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1 Introduction

On a smooth curved surface S, parallel transport, suitably defined, of a vector

around a smooth, simple closed curve Γ does not, in general, result in a the same

vector at the end of the parallel-transport process as at the beginning. Although

the initial and final vectors have the same magnitude, there is in general a nonzero

angle between them. From the initial and final vectors themselves, this angle is

only determined modulo 2π.

To remove this ambiguity, it is necessary to keep track of angular changes

thoughout the parallel-transport process, and for this purpose, a comparison or

reference vector is needed. A common choice of reference vector is the tangent

vector to the curve, and this leads to the local Gauss-Bonnet theorem, which states

that
∫

Γ

kgds +

∫

Ω

KdA = 2π. (1)

Here Ω is the part of the surface S that is enclosed by Γ, ds is the element of

arclength on Γ, dA is the element of area on S, kg is the geodesic curvature of Γ
on S, and K is the Gaussian curvature of the surface S.

The role of parallel transport in equation (1) is that kg is the rate of change

with respect to arclength of the angle between any vector undergoing parallel

transport and the unit tangent vector to the curve Γ. The term 2π on the right-

hand side of equation (1) actually has nothing to do with parallel transport or with

Gaussian curvature. It is simply the angle though which the unit tangent vector

turns during one passage around a closed curve. This is most easily seen in the

case of a plane curve, for which K = 0. Parallel transport of a vector along a

curve in the plane is the same as parallel transport in the Euclidean sense, i.e., the

vector does not change at all. Thus there is no angular discrepancy involved in

parallel transport around a closed curve in the plane. Nevertheless the integral of

the geodesic curvature is 2π because the tangent vector to the curve has turned

through an angle of 2π.

What these considerations suggest is that we could dispense with the term

2π and obtain a more fundamental result by using a different reference vector,
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other than the unit tangent to the curve Γ, to keep track of the changes in angle

that occur during parallel transport. This can indeed be done. What we need

is simply a smooth field of unit vectors tangent to the surface S that is defined

throughout Ω.1 For a surface S described in parametric form x(u, v), such a field

is easily obtained by differentiation with respect to either coordinate, followed by

normalization, e.g.,
∂x

∂u
/‖
∂x

∂u
‖, but there is no need for the reference unit vector

field to be related to the coordinates in any particular way, and we will not assume

any such relationship in the following.

An objection to the above idea might be that the result could depend on the

choice of the reference field, but in fact we will see in the following that this is not

the case. An intuitive explanation runs as follows: First, we are interested only in

the change of angle that occurs during one complete passage by parallel transport

around a closed curve. This is the angular difference between two vectors at the

same point, so the reference angle at that point obviously cancels out. This leaves

only an ambiguity of 2πn, where n is any integer, and it is precisely this ambiguity

that we need a reference field to resolve. Note, however, that any smooth unit

vector field defined on Ω that is tangential to S can be continuously deformed into

any other such field (recall that the region Ω is topologically equivalent to a disc

in R
2), and the integer n in the ambiguity of 2πn cannot change continuously, so

it cannot depend on the choice of reference field. The conclusion of this argument

will be confirmed in the following by the observation that the results we derive do

not depend at all on the choice of the reference field.

The use of a smooth unit vector field to keep track of angular changes during

parallel transport has additional advantages besides elimination of the somewhat

spurious term 2π. One of these is that the concept of geodesic curvature is not

1Note that there is not any such field that reduces to the unit tangent to the curve Γ when

restricted to Γ. This is because any continuous vector field defined througout Ω ∪ Γ, tangent to S,

and equal to the unit tangent vector to Γ when evaluated on Γ must be zero somewhere in Ω, and

thus cannot be a field of unit vectors. To prove the claimed existence of a zero of a vector field

with the above properties, note that Γ∪Ω together with the associated vector field can be mapped

bicontinuously onto a sphere in such a way that the image of Γ is the equator and the image of Ω is

an open hemisphere with the equator as its boundary.. In fact we can consider two such mappings

that are reflections of each other in the equatorial plane of the sphere. This produces a vector field

that is continuous on the whole sphere and has mirror symmetry in the equatorial plane. By the

hairy ball theorem, there is at least one point on the sphere where this vector field is equal to zero.

This point cannot be on the equator, since the vector field there is the image of a unit vector field

under a bicontinuous mapping. Thus, by symmetry there must be at least two points, one in each

hemisphere, where the vector field is zero, and at the corresponding point in Ω the corresponding

vector field must be zero as well.

2



needed – instead we can work directly with the angular discrepancy generated

by parallel transport. Related to this, there is no need for the use of arclength

in the parametric description of the curve Γ. An important property of parallel

transport is that it does not depend on the choice of parameterization, so it is

unnatural that the local Gauss-Bonnet theorem singles out arclength as a preferred

parameterization.

Finally, there is the issue of a closed curve that is only piecewise smooth, i.e.,

a closed curve with smooth arcs that meet at corners. Each corner makes a finite

contribution to the integral of the geodesic curvature equal to the angle through

which the tangent vector turns in turning the corner. But in parallel transport there

is no change at all at a corner of the vector that is undergoing parallel transport.

This difference shows up especialy strongly when a region bounded by a closed

curve is cut into subregions, and new corners are thereby introduced. The sum

of the integrals of the geodesic curvatures around the subregions, including the

contributions from corners, is now greater than what it was for the parent region.

All of the increase is due to the introduction of new corners, since smooth arcs

make contributions of equal magnitude but opposite sign to the regions on their

two sides. No complication invoving the new corners appears, however, in the case

of parallel transport. If a region is cut into subregions, the angular discrepancy

produced by parallel transport around the original region is the sum of the angular

discrepancies produced by parallel transport around the subregions.

2 Setting

We are given a smooth surface S in parametric form x(u, v) with unit normal

n(u, v) =

∂x

∂u
×
∂x

∂v
∥

∥

∥

∥

∂x

∂u
×
∂x

∂v

∥

∥

∥

∥

. (2)

In the (u, v) parameter plane, we are given a smooth Jordan curve γ, which is

specified in parametric form in terms of two smooth functions u(s), v(s). These

functions are defined for all real s, and they are periodic with period 1:

u(s+ 1) = u(s), (3)

v(s+ 1) = v(s). (4)

3



There is no value of s at which the derivatives of u and v are both zero. The

functions u(s), v(s) must also be such that the curve they describe is a Jordan

curve. To avoid self-intersetion, we must impose the condition that if u(s1) =
u(s2) and v(s1) = v(s2), then s1 − s2 is required to be an integer (since u and v
are periodic with period 1). Let ω denote the part of the (u, v) parameter plane that

is enclosed by γ. We assume that s increases (by 1) during each counterclockwise

passage along γ around ω.

Let

Γ = x(γ), (5)

Ω = x(ω). (6)

Then

X(s) = x(u(s), v(s)) (7)

is a parametric description of the curve Γ, which is a smooth simple closed curve

on S, and the part of S enclosed by Γ is Ω.

It will be useful in the following to have a right-handed orthonormal triad

(a(u, v),b(u, v),n(u, v)) , (8)

in which n is the surface normal defined by equation (2), and in which all three

members of the triad are smooth functions of (u, v) defined on ω ∪ γ.

To construct such a triad, all we need is a nonzero vector field tangential to

S, i.e., w(u, v) such that w · n = 0 and w 6= 0. For example, we could choose

w =
∂x

∂u
or w =

∂x

∂v
. Then, we need only set

a(u, v) =
w(u, v)

‖w(u, v)‖
, (9)

b(u, v) = n(u, v)× a(u, v). (10)

3 Parallel Transport

In the above setting, a vector field P(s) is said to be parallel-transported along the

curve Γ on the surface S if it satisfies the following two conditions:

N(s) ·P(s) = 0, (11)

N(s)×
dP

ds
= 0. (12)
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Here

N(s) = n(u(s), v(s)), (13)

so that N(s) is the surface normal evaluated at the point on the curve Γ for which

the parameter has the value s. Equation (12) is equivalent to the existence of a

scalar field λ(s) such that
dP

ds
= λ(s)N(s). (14)

From (11) and (14) it is obvious that the length of any vector undergoing parallel

transport is constant, and from now on we consider the transport of unit vectors

only. In that case, we may write

P(s) = a(u(s), v(s)) cos θ(s) + b(u(s), v(s)) sin θ(s). (15)

It will also be useful to introduce

Q(s) = −a(u(s), v(s)) sin θ(s) + b(u(s), v(s)) cos θ(s) (16)

Then (P(s),Q(s)) is an orthonormal basis for the plane that is tangent to the

surface S at the point X(s). Differentiation with respect to s in (15) gives

dP

ds
= Q

dθ

ds

+ (cos θ)

(

∂a

∂u

du

ds
+
∂a

∂v

dv

ds

)

+ (sin θ)

(

∂b

∂u

du

ds
+
∂b

∂v

dv

ds

)

. (17)

Now we need to enforce the condtion that
dP

ds
is normal to the surface S. Since

P is a unit vector, it is already guaranteed that P ·
dP

ds
= 0, so we just need to

impose

0 = Q ·
dP

ds
=

dθ

ds

+
(

cos2 θ
)

(

b ·
∂a

∂u

du

ds
+ b ·

∂a

∂v

dv

ds

)

−
(

sin2 θ
)

(

a ·
∂b

∂u

du

ds
+ a ·

∂b

∂v

dv

ds

)

. (18)
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Since a and b are unit vectors, the derivatives of a are orthogonal to a, and the

derivatives of b are orthogonal to b. That is why we do not have any terms in-

volving sin θ cos θ in the foregoing. Moreover, since a · b = 0 we also have the

identities

b ·
∂a

∂u
= −a ·

∂b

∂u
, (19)

b ·
∂a

∂v
= −a ·

∂b

∂v
. (20)

Making use of these identities, we see that the coefficient of cos2 θ and the coef-

ficient of sin2 θ in equation (18) are the same, and that equation (18) is therefore

equivalent to
dθ

ds
= a ·

∂b

∂u

du

ds
+ a ·

∂b

∂v

dv

ds
. (21)

Note that the right-hand side of equation (21) does not involve θ. This shows

that parallel transport actually involves a rigid rotation of the whole tangent plane

(viewed as a collection of vectors undergoing parallel transport) as the point of

tangency migrates along the curve.

4 Gaussian Curvature

We are now ready to integrate on both sides of equation (21) with respect to s
over the interval (0, 1). On the left-hand side we get the angular discrepancy

produced by parallel transport once around Γ in the direction of increasing s. On

the right-hand side we evaluate the integral by using Stokes’ theorem in the (u, v)
parameter plane:

∆Γ,S = θ(1)− θ(0)

=

∫

1

0

(

a ·
∂b

∂u

du

ds
+ a ·

∂b

∂v

dv

ds

)

ds

=

∮

γ

(

a ·
∂b

∂u
du+ a ·

∂b

∂v
dv

)

=

∫∫

ω

(

∂

∂u

(

a ·
∂b

∂v

)

−
∂

∂v

(

a ·
∂b

∂u

))

dudv

=

∫∫

ω

(

∂a

∂u
·
∂b

∂v
−
∂a

∂v
·
∂b

∂u

)

dudv. (22)
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In the last step of the foregoing, note the cancelation of second-derivative terms

leading to the above result. In the integrand on the last line of (22), the dot prod-

ucts can be evaluated in the basis (a,b,n). Since the derivatives of a are orthog-

onal to a and the derivatives of b are orthogonal to b, only the coefficients of n

conribute to the dot products. Thus,

∂a

∂u
·
∂b

∂v
−
∂a

∂v
·
∂b

∂u
=

(

n ·
∂a

∂u

)(

n ·
∂b

∂v

)

−

(

n ·
∂a

∂v

)(

n ·
∂b

∂u

)

=

(

∂n

∂u
· a

)(

∂n

∂v
· b

)

−

(

∂n

∂v
· a

)(

∂n

∂u
· b

)

=

(

∂n

∂u
×
∂n

∂v

)

· (a× b)

=

(

∂n

∂u
×
∂n

∂v

)

· n. (23)

Equation (22) can therefore be rewritten as

∆Γ,S =

∫∫

ω

n ·

(

∂n

∂u
×
∂n

∂v

)

dudv

=

∫∫

Ω

KdA, (24)

where K : Ω → R is implicitly defined by

K (x(u, v)) =

n ·

(

∂n

∂u
×
∂n

∂v

)

n ·

(

∂x

∂u
×
∂x

∂v

) , (25)

and where

dA = n ·

(

∂x

∂u
×
∂x

∂v

)

dudv (26)

is the area element on S. Equation (25) defines the Gaussian curvature of the

surface S as the ratio of the area swept by n on the unit sphere to that swept by

x on the surface S. This formula for the Gaussian curvature can be written in
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another way by making use of equation (2) for n:

K (x(u, v)) =

(

∂x

∂u
×
∂x

∂v

)

·

(

∂n

∂u
×
∂n

∂v

)

(

∂x

∂u
×
∂x

∂v

)

·

(

∂x

∂u
×
∂x

∂v

)

=

(

∂x

∂u
·
∂n

∂u

)(

∂x

∂v
·
∂n

∂v

)

−

(

∂x

∂u
·
∂n

∂v

)(

∂x

∂v
·
∂n

∂u

)

∥

∥

∥

∥

∂x

∂u

∥

∥

∥

∥

2
∥

∥

∥

∥

∂x

∂v

∥

∥

∥

∥

2

−

(

∂x

∂u
·
∂x

∂v

)2

=

(

n ·
∂2x

∂u2

)(

n ·
∂2x

∂v2

)

−

(

n ·
∂2x

∂u∂v

)2

∥

∥

∥

∥

∂x

∂u

∥

∥

∥

∥

2
∥

∥

∥

∥

∂x

∂v

∥

∥

∥

∥

2

−

(

∂x

∂u
·
∂x

∂v

)2

=

det









(

n ·
∂2x

∂u2

) (

n ·
∂2x

∂u∂v

)

(

n ·
∂2x

∂u∂v

) (

n ·
∂2x

∂v2

)









det









∥

∥

∥

∥

∂x

∂u

∥

∥

∥

∥

2 (

∂x

∂u
·
∂x

∂v

)

(

∂x

∂u
·
∂x

∂v

) ∥

∥

∥

∥

∂x

∂v

∥

∥

∥

∥

2









. (27)

Here we have used n · ∂x/∂u = 0 and n · ∂x/∂v = 0 to make the transition from

the second line to the third line of equation (27). The symmetric matrices whose

determinants appear on the last line of (27) have associated quadratic forms that

are known as the first and second fundamental forms of the surface. The matrix

in the denominator is the matrix of the first fundamental form, which is used in

the evaluation of distance along a curve on the surface, and the matrix in the

numerator is that of the second fundamental form, which is used in the evaluation

of the curvatures of a curve on the surface.
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5 Gauss’ Theorema Egregium

Gauss’ great discovery concerning the Gaussian curvature is that it is completely

determined by the metric properties of the surface, independent of the embedding

of the surface in R
3. This will be proved if we can express the Gaussian curvature

in terms of the first fundamental form and its derivatives. We will do this in the

special case of orthogonal coordinates, in which the matrix of the first fundamental

form is diagonal, that is,
∂x

∂u
·
∂x

∂v
= 0. (28)

Then we may set

a = α
∂x

∂u
, α =

∥

∥

∥

∥

∂x

∂u

∥

∥

∥

∥

−1

, (29)

b = β
∂x

∂v
, β =

∥

∥

∥

∥

∂x

∂v

∥

∥

∥

∥

−1

, (30)

and it follows that

∂b

∂u
= β

∂2x

∂u∂v
+

dβ

du

∂x

∂v
, (31)

∂b

∂v
= β

∂2x

∂v2
+

dβ

dv

∂x

∂v
. (32)

Because of (28), we then have

a ·
∂b

∂u
= αβ

∂x

∂u
·
∂2x

∂u∂v

=
αβ

2

∂

∂v

(

∥

∥

∥

∥

∂x

∂u

∥

∥

∥

∥

2
)

(33)

a ·
∂b

∂v
= αβ

∂x

∂u
·
∂2x

∂v2

= −αβ
∂2x

∂u∂v
·
∂x

∂v

= −
αβ

2

∂

∂u

(

∥

∥

∥

∥

∂x

∂v

∥

∥

∥

∥

2
)

(34)
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Substitution of (33) and (34) into (21) then gives the result

dθ

ds
=
αβ

2

∂

∂v

(

∥

∥

∥

∥

∂x

∂u

∥

∥

∥

∥

2
)

du

ds
−
αβ

2

∂

∂u

(

∥

∥

∥

∥

∂x

∂v

∥

∥

∥

∥

2
)

dv

ds
. (35)

Then, by integration with respect to s over (0, 1), we get

∆Γ,S =

∫

1

0

(

αβ

2

(

∂

∂v

(

∥

∥

∥

∥

∂x

∂u

∥

∥

∥

∥

2
))

du

ds
−
αβ

2

(

∂

∂u

(

∥

∥

∥

∥

∂x

∂v

∥

∥

∥

∥

2
))

dv

ds

)

ds

=

∮

γ

(

αβ

2

(

∂

∂v

(

∥

∥

∥

∥

∂x

∂u

∥

∥

∥

∥

2
))

du−
αβ

2

(

∂

∂u

(

∥

∥

∥

∥

∂x

∂v

∥

∥

∥

∥

2
))

dv

)

= −

∫∫

ω

(

∂

∂u

(

αβ

2

∂

∂u

(

∥

∥

∥

∥

∂x

∂v

∥

∥

∥

∥

2
))

+
∂

∂v

(

αβ

2

∂

∂v

(

∥

∥

∥

∥

∂x

∂u

∥

∥

∥

∥

2
)))

dudv.

(36)

Since our coordinates are orthogonal, the determinant of the matrix of the first

fundamental form is given by

D =

(∥

∥

∥

∥

∂x

∂u

∥

∥

∥

∥

∥

∥

∥

∥

∂x

∂v

∥

∥

∥

∥

)2

, (37)

and the area element is given by

dA = D1/2dudv =
dudv

αβ
(38)

Thus, we again have ∆Γ,S =
∫∫

Ω
KdA provided that we set

K = −
D−1/2

2

[

∂

∂u

(

D−1/2 ∂

∂u

(

∥

∥

∥

∥

∂x

∂v

∥

∥

∥

∥

2
))

+
∂

∂v

(

D−1/2 ∂

∂v

(

∥

∥

∥

∥

∂x

∂u

∥

∥

∥

∥

2
))]

.

(39)

This formula expresses the Gaussian curvature entirely in terms of the elements

of the matrix of the first fundamental form, and hence it proves Gauss’ Theorema

Egregium.
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6 Principal Curvatures

We have managed to get this far without ever making use of the local definition

of Gaussian curvature as the product of the principal curvatures of the surface.

For completeness, we now evaluate the principal curvatures and show that their

product is equal to the Gaussian curvature as previously defined.

Here we consider the family of smooth curves through a given point on the

surface S. Each of the curves is parameterized by arclength, and is of the form

X(s) = x(u(s), v(s)). (40)

Since s measures arclength we have

∥

∥

∥

∥

dX

ds

∥

∥

∥

∥

2

= 1, (41)

dX

ds
·
d2X

ds2
= 0. (42)

The vector
dX

ds
is the unit tangent to the curve, and the vector

d2X

ds2
may be called

the curvature vector of the curve. These two vectors can be expressed in terms of

derivatives of x(u, v) as follows:

dX

ds
=

∂x

∂u

du

ds
+
∂x

∂v

dv

ds
, (43)

d2X

ds2
=

∂2x

∂u2

(

du

ds

)2

+ 2
∂2x

∂u∂v

(

du

ds

)(

dv

ds

)

+
∂2x

∂v2

(

dv

ds

)2

+
∂x

∂u

(

d2u

ds2

)

+
∂x

∂v

(

d2v

ds2

)

. (44)

Substitution of (43) into (41) then gives

∂x

∂u
·
∂x

∂u

(

du

ds

)2

+ 2
∂x

∂u
·
∂x

∂v

(

du

ds

)(

dv

ds

)

+
∂x

∂v
·
∂x

∂v

(

dv

ds

)2

= 1. (45)

Also, if we define Cn as the component of the curvature vector that is normal to

the surface, then

Cn = n ·
d2X

ds2
= n ·

∂2x

∂u2

(

du

ds

)2

+ 2n ·
∂2x

∂u∂v

(

du

ds

)(

dv

ds

)

+ n ·
∂2x

∂v2

(

dv

ds

)2

.

(46)
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Note that the second derivatives of u and v do not appear here, since the terms

in (44) that involve these second derivatives are tangential to the surface S. The

quadratic forms that appear in equations (45) and (46) are known as the first and

second fundamental forms, respectively.

Now we introduce the notation

u̇ =
du

ds
, v̇ =

dv

ds
. (47)

E =

∥

∥

∥

∥

∂x

∂u

∥

∥

∥

∥

2

, F =
∂x

∂u
·
∂x

∂v
, G =

∥

∥

∥

∥

∂x

∂v

∥

∥

∥

∥

2

. (48)

L = n ·
∂2x

∂u2
, M = n ·

∂2x

∂u∂v
, N = n ·

∂2x

∂v2
. (49)

In matrix form, equations (45-46) read as follows:

1 =
(

u̇ v̇
)

(

E F
F G

)(

u̇
v̇

)

, (50)

Cn =
(

u̇ v̇
)

(

L M
M N

)(

u̇
v̇

)

, (51)

The matrix

(

E F
F G

)

is symmetric and positive definite. Non-negative def-

initeness follows from the Schwarz inequality, and positive definiteness then fol-

lows from the equality case of the Schwarz inequality, since the coordinate basis

vectors
∂x

∂u
and

∂x

∂v
are not allowed to be aligned. It follows that this matrix has

a unique positive definite square root, which we denote

(

E F
F G

)1/2

. With the

help of this matrix, we can ensure that the constraint (50) is satisfied by setting

(

u̇
v̇

)

=

(

E F
F G

)

−1/2(
cosφ
sin φ

)

(52)

The normal curvature Cn then becomes a function of φ which is given by

Cn(φ) =
(

cosφ sinφ
)

(

E F
F G

)

−1/2(
L M
M N

)(

E F
F G

)

−1/2(
cosφ
sin φ

)

(53)
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In equation (53), only φ is variable. This is because we are interested in a particu-

lar point on the surface S, and are considering all possible smooth curves through

that point. At the point of interest, the coefficients of the first and second funda-

mental forms are specific numbers which do not depend on the orientation of the

curve that is passing through that point. The orientation of the curve as it passes

through the point of interest is encoded by φ.

Let

Q =

(

E F
F G

)

−1/2(
L M
M N

)(

E F
F G

)

−1/2

. (54)

Then Q is symmetric, and

Cn(φ) = Q11 cos
2 φ+ 2Q12 cosφ sinφ+Q22 sin

2 φ

=
1

2
(Q11 +Q22) +

1

2
(Q11 −Q22) cos(2φ) +Q12 sin(2φ). (55)

Now let ψ be defined by

cos(2ψ) =
1

2
(Q11 −Q22)

D
, (56)

sin(2ψ) =
Q12

D
, (57)

where

D =

√

(

1

2
(Q11 −Q22)

)2

+Q2
12
. (58)

Then

Cn(φ) =
1

2
(Q11 +Q22) +D cos(2(φ− ψ)) (59)

From this formula for Cn it is obvious that its maximum and minimum values are

given by
1

2
(Q11 +Q22)±D. (60)
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These are called the principal curvatures, and their product is

(

1

2
(Q11 +Q22)

)2
−D2

=

(

1

2
(Q11 +Q22)

)2

−

(

1

2
(Q11 −Q22)

)2

−Q2

12

= Q11Q22 −Q2

12
= det(Q)

= det

(

(

E F
F G

)

−1/2(
L M
M N

)(

E F
F G

)

−1/2
)

=

det

(

L M
M N

)

det

(

E F
F G

) = K, (61)

see (27). A simpler but slightly more abstact way to obtain the above result start-

ing from equations (53-54) is to note that the maximum and minimum of Cn are

the larger and smaller, respectively, of the two eigenvalues of Q, and then that the

product of the eigenvalues is the determinant of Q.

7 Geodesic Curvature

The setting here is exactly the same as in Section 2 except that here we assume

that the parameter s measures arclength along the curve Γ on the surface S. Then

τ =
dX

ds
is a unit vector, so it has a representation

τ (s) = a(u(s), v(s)) cosα(s) + b(u(s), v(s)) sinα(s). (62)

Here a(u, v) and b(u, v) are the same as in Section 2. It will also be useful to

define

σ(s) = −a(u(s), v(s)) sinα(s) + b(u(s), v(s)) cosα(s). (63)

Note that τ and σ obey equations of the same form as those obeyed by P and Q in

Section 3, with α here playing the role of θ. One very important difference, how-

ever, is that τ and σ are not evolving according to parallel transport, and therefore
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σ will not in general be orthogonal to
dτ

ds
. Indeed, the geodesic curvature of the

curve Γ on the surface S is defined by

kg = σ ·
dτ

ds
(64)

Now following the same manipulations as were done in equations (15-21), we get

kg =
dα

ds
−

(

a ·
∂b

∂u

du

ds
+ a ·

∂b

∂v

dv

ds

)

=
dα

ds
−

dθ

ds
, (65)

in which the last step makes use of equation (21).

Next, we integrate once around the closed curve Γ. The integral of
dθ

ds
has

already been evaluated, see equation (24), and we claim that the integral of
dα

ds
is 2π. To prove this, note that the unit tangent vector τ must return to the same

vector value after one passage around the smooth closed curve Γ, and therefore

the integral of
dα

ds
has to be an integer multiple of 2π. In fact, this integral is equal

to 2π in our case, since the simple closed curve Γ can be continously deformed to

a single point on the smooth surface S, and moreover this can be done in such a

way that the curve is asymptotically circular in the tangent plane to S at the point

towards which the curve is shrinking. For a planar circle, the integral of
dα

ds
is

obviously equal to 2π, and the integer that multiplies 2π cannot change during a

continuous deformation of the curve.

In this way equation (65) implies the local Gauss-Bonnet theorem. which we

have stated at the outset, see equation (1).
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