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1 Introduction

On a smooth curved surface S, parallel transport, suitably defined, of a vector
around a smooth, simple closed curve I' does not, in general, result in a the same
vector at the end of the parallel-transport process as at the beginning. Although
the initial and final vectors have the same magnitude, there is in general a nonzero
angle between them. From the initial and final vectors themselves, this angle is
only determined modulo 27.

To remove this ambiguity, it is necessary to keep track of angular changes
thoughout the parallel-transport process, and for this purpose, a comparison or
reference vector is needed. A common choice of reference vector is the tangent
vector to the curve, and this leads to the local Gauss-Bonnet theorem, which states

that
/kgds + / KdA = 27. (1)
r Q

Here € is the part of the surface S that is enclosed by I', ds is the element of
arclength on I', dA is the element of area on S, k, is the geodesic curvature of I’
on S, and K is the Gaussian curvature of the surface S.

The role of parallel transport in equation (1) is that &, is the rate of change
with respect to arclength of the angle between any vector undergoing parallel
transport and the unit tangent vector to the curve I'. The term 27 on the right-
hand side of equation (1) actually has nothing to do with parallel transport or with
Gaussian curvature. It is simply the angle though which the unit tangent vector
turns during one passage around a closed curve. This is most easily seen in the
case of a plane curve, for which KX = 0. Parallel transport of a vector along a
curve in the plane is the same as parallel transport in the Euclidean sense, i.e., the
vector does not change at all. Thus there is no angular discrepancy involved in
parallel transport around a closed curve in the plane. Nevertheless the integral of
the geodesic curvature is 27 because the tangent vector to the curve has turned
through an angle of 2.

What these considerations suggest is that we could dispense with the term
27 and obtain a more fundamental result by using a different reference vector,



other than the unit tangent to the curve I', to keep track of the changes in angle
that occur during parallel transport. This can indeed be done. What we need
is simply a smooth field of unit vectors tangent to the surface S that is defined
throughout Q.! For a surface S described in parametric form x(u, v), such a field
is easily obtained by differentiation with respect to either coordinate, followed by

o ox , Ox . .
normalization, e.g., u il 0 ||, but there is no need for the reference unit vector
' Ou

field to be related to the coordinates in any particular way, and we will not assume
any such relationship in the following.

An objection to the above idea might be that the result could depend on the
choice of the reference field, but in fact we will see in the following that this is not
the case. An intuitive explanation runs as follows: First, we are interested only in
the change of angle that occurs during one complete passage by parallel transport
around a closed curve. This is the angular difference between two vectors at the
same point, so the reference angle at that point obviously cancels out. This leaves
only an ambiguity of 27n, where n is any integer, and it is precisely this ambiguity
that we need a reference field to resolve. Note, however, that any smooth unit
vector field defined on (2 that is tangential to S can be continuously deformed into
any other such field (recall that the region 2 is topologically equivalent to a disc
in R?), and the integer n in the ambiguity of 27n cannot change continuously, so
it cannot depend on the choice of reference field. The conclusion of this argument
will be confirmed in the following by the observation that the results we derive do
not depend at all on the choice of the reference field.

The use of a smooth unit vector field to keep track of angular changes during
parallel transport has additional advantages besides elimination of the somewhat
spurious term 27. One of these is that the concept of geodesic curvature is not

'Note that there is not any such field that reduces to the unit tangent to the curve I' when
restricted to I". This is because any continuous vector field defined througout 2 U I, tangent to S,
and equal to the unit tangent vector to I' when evaluated on I' must be zero somewhere in €2, and
thus cannot be a field of unit vectors. To prove the claimed existence of a zero of a vector field
with the above properties, note that I" U € together with the associated vector field can be mapped
bicontinuously onto a sphere in such a way that the image of I is the equator and the image of 2 is
an open hemisphere with the equator as its boundary.. In fact we can consider two such mappings
that are reflections of each other in the equatorial plane of the sphere. This produces a vector field
that is continuous on the whole sphere and has mirror symmetry in the equatorial plane. By the
hairy ball theorem, there is at least one point on the sphere where this vector field is equal to zero.
This point cannot be on the equator, since the vector field there is the image of a unit vector field
under a bicontinuous mapping. Thus, by symmetry there must be at least two points, one in each
hemisphere, where the vector field is zero, and at the corresponding point in €2 the corresponding
vector field must be zero as well.



needed — instead we can work directly with the angular discrepancy generated
by parallel transport. Related to this, there is no need for the use of arclength
in the parametric description of the curve I'. An important property of parallel
transport is that it does not depend on the choice of parameterization, so it is
unnatural that the local Gauss-Bonnet theorem singles out arclength as a preferred
parameterization.

Finally, there is the issue of a closed curve that is only piecewise smooth, i.e.,
a closed curve with smooth arcs that meet at corners. Each corner makes a finite
contribution to the integral of the geodesic curvature equal to the angle through
which the tangent vector turns in turning the corner. But in parallel transport there
is no change at all at a corner of the vector that is undergoing parallel transport.
This difference shows up especialy strongly when a region bounded by a closed
curve is cut into subregions, and new corners are thereby introduced. The sum
of the integrals of the geodesic curvatures around the subregions, including the
contributions from corners, is now greater than what it was for the parent region.
All of the increase is due to the introduction of new corners, since smooth arcs
make contributions of equal magnitude but opposite sign to the regions on their
two sides. No complication invoving the new corners appears, however, in the case
of parallel transport. If a region is cut into subregions, the angular discrepancy
produced by parallel transport around the original region is the sum of the angular
discrepancies produced by parallel transport around the subregions.

2 Setting
We are given a smooth surface S in parametric form x(u, v) with unit normal
ox 0Ox
ou” v
N = ok o] @
ou  Ov

In the (u,v) parameter plane, we are given a smooth Jordan curve -y, which is
specified in parametric form in terms of two smooth functions u(s), v(s). These
functions are defined for all real s, and they are periodic with period 1:

u(s+1) = wu(s), 3)
v(is+1) = v(s). 4)



There is no value of s at which the derivatives of v and v are both zero. The
functions u(s), v(s) must also be such that the curve they describe is a Jordan
curve. To avoid self-intersetion, we must impose the condition that if u(s;) =
u(sg) and v(s1) = v(sq), then s; — sy is required to be an integer (since v and v
are periodic with period 1). Let w denote the part of the (u, v) parameter plane that
is enclosed by . We assume that s increases (by 1) during each counterclockwise
passage along vy around w.

Let
I = x(v), 5
Q = x(w). (6)

Then
X(s) = x(u(s),v(s)) (7)

is a parametric description of the curve I', which is a smooth simple closed curve
on S, and the part of S enclosed by I is (2.
It will be useful in the following to have a right-handed orthonormal triad

(a(u,v), b(u,v),n(u,v)), (8)

in which n is the surface normal defined by equation (2), and in which all three
members of the triad are smooth functions of (u, v) defined on w U 7.

To construct such a triad, all we need is a nonzero vector field tangential to
S, i.e., w(u,v) such that w - n = 0 and w # 0. For example, we could choose

W = 8_X orw = —X. Then, we need only set
ou ov
w(u,v)
a(u,v —_ )
) = e, )]
b(u,v) = n(u,v) x a(u,v). (10)

3 Parallel Transport

In the above setting, a vector field P(s) is said to be parallel-transported along the
curve I" on the surface S if it satisfies the following two conditions:

N(s)-P(s) = 0, (1
dP
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Here
N(s) =n(u(s), v(s)), (13)

so that N(s) is the surface normal evaluated at the point on the curve I" for which
the parameter has the value s. Equation (12) is equivalent to the existence of a
scalar field A(s) such that

dP

ds
From (11) and (14) it is obvious that the length of any vector undergoing parallel
transport is constant, and from now on we consider the transport of unit vectors
only. In that case, we may write

A(s)N(s). (14)

P(s) = a(u(s),v(s)) cosO(s) + b(u(s),v(s))sinb(s). (15)
It will also be useful to introduce
Q(s) = —a(u(s),v(s))sind(s) + b(u(s),v(s)) cosb(s) (16)

Then (P(s), Q(s)) is an orthonormal basis for the plane that is tangent to the
surface S at the point X(s). Differentiation with respect to s in (15) gives

dP do

-
o8 ouds Ovds
Obd_u 8bdv)

+ (sm@) (% ds -+ %g (17)

. dP . .
Now we need to enforce the condtion that — is normal to the surface S. Since

ds
P is a unit vector, it is already guaranteed that P - il 0, so we just need to
s
impose
dP dé
0=Q — — -
Q ds ds
Oda du Odadv
) [b- ——+b- ——
* (COS ) Ou ds * Ov ds

Ob du Ob dv
_ 1 2 - —_— [ —
(sm 9) (a T s +a 7 ds) ) (18)
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Since a and b are unit vectors, the derivatives of a are orthogonal to a, and the
derivatives of b are orthogonal to b. That is why we do not have any terms in-
volving sin # cos # in the foregoing. Moreover, since a - b = 0 we also have the
identities

Oa ob
b5 T e 19
Oa ob

Making use of these identities, we see that the coefficient of cos? § and the coef-
ficient of sin? @ in equation (18) are the same, and that equation (18) is therefore

equivalent to
d0  Obdu Ob dv

d&s = M ouds T avds
Note that the right-hand side of equation (21) does not involve #. This shows
that parallel transport actually involves a rigid rotation of the whole tangent plane
(viewed as a collection of vectors undergoing parallel transport) as the point of
tangency migrates along the curve.

21

4 Gaussian Curvature

We are now ready to integrate on both sides of equation (21) with respect to s
over the interval (0,1). On the left-hand side we get the angular discrepancy
produced by parallel transport once around I' in the direction of increasing s. On
the right-hand side we evaluate the integral by using Stokes’ theorem in the (u, v)
parameter plane:

Ars = 6(1)—6(0)
L[ (o ),
o Ou ds dods )’
= f(a-a—bdu—l—a-ﬁ—bdv)
” ou ov
0 ob 0 ob
- LG 5) (2 d) ) e

da Ob Oa 0b



In the last step of the foregoing, note the cancelation of second-derivative terms
leading to the above result. In the integrand on the last line of (22), the dot prod-
ucts can be evaluated in the basis (a, b, n). Since the derivatives of a are orthog-
onal to a and the derivatives of b are orthogonal to b, only the coefficients of n
conribute to the dot products. Thus,

Oda 0Ob B da 0b Oa Ob B Oa Ob
ouw ov ov ou  \Moaw)\M o o0 )\ au
on on on on
- (ﬁa) (a_b) (av a) (au b)
on On
B (811 8n)

a_u X av - 1. (23)

Equation (22) can therefore be rewritten as
Ans = // (a—n X —) dudv
_ / KdA, (24)
Q

where K : Q) — R is implicitly defined by

o on
n ou Ov

K (x(u,v)) = ox _ox : (25)
n ou  Ov
and where 5 5
X X

is the area element on S. Equation (25) defines the Gaussian curvature of the
surface S as the ratio of the area swept by n on the unit sphere to that swept by
x on the surface S. This formula for the Gaussian curvature can be written in



another way by making use of equation (2) for n:
ox  ox\ (0 o
ou  Ov ou  Ov
ou  Ov ou  Ov
Ox ) (0x Om) _(0x on) (0x on
ou Ou ov Ov o o ov Ju
ox|*lox|I*  [ox ox\”
ou ov ou v
e 1502 " Budw
ou ov ou Ov
(5) (i)
n-— n-
det g;‘ ’
<n- Ouﬁv) (n 1)2)
ox 0x
0u 821

81)

K (x(u,v)) =

(27)

det ox Ox

<8u (%)
Here we have used n - 9x/0u = 0 and n - 9x/0v = 0 to make the transition from
the second line to the third line of equation (27). The symmetric matrices whose
determinants appear on the last line of (27) have associated quadratic forms that
are known as the first and second fundamental forms of the surface. The matrix
in the denominator is the matrix of the first fundamental form, which is used in
the evaluation of distance along a curve on the surface, and the matrix in the

numerator is that of the second fundamental form, which is used in the evaluation
of the curvatures of a curve on the surface.




5 Gauss’ Theorema Egregium

Gauss’ great discovery concerning the Gaussian curvature is that it is completely
determined by the metric properties of the surface, independent of the embedding
of the surface in R3. This will be proved if we can express the Gaussian curvature
in terms of the first fundamental form and its derivatives. We will do this in the
special case of orthogonal coordinates, in which the matrix of the first fundamental
form is diagonal, that is,

ox 0x
Then we may set
ox ox ||
a:a%,a:‘a—u s (29)
ox ox ||
bzﬁa,ﬁz‘% : (30)
and it follows that
ob Px  dpBox
ou =~ Poude Tauan 1)
ob Px  dBox
Because of (28), we then have
ob _ ox O
a ou @ Oou  Oudv
aB 0 [||ox]?
= S5 () 3 ) (33)
o ox o
a o @ ou Ov?
0’x  Ox
a _aﬁﬁuﬁv'%
ap o (|lox|]
= 2o (Ha_ ) Gd




Substitution of (33) and (34) into (21) then gives the result

¥ _aB 0 (|ox|*\du_as o (fox|\d o
ds 2 0v \||0u ds 2 Ou \||ov ds’
Then, by integration with respect to s over (0, 1), we get
ox ox

e = [ (3

)5 (1))
()= G (15)))
SR (RT)) - (2 (R1))) e

Au
(36)
Since our coordinates are orthogonal, the determinant of the matrix of the first
fundamental form is given by
2
‘ ) ; 37

o~

and the area element is given by

ou v

8_x
ou

0_x
ou

8_x
ov

dudov

dA = DV?dudv = (38)
af
Thus, we again have Ap g = [, K'dA provided that we set
D2 |9 e 0 [|lox]]? %, o (|lox|
- _ il -1/2 7 - - -1/2 2 =
K 2 [8u (D ou (‘ Ov + ov b ov ‘ ou '
(39

This formula expresses the Gaussian curvature entirely in terms of the elements
of the matrix of the first fundamental form, and hence it proves Gauss’ Theorema
Egregium.
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6 Principal Curvatures

We have managed to get this far without ever making use of the local definition
of Gaussian curvature as the product of the principal curvatures of the surface.
For completeness, we now evaluate the principal curvatures and show that their
product is equal to the Gaussian curvature as previously defined.

Here we consider the family of smooth curves through a given point on the
surface S. Each of the curves is parameterized by arclength, and is of the form

X(s) = x(u(s), v(s)). (40)

Since s measures arclength we have

2

dX
H—ds = 1, 41
dX d2X
& ae (2

dX . ) 2
The vector & is the unit tangent to the curve, and the vector 0z may be called
s

s
the curvature vector of the curve. These two vectors can be expressed in terms of
derivatives of x(u, v) as follows:

dX Oxdu Oxdv

T~ uds " vds’ “43)
EX o ()P o () () o (dv)?
ds2  Ou? \ ds Oudv \ ds ds ov? \ ds

ox [ d%u ox [ d%v

Substitution of (43) into (41) then gives

ox 0x [(du 2+28x ox (du dv —|-8X ox (dv 2_1 45)
Oou Ou \ ds ou Ov \ds ds ov ov \ds)
Also, if we define C,, as the component of the curvature vector that is normal to
the surface, then

C—n.d2X—n.a2X d_u 2_|_2n azx d_u % _|_na2_x @ ’
e ds2 ou? \ds Ooudv \ ds ds ov? \ds/
(

46)
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Note that the second derivatives of u and v do not appear here, since the terms
in (44) that involve these second derivatives are tangential to the surface S. The
quadratic forms that appear in equations (45) and (46) are known as the first and
second fundamental forms, respectively.

Now we introduce the notation

du . dv

po || po 2 2 |2 (48)
S ou|| T Ou ov T ||ow
0*x 0*x 0*x

In matrix form, equations (45-46) read as follows:
1—(u U><FG)(1’))’ (50)
. L M U
Co = (u U)<MN)(@)’ (51)

The matrix is symmetric and positive definite. Non-negative def-

E F
F G
initeness follows from the Schwarz inequality, and positive definiteness then fol-
lows from the equality case of the Schwarz inequality, since the coordinate basis
0 0
vectors 8—X and a—x are not allowed to be aligned. It follows that this matrix has
U (Y
1/2
F

a unique positive definite square root, which we denote ( ? a . With the

help of this matrix, we can ensure that the constraint (50) is satisfied by setting

U E F\ ' cos ¢
<U):<F G) (singb) (52)

The normal curvature C', then becomes a function of ¢ which is given by

—1/2 —-1/2
cior=(wso o) (7o) (v )(F6) (of)
(53)
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In equation (53), only ¢ is variable. This is because we are interested in a particu-
lar point on the surface S, and are considering all possible smooth curves through
that point. At the point of interest, the coefficients of the first and second funda-
mental forms are specific numbers which do not depend on the orientation of the
curve that is passing through that point. The orientation of the curve as it passes
through the point of interest is encoded by ¢.

- E FN Y/ L M E F\ Y
QZ(F G) (M N)(F G) ' (54)

Then () is symmetric, and

Ca(¢) = Q11c08” ¢+ 2Q12 cos P sin g + Qo sin® ¢
= % (Qu + Q) + % (Q11 — Q22) cos(2¢) + Q125in(2¢).  (55)

Now let ¢ be defined by
1 _
cos(2y) = 22— (QHD Q22), (56)
n(2y) = 42 (57)
where
1 2
D= \/(5 (Qu — Q22)) + Q3. (58)
Then 1
Co(6) = 5 (Qu +Qu) + Deos(2(6 — v)) (59)

From this formula for ()}, it is obvious that its maximum and minimum values are
given by

1
5 (Qu1 + Qa22) £ D. (60)
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These are called the principal curvatures, and their product is
2
(% (Qu + Q22)) - D?
1 > ?
= <§ (Qu + Q22)) - (5 (Qu — Q22)> — Q3

= Q11Q2 — QF, = det(Q)

- = (EOTENET)

L M
det < M N )
= =K, (61)

E F
det(F G)

see (27). A simpler but slightly more abstact way to obtain the above result start-
ing from equations (53-54) is to note that the maximum and minimum of C;, are
the larger and smaller, respectively, of the two eigenvalues of (), and then that the
product of the eigenvalues is the determinant of ().

7 Geodesic Curvature

The setting here is exactly the same as in Section 2 except that here we assume
that the parameter s measures arclength along the curve I" on the surface S. Then

T= s is a unit vector, so it has a representation
S

7(s) = a(u(s),v(s)) cosa(s) + b(u(s), v(s))sina(s). (62)

Here a(u,v) and b(u,v) are the same as in Section 2. It will also be useful to
define
o(s) = —a(u(s),v(s))sina(s) + b(u(s),v(s)) cosa(s). (63)

Note that 7 and o obey equations of the same form as those obeyed by P and Q in
Section 3, with « here playing the role of 6. One very important difference, how-
ever, is that T and o are not evolving according to parallel transport, and therefore

14



d
o will not in general be orthogonal to —T. Indeed, the geodesic curvature of the

curve " on the surface S is defined by

dr

T (64)

ky =0

Now following the same manipulations as were done in equations (15-21), we get

& ds Ou ds Ov ds
da db#

in which the last step makes use of equation (21).

do
Next, we integrate once around the closed curve I'. The integral of 1 has
s

. . . Q@

already been evaluated, see equation (24), and we claim that the integral of -
s

is 27. To prove this, note that the unit tangent vector 7 must return to the same
vector value after one passage around the smooth closed curve I', and therefore

. « . . .. .
the integral of o has to be an integer multiple of 27. In fact, this integral is equal
s

to 27 in our case, since the simple closed curve I' can be continously deformed to
a single point on the smooth surface S, and moreover this can be done in such a
way that the curve is asymptotically circular in the tangent plane to S at the point

d
towards which the curve is shrinking. For a planar circle, the integral of d_a is
5

obviously equal to 27, and the integer that multiplies 27 cannot change during a
continuous deformation of the curve.

In this way equation (65) implies the local Gauss-Bonnet theorem. which we
have stated at the outset, see equation (1).
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