄D(G) + Ȳ (mod 2),

for some Ȳ ∈ Φ, hence
X̄D(G) ∈ X̄C(G) + Ȳ = Ψ. 2

Now we are in a position to prove that the Odd Crossing Number Problem is in NP.
Suppose that odd-cr(G) ≤ K. Then, by Lemma 4.1, there is a realizable vector Ȳ ∈ Ψ such that
all but at most K coordinates of Ȳ are 0. We can give the vector Ȳ in the form

Ȳ = X̄C(G) +
n∑

i=1

Z̄vi,σi
+

∑

v∈V,g∈E

α(v,g)Ȳv,g (mod 2),

where α(v,g) ∈ {0, 1} and σi : {1, 2, . . . , di} → {1, 2, . . . , di} are permutations. Clearly, the cor-
rectness of this equation can be checked in polynomial time. Thus, the Odd Crossing Number

Problem is in NP.

The Optimal Linear Arrangement Problem is the following. Given a graph G = (V,E)
and an integer K, is there a one-to one function σ : V → {1, 2, . . . , |V |} such that

∑
uv∈E |σ(u) −

σ(v)| ≤ K?

Notice that the Odd Crossing Number Problem for simple graphs is equivalent to the same
problem for multigraphs, i.e., when the graph G may have multiple (parallel) edges. Indeed, we
can remove all multiplicities by introducing new vertices along the edges of G. For any graph G
obtained from G by subdividing one (or more) of its edges, we have

odd-cr(G) = odd-cr(G).

Lemma 4.2. The Optimal Linear Arrangement Problem can be reduced to the Odd Cross-

ing Number Problem in polynomial time.

Proof. Suppose we are given an instance G = (V,E), K, and we want to decide if there exists a one-
to one function σ : V → {1, 2, . . . , |V |} such that

∑
uv∈E |σ(u)−σ(v)| ≤ K. Let V = {v1, v2, . . . , vn}
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and assume without loss of generality that G is connected. We construct a multigraph G ′
K and a

number K ′ such that the answer to our Optimal Linear Arrangement Problem is affirmative
if and only if odd-cr(G′

K) ≤ K ′.
Let G′

K = (V ′, E′), where V ′ = V1 ∪ V2 ∪ {u,w}, E = E1 ∪ E2 ∪ E3,

V1 = {ui | 1 ≤ i ≤ n}, V2 = {wi | 1 ≤ i ≤ n},

E1 = {|E|2 copies of uiwi | 1 ≤ i ≤ n},

E2 = {uiwj | i < j and viwj ∈ E},

E3 = {K2|E|2 copies of uw, uui, wwi, 1 ≤ i ≤ n},

and let
K ′ = |E|2(K − |E|) + |E|2 − 1.

u

w

w w w w w

u u u u u

1 2 3 4 5

54321

Figure 6.

Suppose first that there exists a bijection σ : V → {1, 2, . . . , |V |} such that
∑

uv∈E |σ(u)−σ(v)| ≤
K. We construct a drawing of G′ with at most K ′ pairs of crossing edges. Place ui at (1, σ(vi)),
wi at (0, σ(vi)), u at (2, 0), and w at (−1, 0). Represent all single edges by straight-line segments

17



and all multiple edges by pairwise disjoint curves running very close to the corresponding straight
line segment. It is easy to see that the total number of crossing pairs of edges is at most

∑

uv∈E

(|σ(u) − σ(v)| − 1)|E|2 + |E|2 − 1 ≤ |E|2(K − |E|) + |E|2 − 1 = K ′.

Next, suppose that odd-cr(G′
K) ≤ K ′. We show, using some simple transformations, that

there is another drawing of G′ generated by a function σ in the way described above, which has at
most K ′ pairs of edges that cross an odd number of times. Consider a drawing of G′

K with at most
K ′ pairs of edges that cross an odd number of times.

(a) We can assume that any two parallel edges, e and f , are drawn very close to each other, so
that they are openly disjoint, and any other edge crosses both of them the same number of times.
Indeed, if e and f are drawn differently, then replacing either e by an arc running very close to f ,
or f by an arc running very close to e, we obtain a new drawing of G which has at most as many
pairs of edges that cross an odd number of times as the original drawing.

(b) Any two edges e, f ∈ E1 ∪ E3 must cross an even number of times. Indeed, otherwise, by
(a), we can assume that each of the at least |E|2 edges parallel (or identical) to e crosses each of
the at least |E|2 edges parallel (or identical) to f an odd number of times. This implies that the
number of edge pairs that cross an odd number of times is at least |E|4 > K ′, a contradiction.

(c) No edge of G′
K can cross any edge between u and w an odd number of times. Otherwise, by

(a), the number of pairs of edges that cross an odd number of times would be at least K 2|E|2 > K ′,
which is impossible.

(d) Let e be any edge between u and w, and let fi (resp. gi) be any edge whose endpoints are
u and ui (resp. w and wi), 1 ≤ i ≤ n. If for some i 6= j, the edges (e, fi, fj) emanate from u in
clockwise order, then (e, gi, gj) must emanate from v in counter-clockwise order.

To see this, consider a cycle C formed by fi, e, gi, and any edge connecting ui and wi. The closed
curve representing this cycle divides the plane into connected cells. As in the proof of Theorem 1,
color these cells with black and white so that no two cells that share a boundary arc receive the
same color. Let P be a path formed by fj, gj , and any edge between uj and wj . Suppose that in
a small neighborhood of u, fj is in, say, the black region. Then, in a small neighborhood of w, gj

must also lie in the black region, because, by (b), every edge of P crosses (every edge of) C an even
number of times.

(e) Suppose that e, f1, f2, . . . , fn emanate from u in the clockwise order e, fα(1), fα(2), . . . , fα(n).
Then, by (d), e, g1, g2, . . . , gn must emanate from w in the reverse order e, gα(n), gα(n−1), . . . , gα(1).
Let σ(vi) = α−1(i), 1 ≤ i ≤ n.

We claim that for every uiwj ∈ E2, there are at least (|σ(vi)−σ(vj)| − 1)|E|2 edges in G′
K that

cross uiwj an odd number of times. To see this, it is enough to show that for every r < s < t, if
vα(r)vα(t) ∈ E, then the edge ert := uα(r)wα(t) must cross the path Ps := fα(s) ∪ eα(s) ∪ gα(s) an odd
number of times, where eα(s) denotes any edge between uα(s) and wα(s). As before, color the cells
determined by the closed curve Ps ∪ e with black and white. It follows from (d) that if in a small
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neighborhood of u, fα(r) ∪ ert ∪ gα(t) is in the black region, then in a small neighborhood of w it is
in the white region. In view of (b) and (c), this implies that ert crosses at least one of the edges
fα(s), eα(s), and gα(s) an odd number of times. In each case, we are done, and our claim is true.

Therefore, we have

∑

uv∈E

(|σ(u) − σ(v)| − 1)|E|2 ≤ odd-cr(G′
K) ≤ K ′ = |E|2(K − |E|) + |E|2 − 1,

which implies that ∑

uv∈E

(|σ(u) − σ(v)| ≤ K,

as desired. 2

With Lemma 4.2, the proof of Theorem 4 (ii) is complete, because the Optimal Linear

Arrangement Problem is known to be NP-complete [GJS76].

Remark. We can prove that the Pair Crossing Number Problem, pair-cr(G) ≤ K, is NP-
hard. The proof is analogous to the proofs of the corresponding results for the crossing number (see
[GJ83]) and for the odd-crossing number (see Lemma 4.2). On the other hand, we are unable to
prove that the Pair Crossing Number Problem is in NP, that is, we can not generalize Lemma
4.1 for pair-cr(G).

A preliminary version of this paper appeared in the proceedings of FOCS 1998 [PT98].
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