II. Cardiac Fluid Dynamics

Results from Vector Analysis

(1) Given a region R with surface S and an arbitrary

vector field f

f dv V-f = f (f°n)da
R S

where n is the unit normal to the surface

=

If £ is the velocity field of some fluid and the region R moves

with the fluid, then the rate_of change of volume is given by

dav _ e = .
It —<I da f-n = f dv V- f

S R
Incompressible flows are characterized by volume conservation

for every material region R. This is equlvalent to Vef = 0

everyuhere.
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(2) Using the relation Ve:(f¢) = (Vef)d + £:V¢

it follows that

f dvf.V¢

[ avveczo - L av(v-£)4
R R

Ida nef ¢ - I dv(vef)¢
S R
In particular if

Vvef =0 in R
n*f=0 on S
I fvp dav =20
R

We shall refer to such a flow f satisfying the above conditions
as an incompressible flow confined to the region R. Then the

foregoilng result can be stated as follows:

Incompressible flows confined to a region R are orthogonal

to the gradient of an arbitrary scalar over the same region.

(3) Given an arbitrary vector field f, one can decompose

f as followus

£=-v¢ + £

where
vefP =0 in R
Qogp =0 on S
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and the fields V¢ and QP are uniquely determined. The construc-

tion of V¢ is accomplished by solving the following problem

v2¢ = - Vof 1in R_}

-n*f on S

n+vo

Since f 1s given, the right hand sides are known. The
uniqueness of the decomposition follows from the orthog-

onallty of V¢ and g?. To show this explicitly, let

£= -0 + £

£= -V, + £

0 = - V($;-¢,) + (£2-£2)

Q= f av| V(4 -4,2]° + jdvlilf'{glé

where the cross terms disappear because of the orthogonallty.

It follows that

Ve, = V4,
D _
0=t -
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Time Derivatives in Flulid Dynamics

Consider the steady flow of an incompressible fluid through
a narrowing in a pipe. By steady flow, we mean that the

velocity at each point in space 1s independent of time. That is,

-g-% = 0. On the other hand

the flow is faster in the

v narrow part of the pipe, and
— ——

a material particle in the
PN .

}
'

flow moves from one region

- -
to the other and therefore
has a non=-zero accelération.
To compﬁté this acceleration
we have to define the material

time derivative %% . For a function f(x,t) the definition 1is

(X HEX, t48E). = £(x,t)

pe f ¥ - 3690 8t
where
6x = u &t - .
Therefore
%% = %—g— + u-vf

One can also write
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and this operator can be applied to vectors as well. In

particular the material acceleration is

[+ ¥

u
=_—_+E‘-Vu R

S
i
Q!

Using the material time derivativé.é% we can derive some
of the previous results in a more interesting way. Consider
an incompressible flow u confined to a fixed region R so that
u'n = 0 on the boundary of R. Suppose that an arbitrary
scalar field ¢ is also given with'%% = 0. That is, the
numerical values of the function ¢ are simply transported
around at the velocity u. In that case, since u conserves

every element of volume dv, we have

a _ )
Et—[d)dV—I%dV

R R

o
]

|

R
In the foregoing, the first equality depends on the volume-

conserving character of the flow, the second on the fact that

the region R is not changing with time, and the third on

= D% _ 3¢ .
0 =5 =3¢ +uVve

We have proved again that

0 = I u-vé dv
R

15




for arbitrary ¢ (The equation D¢/Dt = O places no restriction on
the form of ¢ at a single instant) and for volume-conserving
flow u confined to a region R. Here the fact that u conserves
volume was not used in the form Veu = 0, but directly. In fact,

using the same identities as in (2), above, we can write
Q= f dv u-v¢ = - f av(v-u)¢

which proves that Veu = 0, since ¢ 1s arbitrary.

Incompressible Flows Bounded by Moving Walls

The flow u has the following constraints:

0 in R

<
1<
n

given function on S

=
o]
]

Using (3) above write

where

Ve in R

1%
I
o
<
©

i
o

W'n = 0 noV(p = '_Eog on S

The total class of flows u satlsfying the constraints
can be found by picking ¢ defined by the above, and then

picking an arbitrary w satisfying Vew = 0, n°w = 0.
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Define

-Vé

the forced part of the motion

W = the free part of the motion

Note that -V¢ takes care of the given motion of the walls, while
w is an incompressible flow consistent with the Instantaneous

-geometry for non-moving walls.
Using the result (2) that I'E;V¢ dv = Q we note that the

total kinetic energy can be written

1 2
U=56¢ f lul“av = U; + U,
R

where

(en;
"

[vl-v¢{2 dv

thus the energies of the forced and free parts of the motion

simply add, and

THEOREM: The lowest energy incompressible flow bounded
by moving walls 1s the forced motion -V¢, with no free motion

at all, i.e., with w = 0.
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Equations of Motion

Temporarily assume that the only forces acting are those

due to the constraint of incompressibility. Call these gc

(per unit volume). Then Newton's law ylelds

d2£
p—5 =1
dt -
where
p = density
x(t) = trajectory of a fluid particle.

Constraint forces are not arbitrary but obey the
following law:
The system of constraint forces is orthogonal to the

free part of an arbitrary motion satisfying the constraint.

(Example: consider a bead sliding about on an undulating
surface. The forced motion is the motion of the bead which

is required hy the motion of the surface normal to itself.

The free part is the motion_of the bead parallel to the
instantaneous configuration of the.surface. The constraint
force, the forces of the surface on the bead, 1s orthogonal to
all possible free motions. That is, it is normal to the

surface.)

Applying this principle to the present problem we have

J dv £.,°¥w = 0
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for all w such that

new = 0 on S

= D | O =
Using (3) set f, = -Yp + £ . From (2) [ dv(-Vp-w) 0.

Therefore, setting w = gg (which is permissible since w

satisfies the same conditions as gg) we get

2

D, _ D _
fav|_f_~c| ~0-tD=0 .
Thus
_.f_‘_c:—'vpo

We have proved that the constraint forces take the form
of the'gradient of a scalar. This scalar is called the pressure!

Thus the equation of motion (no viscosity) reads

Minimize the Lagrangian subject to the constrailnt of volume

conservation




X déx
§ L dt = dt dvpa;:- 7170=
2
d<x
= - I at f av p —% * §x .
dat

But

Vedx =0 in R
‘"n*dx =0 on S

Otherwise, 6x 1s arbitrary. As before, it follows that there

d2§
is a scalar p such that p —5 = -Vp .
dat

Conservation of the Circulation

Definition: The circulation around a closed path C is given

by
K § li-dx

C
Let the path move with the fluid

dK Du Dx
at ‘fﬁ%"d’iJ"f‘-‘- ¢ 5t

where

integration around a closed path.

- é % Vp «dx + i

nof
-0
Q
e
[\
*

=0

In this step use equation of motion without viscosity.
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(In particular, if K = 0 for a path moving with the fluid at
some instant, K = 0 for all subsequent times.)
Reversing the above argument, we see that if the

circulation is conserved for all closed material paths, then

for all such paths. It follows that there exists some scalar

¢ such that

and this is all that is asserted by our (inviscid) equation of

motion. Therefore, conservation of the clrculation for all

closed material paths is equivalent to the equation of motion.
Moreover, knowledge of the circulation (all paths) at

t = 0 is equivalent to an initial condition. Suppose two

velocity flelds U,y and U, have the same circulation and satisfy

Veu, = Veu, = 0 in R
ney, = ney, = given function on S .
Let
w=u -u .
Then
Vew =0 1In R
new =0 on S
§ wedx = 0 all paths
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so that

w=Vp .

It follows from these statements that

¢ = constant
w=0
4 =% -

Therefore, there is at most one veloclty fleld with some

“glven circulation on each closed path.

" Irrotational Flow

Suppose K = Q, all paths.
Then u = -V¢
0+9% =0 .

Veu

The boundary condition becomes

n*V¢ = given function on the walls.

Properties of irrotational flow.

(1) Lowest energy flow consistent with the normal boundary
conditions. Therefore it is stable against any process which
lowers the energy.

(2) No matter how ¢ varies with time, u = -V¢ satisfies
the inviscld equations of motion! (the pressure will be different

in each case). Thus the flow at each instant 1s completely
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determined by the boundary conditions, independent of the history.
(3) Even when viscosity is added, u = -V¢ remains a
solution of the equations of motion in the interior, because
the viscous force per unit volume vanishes identically for
such flows. From (1) we see that this is not an accident
but follows from the fact that viscosity tends to lower the
energy.
(4) Despite the foregoing, flows of real fluids are

not irrotational because...

Boundary Slip in Irrotational Flow

Consider a flow bounded by moving walls with the

tangential component equal to zero everywhere. Along any

curve I' on the boundary (not necessarily closed)

r
0 at each point. Now if the flow is

n

simply bhecause u+dx

also irrotational

Since this holds for all boundary curvés 'y ¢ = constant on the
boundary. The solution of V2¢ = 0 then yields ¢ = constant in
the interior as well and the flow 1s zero. But the walls were

given as moving, so we have a contradlction.
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We have proved that irrotational incompressible flows
bounded by moving walls must have a non-zero tangential

component of velocity somewhere at the wall. In fact, the

¢ max
¢ min
only points where there is no tangential component are ¢max and
¢min‘

Tangential slip generated by a moving immersed boundary

in potential flow:
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If ¢1 = ¢2 on S, then tangential
derivatives to all orders are equal.
Moreover the normal filrst derlvatives
are also equal because no fluid 1s
&y by penetrating the boundary. Since
V2¢ = 0 it follows that second
derivatives in the normal direction
are also equal. Under these conditions
the surface S has no effect on the flow,
which is determined by the external boundary conditions.
Conversely, if the motion of S has any effect on the flow, then

$1 # ¢ There are two cases

(1) T = constant. Then there is no tangential slip,

but there is infinite flow around the edges of S.

(11) ¢l - ¢2 # constant. Then relative tangential slip

is generated by the motion of S.
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The Dynamics of Heart Valve Closure

This subject can be considered from the standpoint of non-
viscous flow (and the conservation of the circulation). In doing
this, one has to take as given certaln features of the forward

flow pattern. These features become clearer when viscosity 1s

included.
An apparatus like this was used 1n
1912* to demonstrate efficient heart
valve closure. During forward flow
! Ar— hinge there 1is non-zero circulation around

the D-shaped path shown, since there is

'

forward flow in A, but the slide tube B
is occluded by the open valve. The

circulation is given by

velocity in tube A, B

where uA,B

L

A,B length of tube A, B

If the forward flow 1is suddenly cut
* %
off , the circulation 1s conserved, so that

1 )
K = uALA + uBLB

But 1f the tubes are of equal cross sectional area

*
Henderson and Johnson, "Two Modes of Closure of the Heart

Valves" Heart 4:69-82, 1912
%%
e.g. by shutting the tube at C.
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and we have

' Ly

Up = uy Ezifg
This reduced flow, circulating around the D-shaped
segment can shut the valve from the side without backflow.
An essential feature of the foregoing is that the flow
region is not simply connected. The curve shown cannot be
continuously deformed to a point without leaving the fluid.

We can replace such a cut out region by a point vortex. This

will be considered next.

Point Vortex

A point vortex is a singularity in a two dimenslonal flow
characterized as follows. If there is only one point vortex
in an otherwise irrotational flow, then K = 0 for all paths
which do not enclose the vortex and K = K0 for all paths which
do. Ko is called the strength of the vortex. If there are

more than one vortex then

K = é uedx = ) Ke
T
where the sum extends over all the vortices enclosed by T.

The prototype of a point vortex is a flow with circular
streamlines with speed u = K/2mr. Since this + « as r -+ 0,

one can add on any finite flow and the streamlines still have
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to tend to cirecles (with the speed indicated) at points
sufficiently close to the point vortex. Nevertheless the
finite part of the flow is important because 1t determines the
motion of the vortex itself, fhe infinite part belng symmetric
and contributing nothing.

In fact, the problem of determining the motion of a

point vortex reduces to writing the flow in the form

+ u

u=u u,

= =
where u, follows the circular streamlines with ' u; = K/2wr

-2
vortex moves at velocity U,

and u, is finite at the center of the vortex. Then the
For example if a point vortex is placed near a line
boundary, the circular streamlines of the flow u, do not
satisfy the boundary condition.
To compensate for this one has
<::) to add a flow which arises from
// injecting fluid at thé region

marked ++++ and extracting fluid

- - - - + + + +
at the region marked ----. Clearly

this second flowigevwill move the

vortex to the left. And the final streamlines will look like this:
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Note that the vortex is no

longer symmetrically placed

(o

with respect to its own

streamlines and this can be

thought of as the source of
the motion of the vortex.

This flow u,

case (straight boundary) by noticing that the required flow

which moves the vortex is easily computed in this

U, is generated by placing an image vortex with opposite
rotation below the plane boundary. This shows that the speed
of the vortex is K/27m(2d) where d = distance from the vortex

to the boundary.

We can also hold the vortex at rest by adding on a main
stream flow of precisely this magnitude from left to right.

Then the streamlines look like fhis:
__—/
. A \

B AN J\\

A valve leaflet anchored at 0 could remain steady* in such
a flow along the streamline 0OA. If the main stream flow is

suddenly shut off, the situation reverts to that discussed above.

This situatlon 1s clearly unstable. See below, however.
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The vortex streamlines move
the leaflet to the left, and
the vortex itself moves left
"chasing" the leaflet. The
‘+{5> velocity of motion 1is equal

and opposite to that of the

stream which was Just shut

off.

Complex Variables and Incompressible Potential Flow

In Two Dimenslons

The aim here is to map the solution outlined above onto
a geometry more like that of a heart valve.
For incompressible, irrotational flow it two dimensions

we have

s U

—o—
|1e
er

8
[}
§

v "%
suy '%¥

¢ is called the stream function. The

O—)(b’ux_

¥

—o—
e
15

&
[
<le

0 > ¥y, u, =

[t

=]

relation between ¢ and ¢ can be seen
most clearly by defining‘g+ = the vector
u rotated through 90°. Then u-n = ul-t

and V¢ = ul. Thus ¥ is the potentlal

30




function for a flow which has the same speed as u but i1s
everywhere perpendicular to u.

Note also that

3¢ _ 3y ]
9X oy
(*¥) Cauchy-Riemann conditions
9¢ __3y
oy 90X |

One can think of the functions

o(x, y)
v(x, ¥)

as establishing a mapping (x, y) ~ (¢, ¥).
Any such mapping satisfying (¥) gives a possible flow
because the Cauchy-Riemann conditlions imply 72¢ = 0 (and Vzw = 0).

Moreover, suppose we have two mappings which satisfy (%)
(8, n) » (x, yv) + (¢, V) .
Then the induced mapping

(g, n) » (¢, W)

also satisfies (¥) as one can show by direct substitution.
Therefore 1f we have a flow in the x, y plane we can map 1t
onto the £, n plane simply by finding a mapping (&, n) » (x, y)

which satisfies (*).
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The process of finding such mapping 1is made easy by the
fact that functions of a complex variable satisfy the Cauchy-

Riemann conditions. That is, if

wr ¢+ 1y

z =x + 1y

then one can find a unique’dérivativé:%%-(independent of the
direction of dz) only if 3¢/3x = 3y/dy and 23¢/3y = - IY/3x.
For example the complex potential corresponding to a

point vortex at the origin 1s

w=¢+ 1y = E%I-log Z .

To see this write

‘reie

N
]

log r + ié

log 2z

w = K8 4-1K log r
2T 2m

thus »
¢=Ii@_w=-;1-{_—:.]‘—o—s-—rl
2m 2m *
The streamlines are circles, r = constant and the speed 1is
| o K
I or 2mr
The flow described above with two lmage vortices and a

main stream flow can be descrlibed by

w(z) = ug - 5%-5_- log(c—co) + -2-1{,;1— l_og(i;—fol
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where — ~

- N
z =& + in , s K \
w= ¢ + iy / , \
/ . \
;O=in0 / inO \
5 T -in, ! \
-1 + 1

We choose K/u such that the

dividing streamline meets the <:*)*

boundary at *1, as shown. To

do this compute
. - plane

_ K "o
w'(z) =u- =

2, 2 ‘
g tng
29
When 7 1s real, this expression is real and equal to % °
the x~component of velocity. Setting this to zero at 1 we find
!

To transform the foregoing geometry into something that

looks like an aortlc sinus, apply the transformation

z(z) - ()% + (z-1)°
(2+1)% - (z-1)%

1
2z et

Zz - plane
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Some properties of the transformation:

(@D) Imaginéry z=axis -+ Imaglnary r-axis ,

(2) real line with |z| > 1 + real line with |g| > 1

(3) Image of the real 1line with |g| > 1 is a circular arc
in the z-plane through *1. Then angle A 1s given
by Ad = m. For d = %-the arc is a seml-circle.

() s |z] »= o> 2
Thus, far from the sinus the streamlines become
stralght.

The flow in the z-plane will be described by the complex

potentlal:

W(z) = w(zg(z)) .

We shall be especially interested in the motion of the
point vortex at § = co. This has to be evaluated with care
because the deformation of the boundaries produces an additional

finite flow at Co. Let

t-¢

2
o a(z-zo) + b(z—zo) + ...

(Z-Zo)(a + b(z-zo) + ...)

log (C~Co) log (z-zo) + log (a + b(z-zo) + ...)

Z

prototype point vortex finite flow at z

Z
= t
No wvelocity at Z a g IO

b

',
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Keeping only the finite part of the flow at z, we have

- v b v _ K z ! !
W'(Zo) Uy - 53t & T ZwT t -t %0 [.u Hﬂno(c‘}o }1Co

Setting this to zero and using the relation between K and u

that keeps the dividing streamline at +1, we have
oK opy!
Q= u mo(c‘}o
Q = un(n,+‘"l) - K .
0" Yo

To solve these simultaneously with non-trivial K, u we need

!

-1+ (n+nh) — (&) =0
O

o
or
2
Un
(%v}' = g = 4 Sinzs
le) 1+r1O

8 -8 vz+l ) \(\(‘"-9)

¢~plane z-plane
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Evaluate ¢ on the imaginary axis

) - .eiqe. + .e'iu,.('rr.-‘e)
eiae _ e-iu(n-e)

eia(e-n/Z) + e-i@(&—n/Z)
- Ta(e=n/2) _ -Ta(8-1/2)

_ cos o (6-m/2)
i sin o(6-7/2)

1 etn a(% - 0)

Let g- g = _a(g- - 0) . Then
z =1 tan B
- B
gt i.——ﬁg—
cos B
L - sinBcosg_1l sin 28
T’ B’ 2 B'
(2,}" = cos 28 - —E— s1n 28
2(8")
B* = + ad'
B" = + ae"
B“ + l ell.
2(8')°2 20 (g1)°
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y = tan 0
dy . 1 48 _ 2
36 5 ay cos~ 0
cos 6
a6 2
't = =
) T ay i cos™6

6" = 2 1 cos O sino 6!

=2 cos39 sin 6

in © 1

/]

= - 1 = - =
AT (61)2 = "G cos 6 "o tan?b
t
(%,} = cos 2B + % tan 6 sin 28

L sinZB

- 4 sin B sin B cos B
‘ cos B

2 tan B8 sin 28

1 + % tan 0 tan 28= 2 tan 8 tan 28
1 = tan 28 (2 tans-%tan 0)

For given a, 6, 8 are determined from

1 = tan 28 (2tanB—-(]1=tan6)
L) = T
é"B"‘a(2 e)
Example o =1 Z =z
B =86
1 = tan 28 tan B
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2B + B = w/2
B = w/6
Example a = % 6 = % - % (g - B)
=2 - %+ % B
1 = tan 28(2 tan B8 - %vtad(%ﬁ? %))
= £(8)
£(B)
l
|
|
______ [
w/6 /2 B

Note that the solution occurs at B < g-which implies 8 < 0, so

the vortex is in the sinus.
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This discussion of the dynamics of heart valve closure
is incomplete, as it is limited to a discussion of point vortex
motion in two dimensional flow with a simple geometry and no
viscosity. The reader interested in this problem should also

see the following references:

(1) Leonardo da Vincl
(0'Malley and Sanders: Leonardo da Vincl on the

Human Body, N.Y. Henry Schuman 1952 pp. 216-326).

(2) Henderson and Johnson, Two Modes of Closure of the

Heart Valves, Heart U4 69-82, 1912.

(3) Bellhouse and Talbot

Fluld Mechanics of the Aortic Valve, J. Fluld

Mechanics 35: 721-735 (1969);

(4) Bellhouse
Fluid Mechanics of a Model Mitral Valve and Left

Ventricle, Cardiovascular Research 6: 199-210 (1972).
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Diffusion of Momentum (Viscosity)

This section begins our discussion of the dissipative
properties of the flow of real fluids. The following derivation
of the viscous force involves a simplified model of random
molecular motion. We assume here that the molecule executes
free flights of given duration at a given speed. The results
are more general than the way In which they are derived.

Let u be the velocity field of a fluld. We consider the
interaction of the fluid as a whole with a single molcule
immersed in the fluid, and we suppose that the molecule (with
mass m) moves in free flights of length r and duration T.

Later we shall contemplate a limit as t » 0, r - O,‘(rz/érl + V.
This implies that (r/t) + « so the veloclty of the free flights
is much larger than the finite velocity of the fluld. At the
ends of the time intervals t the molecule "collides" with the
fluid. By this we mean that the velocity after the collision

has the form

(<
]
A
o

lav]
+

e

g v]

where
P = point of collision
' up = fluld velocity at point P

ap = unit vector with random direction.

Now consider two successilve collisions of the molecule '‘at points

P and Q, which by hypothesis are separated by a dlstance r.
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In drawing the vector ap parallel to the path PQ we are making use
of the relation

]E.PI << r/t .

The change in momentum experienced by the molecule at Q is given

by
r r
m(Z ag + uQ) - m(; ap + up)

and the mean value of this quantity 1s
m(ug - up)
since the directions @Q and ap are random. More precisely, the
change in momentum is
m(_gQ(t + 1) - up(t))

where t + T is the time of the collision in question. To compute
the average value of this change in momentum, note that the point P
could be anywhere on a sphere of radius r surrounding Q.

We therefore derive a formula relating the value of a function

at a point to its average over a small sphere surrounding that point.
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Let the point be the origin:

= ¢o * z;: X5 %%

i

2
+ = X.X -——i—— +
2 173 Bxi 3

$(x)
8y

0

A

Using the notation > for the average over a sphere of

radius r we have

2

@(x)> =4 +F ——‘1 o
° Bx
i o
2
=q>o+§-v2¢ ‘...
o)
where we have used
<xi> = 0

<xixj> =0 1 #
<xi% =%—r2

Remark: The formula just derived becomes exact for the case
V2¢ = 0 if this holds not only at the origin but throughout space.
In that case <¢(x)> = ¢O for all spheres centered on the orlgin.

Therefore

<13P>=B‘Q+6' VI_J,'_ +ooa

where V2 is understood to operate on each of the orthogonal
components of u separately.
The mean change in momentum for the molecule of mass m

which collides with the fluid at point Q at time t + 1 is

2 2
mfu(t+t) - u(t) - %’Vzt_l_ = . dg = m[%—'(y_(tﬂ)-g(t)) - %—T- veu - SRR P
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The change in momentum per unit volume, per unit time, at the

fixed point Q in space is therefore

rl r2 2
pLx(ult+r) - ult)) - gz V'u - ...]Q .

Taking the 1imit as T »- 0, r » 0, (r2/6t) + v this becomes

L au 2
p(at - vV B)Q .

3
This quantity replaces 03% in the equation of motion of an 1ideal

fluid and we have (Navier-Stokes equations)
p(gg - vWu) = -Vp - pu-Vu

0

<
*

s
I

This result can be expressed more neatly by defining a néW’
material time derivative in the presence of random molecular
motion. Call this §%| , where the B stands for Brownian

B

motion. ‘The definition 1is

xtut,t+t) - ¢(x-ra,t
g%l - lim <¢(_ =ty ) - ¢(__ X | ) )
1B >0
where

r2 = v

(X3

a = unlt vector with random direction
< > = average over all directlons of a.

Dt
of change in ¢ seen by a particle which 1is

The quantity Do represents the mean rate
B

at a random point of S at time t and at‘§;+'gﬁ

at time ¢t + T.
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Again using

2
<¢(x-ra)> = ¢(x) + 2E)--v2q>(;_c_) + ...

we have
D¢ . 3¢ Y — V2
5t . 5t + u-vo AN
or
D _ 9 eV - 2
Dt|, -~ 5% * RV VY

and the Navier-Stokes equations become

Du
® bt

._Vp
B

Veu

"
©

If we assume that exchange of momentum by diffusion 1s
possible between the wall and the fluld, then we are forced
to conclude that the fluid veloclty 1s equal to that of the .
walls which bound the fluid at the surface of the wall. This
no-slip condition is more restrictive than the conditions on
the normal component of u that we prescribed previously for
inviscid flow. In particular the no-slip condition rules
out potential flow, unless the walls are going through some
large tangential motions to keep up with the fluid. Nevertheless,

if the flow 1s potential flow at t = 0, its departure from

by




potential flow may remain small in significant regions of the
flow field for significantly long times. This is because the
effects of the wall on the fluid propagate away from the wall
by diffusion (at least initially, later convection may become
important). This point is illustrated by the following
problem: |

Let a fluid at rest be bounded by a plane wall which
begins moving parallel to itself at t = 0 at the constant

velocity ug-

The fluid velocity 1is everywhere in the x-direction, the

pressure is constant and the equations reduce to

au ., 2%
ot ay2
Seek a solution of the form
u = £(Y)
where ,
Y = y/(vt) /2
3Ly = oen (L)
ot oy
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g%-= - % (ve) =372y
2
oY _ -1
(53;) = (vt)
et = o

This equation has the solution
Y

1 1 2
u = f(Yl) = uo(l - ;T72 [ e
0

-Y=ay
v |

velocity profile near
the moving wall

Note that a given value of Y (and hence of u) represents a value
of y which changes with time. Thus a particular value of u
propagates away from the wall according to y = Y(vt)l/e. The

layer of fluid influenced by the wall has a thickness which

grows like (vt)l/2.

Estimate of boundary layer thickness in the human heart:

v = 0.04 cm2/sec
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t < time of heartbeat < 1 sec

1/2

(vt) < 0.2 cm

(Diameter of mitral ring is about 3 cm)

¥
Direct measurements of the flow profile have confirmed that
the profile is "flat" (i.e., uninfluenced by the wall) at
distances greater than 0.2 cm. Measurements could not be

made closer to the wall in the study cited.

*
Taylor and Wade

Flow through mitral valve during diastolic £filling
J. Physiol 200:73 P (1969).

Pattern of Flow around Atrioventricular Valves J. Physiol
207:71 P (1970).

Comparative'Fluid‘Dynamics:of'Mammalian Hearts

*
When data *on mammalian hearts of different species from

the dormouse to the elephant are compared, the following patterns

emerge:

Let W = heart weight

length of ventricular cavity

(m
I

time of a heart beat (reciprocal heart rate)

H
]

* Clark, A.J., Comparative Physiology of the Heart
Cambridge, University Press 1%27 p. 63.
Altman, P.L., Handbook of Circulation (Nat. Acad. Sei.)
Saunders, 1959 p. 25, ol.
MacMahon, T., (personal communication)
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Then

W N L3

o 3y0-28
(The range of heart welghts involved 1s a factor of 106.)
From these relations we conclude that T n LO'Bu, or since

the data are hardly good enough to distinguish between a
factor of 0.8 and 1, we conclude that roughly T ~ L. One
could then make the hypothesls that the flows 1n these
different species are scale models of each other (whether
the equations of motion allow this will be 1lnvestigated
below), and conclude that (since p,v are constant in the
different species

(1) velocities will be equal

(2) pressures will be equal

(3) wall stress in the muscle will be equal (force/unit area)

(4) cardiac output (volume per unit time)

2

Will be proportional to L or area.

The last two conclusions make especlally good physiological
sense because one expects the material strength of the musecles to
be the same (on the basis of area), and because cardlac output

is needed to supply oxygen for metabolism which tends to vary

like surface area.

But can the flows actually be scale models of each other?
To investigate thils write the equations of motion in non-dimen-

sional form through the substitutions (primes refer to dimensional

quantities)
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xl

(]
e
5
C'.

1]
=
<t
o

fl

=1

[

2 2
! L L
s =o=zr R=i%
T

The Navier-Stokes equations become

au
= -Vp + %V2u

|
+
s
<l
v}
I

Veu = 0

and a non-dimensional solution of these equations for some

particular R generates a whole family of dimensional solutions
2

by choosing L and T consistent with R = %f . Note that the

solutions for different mammalian hearts are not related in

2~ T, In fact the range

2

this way since we have L ~n T, not L
of R for different mammalian hearts 1s a factor of 10°, since
R~ L2/VT ~ L.

In fact, the relative thickness of the boundary layer

varies as R'l/2

, 80 one can conclude that there i1s a range of

10:1 in thils parameter over the different species of mammal.

Small mammals have relatively thick boundary layers.
Nevertheless, if the boundary layers are always thin

compared to heart dimensions (as in man), then the flows will

be approximately scale models of each other outslde the boundary

layers.

The similarity of the anatomy strongly suggests the truth
of this hypothesis.
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Vorticity

We have defined the circulation around a closed path T

as

From vector analysis we have
K =_[[ (Vxu)+n da
S

where S 1s any surface spanning the curve I, n is the unit
normal to the surface, and da is the element of area in S.
The vector

w = Vxu

is called the vorticity. The components of w are

= S .
Wy axJ Uy axk uj

where (1jk) is a cyclic permutation of (123). From this formula
it is obvious that w = 0 is a necessary condition for the

exlstance of a veloclity potential ¢, because if u = V¢,
9 ) )

3
w,; = ¢ - o ¢ = 0.
1 axd axk_ axkiﬁ.xJ
The fact that any surface S spanning the curve I gives
the same value of K 1s remarkable. It is easy to see that this

will hold if for all closed surfaces SO

’ﬁi (wen)da = 0
Sy

for, in that case one can combine any two surfaces spanning T

into a single closed surface and show that
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since J[ (wen) da = 0

Sl+S2
This shows that Vew = 0, a fact which
may be verified by direct calculation.
The vorticity is the circulation per

unit area, and it is equal to twice

the local angular velocity. To see

this for a rigid body rotation, note
that in the plane normal to the axils
of rotation v = 8r where § = angular
velocity. Then K = 27r 8r and K/ﬂr2 = 26. More generally,
note that an arbitrary motion in the neighborhood of a point

after the translation of the point itself has been subtracted

3 3u1
away has the form: 3% xJ .
- =T %,
But
u - rou 8u1~ u aui
Bxi - % (aki i % (axi T 3x }
J J 1] J 1

Thus one can think of the mofidn as being made of a symmetric
and an antisymmetric part. The symmetric part of the motion
has three orthogonal directions which are unchanged by the

motion, it therefore contributes nothing to the rotatioﬁ néar

the point in questilon.
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The antisymmetric part 1is precisely a rigid body rotation

at angular velocity é =_%vg.

Equation of Motion for the Vorticity

Taking the curl of both sides of the Navier-Stokes equations

we have
ou 1 2
VX + Vx(u*vVu) = - = VxVp + vVxV-u
ot - - P -
Since space derivatives commute with each other and with %F’ we
have
ou 3 3
Vg T ap (W = pp L
yxv2y = V2 (vxu) = Vou .

0. The term

Since ¢ Vp = 0 for all closed paths, VxVp

Vx(u+Vu) is more difficult to evaluate. Using the relations

Veu = 0 Vew = 0, one can show that
Vx(uevu) = u-Vo - w-vu

Therefore we have

+ u'Vo = w-Vu + W .

] @
S

The origin of the term w+Vu can be seen most clearly in an inviscid
fluid for which we have conservation of the circulation around all
closed paths moving with the fluid. Now consider a "vortex tube",

i.e. a bundle of lines which are parallel to w at some instant.

52




A closed material path T on
the surface of the vortex tube

has zero circulation since

wen = 0. Since it retalns zero

circulation, the material of

the vortex tube remains a vortex
tube. In addition the circulation K of the vortex tube (which
is the same at all cross-sections since V'w = 0) remains constant
in time. Now the volume of a section of the vortex tube also
remains constant, since Veu = 0. Therefore for a differential
vortex tube of area da and length 4%, the following quantities
are constant in time: da df& = volume

da w = clirculation
It follows that w 1s proportional to df. Since the vector
is parallel to the vector dx with length df along the axls of

the tube we have

s
= ar 9x

|€

where the factor f% is independent of time (moving with the

fluid). Applying the operator %%—we have

In summary, when vortex tubes are stretched, they also
“get thinner, and the vorticity has to go up to conserve the

circulation.
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Note that in two dimensional flow w i1s orthogonal to the
plane of the flow everywhere, so that only 1its magnitude
w = |w| 1s of significance. Also w+Vu = 0, so that for two
dimensional flow the equation of motion for the vorticilty reduces

to

Q

" 2
= o=+ uVw o= W .

HE
@

If we regard u as given, the equations for w are linear in w,
but such a separation is not usually possible since w = Vxu,
An expression for u in terms of w may be found as follows.

Let u = VxA with V+A = 0, then w = VxVxA. But VxVxA = V(VeA)-V2A

and V*A - 0. Thus

A= -
[ ow(x')
A-(J-()'I' - av'
where
r=|x-zx'l
= Ux Q(E') av!
u = “Tar_ v

Since the V in the expression for u operates only on X, w(x')

acts as a constant vector. But
V x(¢8) = V¢ x a

when a 1is constant. Also
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In the presence of boundaries a flow of the form u = V¢ may

have to be added in to satisfy the boundary conditions.

The Accumulation of Vorticity Near a Line

Consider the Incompressible flow

uz = 02z
= _ 1
ux = =53 oX
= _ &

In polar coordinates this becomes

This 1s a potential flow (zero vorticity), but consider what
happens when we add on a radlally symmetric component of
vorticity pointing in the z-direction w = w(r}2.

The flow associated with w is in the 6-direction only,
it cqntributes nothing to the convection or stretching of vor-
ticity so we may write the equation for the vorticity in terms

of the flows U, uzldefined above.
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This means that we have in fact a linear problem to solve

for w of the form

ou
ow w _ b4 2
et Yhir s Tz VWY
dw . & 3.2 13 9w
3t  2r ras w) + v(r or rar} ’
- 'dr S oW
Setting 3w/3t = 0 (steady flow) we find 55w + 537 = 0.
This has the solution a 2
- r
w=woe W

The circulation around a circle of radius r is

r
K(r) = 2n f r'w(r')dr'
Q
and
o o 2
- r W, Vv
K = 1im K(r) = = £2rdre v w, = 4 d° .
r-')OO
. Thus
o 2
o = K TV r
Hﬂ'\)

This distribution will evolve out of any initial distribution
of axial vorticity with total circulation K. As v > 0 the
vorticity distribution tends to a line vortex of strength K.
Although this example may seem Vvery special, conditions
which are like this locally will occur often. Consider an

arbitrary potential flow. In the neighborhood of a point which

we take as origin
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2
= 2¢ L 9 ¢
o= 0, * X 3y X1t T L. swoaxs| X%yt ooe
i i 1 1°73
0 o}
The velocity at the origin is determined by 3¢/3xi and the
velocity in the neighborhood of the origin relative to the
velocity at the origin i1s determined by a2¢/axi3xj. Now 1t
is always possible to choose orthogonal coordinates at the
origin such that

: 2
9% _q 1 # 3

Bxiax:j
and we shall assume that this has been done. Thén let

>

9 2. . _

Ai-;—%anchb—Oyieldsz:)\i—O.
xi i

The velocity field of the deformation near the point °

is now given by ui = A;X;. The vorticity concentrating flow
we considered above was precisely this withvki > 0,

= = - &
A2 —AA3 = - 2_A1 . More generally, if Al >0 andkxz, A3 <0

then we can expect vortex stretching along the direction Xy
and a local concentration of vorticity of thils type near the

point O.

It is interesting that the flow pattern used to generate

the vortex described above, namely
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o = 2222 - ax? - ay? = 2az2 - arf

has actually been proposed as a model of flow in the heart.*

The time dependence is put in by multiplying by a factor £(t) -
recall that an arbitrary potential flow satisfies the equations
of motion (even with viscosity) but usually will not satisfy
no-slip conditions at the wall. Here Jones* ignores the no-

slip condltion because the error will be confined to a thin
boundary layer. Moreover he assuﬁes the flow and then calculates
the normal motion of the boundary which is consistent with

that flow.

Including the factor A in f(t) we have

o = £(t)(22° - x° - ¥2)

The streamlines are constant though
the speed along them may vary. An

arbitrary initial shape for the

heart can be drawn on these stream-
lines (making it tangent at the out-
flow keeps the outflow diameter constant)

2 and the subsequent shapes can be found.

The velocity u has the simple form

£t (-2x, -2y, 4z)

=
n

Jones, Robert T., "Blood Flow" Annual Review of Fluid Mechaniecs
1, 223-2L4L (1969).
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It follows that the configuration after time t is related to
the configuration at t = 0 by a simple linear (and diagonal)

transformation of the form

b4 a 0 O X
o)
yi =10 o O Yo
2 .
Z 0 o zO

where

It is interesting to consider what happens 1f we take
Jones' flow pattern and consider the possibility of superposi-
tion of axial vorticity on top of it as before. Such vorticity
will be intensified by stretching motion of blood leaving the
heart, ahd we can therefore expect some kind of spiralling
motion of the blood as it leaves the heart, provided that the
initial axial vorticity 1s non-zero. This will be enhanced by
spiral contraction of the muscles, as 1s known to occur. It
may be relevant to point out here that the aorta and pulmonary
artery are sharply curved, and that these curves do not 1lie

in a plane but form spirals around each other.

Right ——
Pulmonary <«—
Artery

|
:

Left Pulmonary
Artery

' \<\\ Aorta
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One ought to admit, however, that at the time when these
vessels are being formed the heart has very different dimensions
than in the adult. L = ,.4 cm T 1 sec. and L 2 2(v) /2,
Under these conditions viscous effects will be much more
prominent than in the adult heart and it is questionable whether

vortex stretching (which comes from the interval terms in the

equations of motion) can play any role.

Vortex Stretching in the Aortic Sinus ?

Bellhouse and Talbot (references cited pre&iously) find
that dye injected near the wall in the ventricular outflow is
swept into the aortic sinus in steady flow with the valve open.
They do not comment on what happens to the streamline beyond B.

Clearly it must leave the

sinus in a different plane

to avold c¢rossing 1tself.

That this is the case is
suggested by a photograph taken by the same authors from
downstream which shows the leaflets bent as though fluld were

entering the sinus at the center of the
edge of each leaflet, with fluid leaving
near the lines joining the different
cusps. This suggests a flow in each
sinus away from the plane of symmetry

with concentration of vorticity at P.
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Pressure and Flow Across Heart Valves

During cardiac catheterization the function of heart
valves 1s assessed by recording pressure as a function of
time upstream and‘downstream of the valve. Ideally this is
done through simultaneous recording with two catheters, but
more often-the upstream and downstream pressures are recorded
in rapid succession by withdrawal of the catheter through the
valve. During right heart catheterization the catheter 1is
advanced from a vein in the arm and follows the path of the
blood. Entering the righ atrium from above 1t can be advanced

downward through the right atrioventricular valve through the

Pulmonary
Artery

Ventricle

ventricle and up into the pulmonary artery. When the catheter
is wedged as far as 1t goes into the pulmonary arterial tree

it establishes a still column of blood between itself and the

61




pulmonary veins,'and consequently it records the pulmonary
venous pressure, which is roughly the same thing as left
atrial pressure. A more direct route of access to the left
atrium is by means of a trans-septal catheter (shown dotted
on previous page) which is fed upward from a femoral vein and
pierces the atrial septum at the region of the fossa ovalis,
a thin portion of the atrial wall which in embryonic 1life was
a flap valve permitting flow to pass from the right to the
left atrium.

[It is worth noting that the two possible routes shown
for the catheters also represent the paths taken by the blood
in embryonic life: In the embryo the venous bloéd from the
lower part of the body includes blood from the umbilical veins
and is rich in oxygen; this is directed through the flap valve
to the left side of the heart from which it goes preferentially
to the head. Venous blood from the head and upper body goes
preferentially to the right ventricle, pulmonary artery and
from there to a special embryonic duct to the aorta and the
lower part of the body.]

If necessary, left heart catheterization can also be
performed, threading the catheter in the opposite direction
to the flow of blood in the aorta, and through the aortic valve
into the left ventricle.

Instantaneous flows across the valves are not usually
measured (though this can be done in experimental animals]),

but the mean flow (cardiac output) can be measured from data
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on oxygen uptake: Let

V = rate of 02 consumption measured at the mouth

Q
il

arterial oxygen concentration
C.,= venous oxygen,concentration

Q = cardiac output
Then (Ca - CV)Q = V.

The functional defects of interest with respect to heart
valves are stenosis (narrowing of the valve opening) and
fegurgitation (backflow when the valve should be closed).
These defects may appear separately or coincide. When
leaflets become calcified and inflexible they neither open
nor close properly.

In the pressure records stenosis appears as a pressure
difference between the upstream and downstream chambers when
the valve should be open (see next page).

Regurgitation also can be observed in the pressure records.
It appears as an abnormal tendency for the upstream and down-
stream pressures to approach each other when the valve should
be closed. In the following, howéver, we shall be concerned

primarily with stenosis.
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For proper interpretation of the pressure data, one needs

a pressure-flow theory of the motion of blood through heart

valves

= b — = — = e

For the configuration shown, we can write down an equation
for the rate of change of kinetic energy in the fluid between

1 and 2. This equation

& - (v, - p,2Q - D(Q)

where

T = kinetic energy in the fluild between 1 and 2.

instantaneous flow (volume per unit time) through

O
]

the system:
(pl—p2)Q = rate of work done on the fluid in (1, 2) per unit

time by the fluid external to this region.

D(Q) = rate of dissipation (conversion of kinetic energy
to heat) when the volume rate of flow is Q.
" Remarks:

(1) Writing the rate of work as (pl—p2)Q amounts to

neglecting %—pu2 in comparison with p at the stations 1 and 2.
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(2) It is not strictly correct to assume that the
dissipation is uniquely determined by Q, since the dissipation
depends on the details of the flow pattern which in turn

might depend on how quantities are changing with time.
A guess at the form of D(Q) can be made as follows:

Let u, be the velocity of the fluid between the valve
leaflets at the point where the velocity is maximal and let
AV be the cross-sectional area at this point. This 1s less
than the area at the valve ring because of "the contraction of
the jet. Then the flux of kinetlc energy entering the down-

stream region, where most of the dissipation occurs, is
1 2
A uv(§ 0 uv)

We assume that the rate of dissipation is a certain

fraction (say o) of this kinetic energy flux. Then

D

lah u (5 p ud)]

2|

‘o

| aQ Q

)]

)

2A

i

Q3|

= | a
2A

< M

where the absolute value sign is included because the dissipation

is positive independent of the sign of Q.

In addition, it seems reasonable to assume that the kinetic

energy T in the fluid is proportional to Q2. We write this as

T = % sz, and note that k has dimensions of mass/areaz. This

suggests that we write k in the form
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where
k = dimensionless constant
= density of blood

distance hetween sites 1 and 2

= It © O
]

= characteristic cross-sectional area.
With these substitutions, we have

ky & aF Q% = (p;-p,)Q -

S |
2

2A

ap A3
5 Q ‘
v
which reduces to

pL
ko A

Q-le:
o

= (p;-p,) - =& Q[q|
: 2A
v
when Q@ > Q0 this has the form

dQ 4 po? =
a dt.+ bQ~ = 6p
where
6p = py-P, -

Further fluid dynamical insight into the origins of this equa-
tion comes from the free-streamline theory of drag. In strictly
irrotational flow there are no drag forces. But if surfaces of
tangential discontinuity are allowed to separate two irrotational
regions, a net drag force may result. This is a first approxima-
tion to representing the effect of a wake behind immersed bodies

while circumventing the complicated details of rotational flow

in the wake.




Example: A flat plate in a stream perpendicular to the plate.

Irrotational Flow:

B N

“#_**\\\\/////prp Drag = 0

2 Regions of Irrotational
Flow with Separating

Streamlines:
" Separating Streamline
(pressure continuous,
tangential veloclty
. discontinuous)
————_ 0
- constant
u = =V¢
p+-]2;pu2 = constant Drag # O
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Remark:

Note that in the two pictures shown, the irrotational
flow without separation has the property that one cannot tell
which way the flow is going from a picture of the streamlines
alone. Thils property 1s lost when the separating streamlines
are included. This is the essential reason why there 1s no

drag in the first case but there 1s drag in the second.

To analyse such a situation, one can use Bernouli's

theorem, which we now pause to derive. Let

au
P(3E + u-vu) = ~Vp + WWou
2, _ _ 1 2_1,.2
and let u = -V¢ with V ¢ = 0. Note that (Vo+V)Vo = ,-2-v|v¢[ = 3Vu
where u = |V¢|. To see write the ith component as follows
}:BQ 93¢ _ :Bg 9 0¢
T axz sz Bxi T axm Xy 90Xy
-3 3
2 x; S X,
1 9 | 2
= = — | Vo] .
2 axi

Thus we have u-+Vu =_%|VE|2 (for irrotational flow only!), and

V(- p%%+%-pu2+p)=0

d
pg%:%-pue +p
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For the heart valve problem one can expect streamlines like this

(in the free streamline theory).

Subtracting the equations for ¢ at sites (1) and (2)
9 1l 2
Pyp(d1=05) = P1-Py * 5PU = 5PYU;
Now write

2
¢ -¢2=[g-dx
1

1}
o

ot Sy O
a

2
T N dx . .
he integral I =Y is a purely geometrical factor which we write

as (%}. Now, neglecting u.? in comparison with ugzwe obtalin

1

L d _ 5 L1 2
A dt  P17Pp T 3 PY
- - P_@?
(p1-P,) 5 Q
2A2
Note that bhoth formulas only apply to the case where the

upstream and downstream value of % pu2 can be neglected in
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comparison with this quantity near the valve. This will be
true wherever the valve pfesents a significant obstruction to
the fiow. When it is false, 8p = 0 is a good approximation
for the open valve.

Comparing this result with the formula of page 138 we
note that they are equivalent if we set Av = A2, ko = 1, and
o = 1. The latter is presumably an upper bound for a, because
the second formula assumes that the fluid outside the jet is
at rest, a condition which tends to over-estimate the dissipa-
tion. Similarly k_ = 1 is probably a lower bound for k, since
1 1

5 k = 5 ko %%-ié the ration between the kinetic energy and Q2,

and irrotational flow minimizes the kinetic energy.

Experimental Confirmation

t 3 .
Yellin has set up experiments in which pulsatile flow
of the form Q = Qo + Ql sin wt is driven across a fixed stenosils
(narrowing) in a rigid pipe. The pressure drop 1s measured.

For the case Qo = 0 we expect

2 wt Q>0

awQ-, cos wt + bQ2 sin
§p = 1 1

awQ, cos wt - lez sin® ot Q < 0

*
Yellin and Peskin, "Large Amplitude Pulsatile Water Flow
Across an Orifice" ASME preprint 73-WA Bio-12.
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Dissipative Pressure
Drop

Inertial Pressure Drop

wt

§P

Observed Pressure Drop

= wt
2T

N

The inflection points which coinclde in time with the zeros
of the flow are indicative of the square-law character of the
dissipative pressure drop, whlle the fact that the pressure
drop is non-zero at these points shows the importance of inertia.

As a further test of the theory, the dissipative coefficlent
was evaluated 1n two ways. First, at the instant when dQ/dt = 0,
one can evaluate b from sz = §P. Second, one can evaluate the
same coefficient by integrating between two times when the flow

is zero. In that case
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Q(t,) - Q(ty) = 0

cH——ct
S
Q1Q
O
jo
ot
i

and we have

t, , ty
b J Q° dt - f S§P dt
t, t,
or
bQ2 = §P

(This formula only holds for intervals of time such that
Q(ty) = Q(t,) and @ > 0 on (tl, t,)). The two values of b

were equal.
Physiological Consequences:

(1) Pressure - Flow Dynamics
If the fluid is at rest just prior to valve opening,
Q and 8P become positive at the moment of valve opening. Because
of the inertial term the peak value of 8P occurs before peak
flow, and there is an interval of time after 6P has become
negativé when the flow is still positive. If there is any
finite interval during which 6P = 0, the flow decays hyperbollcally

(not exponentially) toward zero. To see this let Qt - a/b.

Then
_ d Q
0= 3¢ (Qt) = t +Q
— daQ dqQ ,
0= 3 (qt) + o7 =23+ ¢

aQ
0 a 3t + bQ .
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Note: To use the solution Qt = a/b, one has to define
the origin of time in such a way that the initial conditions
are satisfied. That is, 1if Qo is known at some particular time,

call this time to where Qoto = a/b.

Example: Pressure-Flow curves for the mitral valve

(inflow valve to left ventricle) look something like this:

1
b Hyperbolic
Decay

|
|
|
|
! i
: |
L
|
N

Ventricular Atrial
Relaxation Systole

§P

Ventricular
Systole

(2) Pressure-flow dynamics during exercise.

During exercise cardiac output rises in proportion
to heart rate, and the stroke volume (volume ejected by the
heart beat) remains constant. To see whether or not the flow
waveform for a valve should change shape, we should therefore

look at whether a solution of a %%-+ bQ2 = 8P admits a scaling
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of the form t = at' Q = o"1Q'. This corresponds to a

compression of the time axls by a factor o, and a stretching
of the Q axis by a factor a-l. It therefore leaves the
volume, I Qdt, ejected per beat unchanged. Making these

substitutions, we find

-2 _dQ" =2 2
o a 5%" + o “DQ'" = &P
or
aqQ’ 2
a 32, + pa'® = sp'
where
§P = o 28P' .

Thus the equation indeed admits such a scaling, with
pressure changes that go as the square of the flow, and we
can expect that to a first approximation the shape of the flow

waveform for a given valve will be invariant with exercilse.

Remark: The situation just described is in marked constrast
to the case of the linear equation a %% + bQ = 6P, for which
the inertial term becomes more and more important with increasing

frequency independent of the amplitude.

Remark #2: The foregoing result 1s only approximate, because
changes in heart rate are not accompanied by stricly propor-
tional changes in duration of the varlous parts of the cardiac

cycle.

Remark #3: The proportionality between heart rate and cardiac
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of the tissues for oxygen is high. If heartrate 1s artificially
raised with a pacemaker, stroke volume falls proportionally and
cardiac output is unchanged; control mechanlsms responsible
for this will be discussed later in the course.
(3) Evaluation of the dissipative coefficient from data

obtained at cardiac catheterization.

In practice the flow is not measured in patients,
and the following procedure is used to estimate the disslipative

*
coefficient (and hence the severity of stenosis). Let

Qc = Cardiac Output

T = Duration of heartbeat

Q@ = Mean flow when valve 1s open

t = Duration of positive 8P for the valve in question.

Then compute

)

H
1
¥:»)

and evaluate h from
b(Q)% = TP

where the average is taken over the interval of time that &P

is positive. There are three errors in the foregoing:

1) @2 #a?

(2) The formula b5§ = 8P has theoretical Jjustification
only when the time interval (tl, t2) over which the averages

are taken has the property Q(tl) = Q(tg).

*
Errors in this procedure are discussed below.
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(3) The time t which is used to evaluate Q should be
the interval when the valve 1s open. This is longer than the
interval that &P > 0.

This shows the importance of finding a way to measure the

flow in patients.

(4) Consequences to the patient of the square-law depen-

dence of pressure on flow.

During exercise flow may increase by a factor of about
2, pressure drop by a factor of 4 and rate of dissipation of
energy (Q8P) by a factor of 8. In healthy individuals the
resting pressure drop is so low that the increase is easily
tolerated, but in valvular stenosls exercise becomes extremely

difficult for the patient.

Aortic (outflow) stenosis:

Until the obstruction 1s severe excellent compensation
is possible hy thickehing of heart walls. There 1s a tremendous
increase in ventricular pressure, but aortic pulse 1s normal
except for a slower rate of rise. With severe disease, chest
pain, difficulty breathing, and fainting are symptoms, especilally

when exerclise 1ls attempted.

Mitral (inflow) stenosis:

Here symptoms appear earlier because there is no pumping
chamber directly upstream of the valve to compensate for the
condition. The increased pressure is felt in the pulmonary

veins and capillaries, and there 1s a real danger of fluid
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being pressed out of the capillaries into the alr spaces of
the lung. First symptoms are difficulty breathing during
exertion, and, if the stenosls progresses in severity, this

happens at progressively lower levels of exercise,

Heart Sounds

The equation

4
a a% + pQ|Q| = &P

can be supplemented by other equations which show what happens
when a heart valve is closed. We assume that the valve closes
when Q becomes zero, but that Q can become slightly negative,
displacing the closed valve leaflets because of their elasticlity.

Let V be the total volume displaced in this way. Then

t

v(s) = - [ acenae

¥
where t¥* is the time of valve closure, which we také to be the
instant when Q becomes negative. The tensed valve leaflet
exerts a force in the forward direction on the fluid which
may be expressed as a pressure 6PV = %-V, where C 1s the

"compliance™ of the valve. Thus we write

- dQ -
a 3+ pQ|Q| = 8P + &Py
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t
bl'f - Q(en)at! b o< tHx
= t#
GPV =
0 t > t¥¥
8P = given function of time

where t¥%¥ 1s the time when the valve opens and 1s gilven by
V(t**) = 0, i.e.

LE%

[ Q(t)dt = 0

L%
Here is a sketch of the solution for mitral flow:

—_——————




Both the oscillation accompanying closure and the shoulder of
forward flow prior to valve opening have been observed in flow
measurements on the mitral valves of dogs. We believe that
this oscillation is the source of the heart sound that 1s
heard at the time of valve closure. The origin of this is
the coupling of the mass of the fluld with the elasticity of
the valve to form an harmonic oselllator. The observed
oscillation is more damped than one would expect from the
bQIQI term as estimated from the forward flow. This suggests
that tissue viscosity plays a role in damping the sound.

The equations outlined above for pressure-flow dynamlcs

are summarized by the following electrical analog,

——
(2)

e o ) ’\, ©

+ v o -
- 8P ———

(2)
in which —-”\/—— is the required non-linear dissipative element-
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Numerical Analysis of Blood Flow in the Heart: Formulation of

the Problem and Introduction'tO'the'Numérical'Methbds.

Motivation:
Approaches used previously in this course:
(i) Conformal mapping for aortic sinus.
(ii) Assume flow out of the heart has the special
form ¢ =,f(t)(%»r2-22)
(1ii) Pressure-flow analysis leading to the equation
8P = a %%4» bQ°,
Sueh methods depend on special geometrical assumptions
and fluid dynamical approximations. In particular, while they
give some insight into what to expect they are inadequate for
a detalled analysis of the flow pattern.
Such an analysis is required for the rational design of
prosthetic valves.

Some valve designs which are now in use

-y

1
f

Ball Valve Caged Disc
(Starr - Edwards)

81




Capetown Valves

A

(=

Q Tilting Disc
o (Bjork - Shiley)

Clinical problems with current prosthetic valves include:
(1) Formation of blood clots.
(11) Destruction of blood cells.
(1i1) Tissue ingrowth leading to interference with free
valve motion.

(iv) Exercise intolerance.

These are partly fluld dynamical problems (materials
considerations are also important):
(1) Clotting is related to reglons of stasis and also
(somewhat paradoxically) to wall damage produced by turbulence.
(11) Cell damage 1s related to high rates of shear.

(111) Tissue growth 1is partly controlled by flow lines.
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(iv) Exercise intolerance is related to %he elevated
(square law) pressure drop across the valve during forward
flow (see previous lecture) and to the backflow associated
with the closure movements of the valve.

Many of these problems are reduced with valve transplants
or with tissue valves constructed in place by the surgeon, but
such valves do not always retain their flexibility over long
periods of time. It is not yet clear whether improved treat-
ment of transplanted tissues or improved design of prosthetic

valves 1is the ultimate answer.

*
Formulation of the Problem

valve and fluld. That is,

(1) Valve moves at local fluid velocity.

(2) Valve exerts forces on the fluid which modify the
fluid motion. Such forces include the forces which stop the
flow wheh the valve 1s closed and the forces whilch shear the

flow to form vortlces when the valve 1s open.

Because of (1) and (2), valve and fluid motion must be
computed simultaneously, not independently.

Conditions at the valve-fluid interface:

X

No slip: FF = u(x)

*
Peskin, "Flow Patterns Around Heart Valves" J. Computational
Physics £Q(2)252—272 (1972).
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where x 1s the position of a material point of the valve

leaflet and u is the fluid valocity field.

Force balance: Consider a material patch of the leaflet of

mass m. Let f, = force on the patch due to the rest of the
leaflet, §2 = force on the patch due to the fluid. Then
m dz& =f +f
dt§ =1 @ =2

Note that
£ depends on state of the tissue

£

2 depends on state of the fluid.

When m = 0, we have gl = - ge. In this situation, then, the
material forces acting on the patch are "transmitted" directly
to the fluld, and we do not need to evaluate the state of the
fluid in the neighborhood of the patch to compute'ge. In the
following, we take m = 0 always, but our considerations will
be applicable not only to infinitely thin zero-mass boundaries
but also to neutrally buoyant immersed structures of finite
thickness.

Boundary forces as a singular force-field: For simpliclty
consider a curved boundary in a two-dimensional fluid. Let s
be a material parameter for the boundary curve x(s,t), and let
f(s)ds be the force transmitted by an arc of length ds at s
to the fluid. As shown above, g(s) is determined from the state
of the boundary. Now consider the force on a region R of the

fiuid due to the presence of the boundary curve B.
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B

The force 1is given by:

1 x(s)eR

~ ds f(s) ds £(s) §
s€(BNR) s€B 0 x(s)eR

il %

s £(s) [ ax s(x-x(e))
s€B X€ER

r

I %

| ax I-'ds £(s)8(x-x(s))
x€R ‘seB '

Since we are working in a two dimensional fluid dx is the area
element in the fluid and §(x-x(s)) is a two dimensional lmpulse
function centered at x(s).

The quantity

RGo) = | as £(s)6(x-x(s))
seB
can be interpreted as the force density in the fluld due to the

houndary. It is zero except on the boundary and infinite there

*
These manipulations are formal, but useful in motivating a

numerical scheme.
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(1ike a one-dimensional impulse), but its integral over any

finite region of the fluid is finite.

Remark: Although F(x) is zero at points in the interior of
the fluld. The effects of F(x) are propagated instantaneously
throughout the incompressible fluid by the pressure field.

The equation

F(x) = [ ds £(s)8(x-x(s))
seB
can be thought of as a transformation from boundary to fluid

variables. Similarly the no-slip condition can be re-written

dx(s).

at [ ax u(x)8(x-x(s))

x€D
where D = fluid domain.

The symmetry is not perfect, however, because the latter
integral 1s over as many dimensions as the impulse function
and this completely removes the singularity.

It is desireable to generalize the foregolng results
in such a way that they do not depend on the cholce of a par-
ticular coordinate system in the boundary or on the number of
dimensions. In fact we would even like to include structures
of finite thickness (like the muscular heart wall) as
"soundaries". To accomplish this, proceed as follows.

Let'{gk} be a dense sequence of material sample points
of the boundary. Specification of the points'{gk} is suf-
ficient to determine the configuration in space of the

boundary, the deformations of which are continuous. The

86




force on a region R can be written

1l x.€R
N _k
1 - 1
1lim ﬁ'z £k = 1im T E_ gk
N+« “x €R N~ k=1 .
X 0 x,¢#R
k. <N s

N
1 . L
lim & 57 £ f dx §(x-x, )
R

N0 k=1
Ly
= dx 1im = ) £ §(x-x,)
o[ pm b sam ]

which shows that

is the force-density in the fluid.
The interpretation of gk can be given most clearly by

writing
€R

u(R) = lim NI-Z:

0 'gkst

fraction of the sample points which lies

in the region R.

. *
u(R) forms a measure on the fluid domain , and f is the intensity

of the boundary force with respect to this measure.

p(R) = 0 when R does not contain any of the boundary!
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Now that we have an expression for the force-field applied
by the boundary to the fluid, we are in a position to proceed
to a system of equations of motion.

Equation of motilon:

F(x)] = 1im Lot o s(x-x,) (3)
CF&x) = 1im T ) (x=-x 3
Y Nos<o N =T =K==k :
. dx , .
¥ = I‘dx‘gﬁ§)§(§r§k) (#)
fluid
‘ gk = fk (}_(_1, 3_(,2; v ) (5)

(1) and (2) are fluid equatlons
(3) and (4) couple boundary and fluid
(5) expresses the material properties of the boundary. For

actlve boundaries the relations (5) will vary with time.

*
Construction of a Numerical Scheme for the Navier-Stokes Equations:

Motivation:

The Heat Equation in one Dimension (periodic domain)

2
du _ 3 u

u
ax2

(o34 8-34

*
A.J. Chorin "On the Convergence of Discrete Approximatlons
to the Navier-Stokes Equations", Mathematics of
Computation 23: 341-353 (1969).
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Discretization: Let x = k 6x
t = n 8t
n
u(x,t) = uy
2
2°u 1
> (u + u - 2u
du un+1 - "
] §t

K

Then we can write down a numerical scheme of the following form

% *
vdt +u

U & = u ¥ (6%)2 (Ueyg + U
where
¥ = n » explicit scheme
¥ = ntl » implicit scheme
Let ' o) ='2§£2
(6x)
(Audy = gy * g - 2% -
Then
un+l =y + aAu* .
Then we have
Explicit: Wt o= (1 o+ am)u®
Implicit: L S ST D R

The explicit

- 2u

*
k)

scheme involves direct calculation while the

implicit scheme involves solving a system of linear equations

at each time step.
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Since arbitrary uy; can be expanded in elgenfunctions of
A, we study the behavior of these two schemes for such functions.
We can do this without actually writing down the eigenfunctions.

Simply observe that Au = iu implies

Upgy ¥ Upg T 2w S AU
U4 + U 1 = (2 +_x)uk

Multiply by Uy s sum over k, and note that‘§ WUy

=) wu, _; (periodic domain). Then

- ) \ 2
2 T weugyy = (24 MYy

¥ uu
1+4-§-= kKkHl o121, 1]

. Z: ui

-b<ac<o0

Note that on a periodic domain with an even number of points
the values A = 0 and A = -4 are actually achieved. The
corresponding eigenfunctions are u, = 1+ X =20, and

1 k even

-1 k odd

For eigenfunctions Uy the schemes reduce to

Explicit: u§+1 = (1 + ak)u?
. n+l _ 1 n
Implicit:. PA = Tax gl .




Since A < 0 the second scheme results in damping of all

t scheme ylelds

eigenfunctions independent of d, while the 1%
growing osclllations of at least the A = -4 eigenfunction

unless a < % .

. 2
u ] 2 u
.__-+V..._...u=\)._._.—
] 29X ax2

The difference operator we require now is Q(v)

\'s
~ = K - -y -
QW) = 5% (Wep1 = Vi1 (512 (Upegq + Wy q = 20

Let

a2
A= - 85 o)

Then

= (1= -

A= {1-Ru ., + (I+RJu, 1 - 2uy

where

vkﬁx

Rk = 53 = local Reynolds number

based on mesh width.

With this notation the implicit scheme is, exactly as before

n+l n

(I - aA) u = u
or
[I + 6t Q(v)] un+1 = u .
This system becomes ill-behaved unless we set an upper
bound on IRkl. To see clearly what goes wrong consider the
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n 1 k 0
special case Rk = R and u = .
i O k= 1,2,0.0’N-1
Recalling that the domain is periodic, we seek a solutlon of

the form

ntl | oreBik 4 pem82(N-K);

Uy

where ¢ will be chosen to satisfy the equation at k = 0, r
will be chosen to make u, = Uy and where e_B’k and e+62k
will be solutions of the homogeneous equations at k = 1,2,...,N-1

with Bl, 52 > 0. The equation for r 1s
1+ reB2N = BIN ,

r==—xw-"-1
l-e "2

The equations for Bl’ 82 are obtained by substituting u = eBk

in the homogeneous equation
a(l-R)eB + oz(l*i-R)e—B - (20+1) = 0 .

This has the form ae® + be B = C, a = a(l-R)

b = o(l+R)
with
c>a+b .
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If a >0 and b > 0 there are two roots, one negative and one
positive, so we can construct the solution shown on previous

page. But if a or b is negative there is only one such real
B

root, because the function ae”™ + be-B becomes monotonic.

Thus we require |R| < 1 or

k

2V,

v, 6x
EUR

where R = Reynolds number based on mesh width.

To understand the meaning of this inequality for heart

calculations, set v = % and x = hL where h is the non-dimen-
slonal mesh width. Then (%Tl h < 2, We have seen that

L2/vT varies widely over mammalian hearts, but is large for

the human heart. Thus it will be easler to do the calculation
1/2

for small mammals. If we call LXI%___ the relative boundary

"layer thickness, then we have

h < 2 (relative boundary layer thickness)2 .

Fractional Step Method for Several Space Directions.

- Define a difference operator like Q(v) (above) for

each space direction. Then (e.g. in two dimensions)

. -2
9 ]
QA (v.) » v, = - v &
X X X 93X ax2
2
] P
Q. (v.) » v, == - v =
vy y 9y 5y°
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and

2
QX(VX) + Qy(vy) + veV = VWV .

One would like to solve

(1 + s8[Qy(v,) + Qv )Du™ = u"

but this is costly since differences in two space directions
are involved. Alternatively one uses the following (fractional
step) method:

n+l

(I + 6§t Qx(vx))u* = " ]
(I + &t Qy(vy))u‘ =u

Substituting'we find that

. yquuntl _oon
[T + &t Qx(vx)J[I + 8t Qy(vy)]u = u .

This differs from the operator on the previous page by
terms of order (dt)2, provided that u is smooth so that

+ u

—————

(
(6x)2.uk+l

remain bounded as déx, &t - 0.

1
k1 — 2w, and similarly v (Wegy = Ygo1)

In the foregoing, identify the flow v with the unknown u,

which now becomes a vector u. To keep the equations linear in

each time step use Vv = g?. If there is a known external force F,

A.J. Chorin - see ref. page 88 .
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it can be added on the right hand side. It remains to include
the effects of pressure. This 1s done as an additional

fractional step, and the pressure field is chosen to make

g?+l satisfy the equation of continuity. Thus

(T + &t Q (ul))u’ = u® + 6t F°

Ny KR #
(I + &8t Qy(uy))g u

* %
u =yt S st 6 p

where p is chosen such that
O =

D

and where

_ 1
Gp = m ([pi+l’j- pi—l,,j]’ [pi,J"'l— pi,J—].])

1
Du = 55y (xM+1,3" x%i-1,3 * yY1, 541 gU1,3-10 -

%% %%
Thus p must satisfy 0 = (Du ) - &t DGp where Du 1is a

known function and

o + —
Dip = 2 Piva,y * Pioa,y * Prgee * Py g2 7 Py

"so that DG 1s a discrete form
i of the Laplace operator.

H
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Numerical Analysis of Blood Flow in the Heart: Boundary

Representation and Numerical Stability

In the previous lecture, the problem was formulated as

ou 2 :

(.é..f- + L_I.VE] = -Vp + nV'u + F (1)
Veu =0 (2)

E%E: ( ) (3)
F(x) = 1lim | £, §(x=-x 3
LR Noow ©=T =/ — =k
dx
—Z-g‘— = dx u(x)s(x-x,) ()
fluid

'gk = £, (X X5 +v0 ) (5)

A numerical scheme due to A.J. Chorin was discussed which can
be used to solve Egs. (1)-(2) (the fluid part of the problem)
if the force-field F is regarded as known. Here we dlscuss
the new features that are needed when equations (3), (4), (5)
are included. This work is due to the present author, and is
partly discussed 1in * but further progress since that paper

will be included here.

Peskin, "Flow Patterns Around Heart Valves", J. Computational
Physics 10(2)252-271 (1972).
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Connecting the Representations of Boundary and Fluid:

Fluid quantities are stored on fixed mesh points (iJ),
while boundary quantities are stored at the moveable sample
points k of the boundary. The boundary points need not
coincide with fluild mesh points. The two representations

need to be connected in order that:

] o (i) Forces computed from the state
L
R o of the boundary can be applied
.,0' to the fluid.
¢ .
» (1i) The boundary can be moved at
d the local fluid velocity.
Equations (3) and (4) give a
r ‘ hint how this is to be done. We

must define a function Dij(gk)
- which will correspond to the two-
*
dimensional impulse §(x - §k). With such a function one
could write instead of (3) and (4)
N

£, D,.(x.) (3%)
bor S 71K

= L
P53 =W

§£+l =_§E + 8t ZE; (Sx)zp_iJ Dij(zﬁ) D)

*
. Assuming here a two dimensional flow. Generalization to
three dimensions 1s direct.
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In the foregoing,

§t

= time step
§x = mesh width
The function Dij i1s constructed as follows: Let

| % (1 + cosl%gd |r] < 2

o(r) =

Q [r] > 2
Then let:

Dy 5(x) = 729 (x-114(y-J)

where

?_(. = (th Yh)
r
and

"h. = &x

The function ¢ has the following properties (from which

follow similar properties for D):

(1) J s(r)dr = 1

(11) ¢(r) > 0, and ¢(r) =0 for |[r| > 2
(111) For all r

Y o(r-k) = Y ¢(r<k) = 3

k even k odd

> ¥ ¢(r=k) =1

k
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(iv) For all r
Z;: 92 (r-k) = g—

and therefore, for all r, s

(v)
Z‘E—_ 2 (r-k) > ﬂk: 6 (r=k)(s-k)

The essential conditions in the foregoing are ¢ = 0 for
lr|] > 2 and §__ ¢(r-k) = 1. From these alone it follows that
equations (3'? and (4') (page 97) can be interpreted as a
local interpolation of the velocity field from the mesh to the
boundary and a local distribution or spreading of the boundary
forces onto the mesh, with conservation of the total force.

The other properties influence the smoothness of the
results, In particular:

The stronger condition

T #(r-k) = ¥ ¢(r—k) = %

k even k odd
is imposed because the form of the Laplacian that appears in
the equation for the pressure in Chorin's scheme couples only
mesh points with the same parity (even or odd) in each coordi-
nate. The mesh is therefore partitioned in a natural way into
four "chains": (i even, J even), (i even, J odd), (i odd,
j even), (i odd, J odd). Our condition guarantees that any

~given boundary point is coupled equally to all four chains.
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The condition
constant = z:::¢2(r—k)_3 Y ¢(r-k)¢(s-k)
k k

is motivated by considering the coupling that is'indirectly
introduced between two boundary points at r and s by coupling
each of these to the mesh. One wants this to be maximal

when r = s, and one wants this maximum to be independent of r.
To see more clearly what is involved here, consider a one-

dimensional periodic domain and an expression of the form

K(r,s) =Y ¥ ¢(r-m)¢(s-n)K(m-n)
m  n
o K(p)'Z:: ¢(r-m)$(s+p-m)
P m
where
p = m-n .

‘Because of condition (v) we can assert that the coefficilent
of K(p) is maximal when r-s = p, independent of where r and s
fall separately with respect to the mesh. To this extent, then,
condition (v) makes the mesh " disappear". To see how one might

go further in this direction, consider what would happen if
(vi) Z%: ¢(r-m)¢(s-m) = f(r-s) .
Then we would have |
K(r,s) = - K(p)£(r-5-p) -

The latter expression depends only on r-s just as X dépends only

on m-n. Unfortunately, however, a condition like (vl) cannot

100




be imposed when ¢ = 0 outside a finite interval. To see why,
pick r-s = l-¢ where 0 < € < 1. Then by changing r, but

holding r-s constant one can arrange that either one or zero

mesh points m fall in the region where ¢$(r-m)¢(s-m) > 0. Thus

¢(r-m)d(s-m) cannot be constant, although r-s is constant.

Here we make the form of the functions gk(gl, 52,...)
more explicit by assuming that (when N is fixed) we can regard
the forces as arising in straight line segments which connect
specified pairs of boundary‘points.

Suppose that the link AB connects points A

and B and let

2B T X3 T Xy

Rpp = |ZaB|
TAB(RAB)= Tension in 1link AB
88 = Xan’Rap
Then -
-1 N A
Ny = ) Tap 8y

B=1

force transmitted to the fluid by point A in

the N-point representation.
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We shall also need an expression for the changes in f,
that are produced'by a perturbation of the poi.nts’:__c_B

B=1, 2, ... ,N.  These will be given by equations of the form

af, = Q..dX,o = Q,n(dx,-dx,)
A Bt;—ZKAB-—AB B;:A ABMUEBRTYURp

- ) Q dx, + Q, ndx
(- L Qplax, % AB“%p

ByA

where each.QAB, A #Bis a 2 x 2 matrix which refers to the
link AB. A specific formula for QAB can be derived by
considering a rotation to a system of coordinates in which
the x-axis is parallel to the link AB. In such a system

(referred to as °)

. \
| T ax,
-1
N~tdf = |
— a4y
T [o]
QZIdY | R
Q
o -
) B ax, ™ 0 } dx
\ 0o T/R ) day

where T!' = dT/d4R.

Therefore 1in the.géneral case
T 0
Q = N§ S
0. T/R |
where S 1is a rotation between a general system of coordinates

and the special system parallel to the link, and where Ss = I.
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Doing this for each link we have

'
TAB 0

Qp = NSpp ' Spp

0 Tpp/Bpp

and the matrices QAB satisfy the following

1

(1) Q) is positive definite if T . > 0 and Tpp >0
(1i1) Qp is symmetric (within each 2 x2 matrix)
(1i1) Qp = 9ga
(iv) Qup = 0 if Tpp = 0, 1.e., 1f there is no link between
A and B.

Moreover, we have the following theorem on the stabllity

of link structures. If T,, > 0 and T, > 0, then )} _ dx,-df,;< 0.
> A b

AB AB
Proof: Let
(ax, 4arf) = ZA dgA-dgA .
Then
(dx, df) =} ) dgA-QAB(dJ_c_B dxA)
A#B
(dx, 4af) = iA #EB ngB‘QAB(dJ_gA ng)
- l L] L]
A ¥ B
But dx,p°Qup dX,p > 0 so that (dx, df) < 0.

Remark: The hypotheses of the foregoing theorem exclude 1link
structures under compression, which may indeed be unstable as

in the case of a straight chain of links which would tend to
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buckle under compression.* When compression is allowed, care
must be exercised in the placement of the links so that such
instability is avolded.
Remark #2: When implementing the foregoing on a computer it
is not convenlent to store all N2 possible links. Instead
only the links for which T Z 0 are stored. Each link 1s given
an index %, and the end points of the links are stored in a |
link table:
k, (2)
kg (L)

= indices of the points jolned by 1link 2.

Thus we store in the computer the graph of the boundary, and
this graph is unchanged as the boundary points move about in
space. In this graph there is an edge between A and B when
QAB # 0. Graphical considerations will be important in the
efficient solution of the equations which yield numerical

stability - see below.

Properties of the Links:

The physical properties of the materials which bound the
fluid enter into the mathematical formulation through the func-

tions T(R) which describe the links. Three types of links are

As this example shows, such instability is physical, not
numerical!
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needed for the representation of the following three material

types that arise:
(i) Passive flexible leaflet (natural valve)

T K(R-R,) R >R

0 R <R
0

where K = Stiffness

R R RO= Unstretched length

The links are connected as a single

ﬁﬁ’wxy4kRK fiber, and there is no resistance

e to bending.

(11) Prosthetic valve
T ) T = K(R-R)) R >0

The 1ink reslists compression as well

2. as extension. Resistance to bending

R R
// ° comes from the arrangement of the links.

For example, to represent the cross-

section of a disc valve we have used

a "railroad bridge" structure.




(1ii) Heart muscle

The model of heart muscle mechanics used in this
work is based on *. Later in the course we shall
examine the question of muscle mechanics in detail,
considering both the experimental evidence for this
model (which is a phenomenological model only) and
also the possibility of introducling a model more
closely related to the molecular mechanisms. This
discussion will be limited to an uncritical presenta-

tion of the phenomenological model.

The model consists of 3

| 4 elements. Two springs
Ree
% t (possibly non-linear)
R —t_

and a "contractile element".

Let

TP’TA = Passlive and Actilve
tensions.

Then

where the functions TP(R), TA(R-RCE) describe the propertiles
of the two springs. The contractile element is described by

an equation of motion of the form

Braumwald, Ross, Sonnenhlick, Mechanisms of Contraction
of the Normal and Failing Heart. Boston: Little Brown,

1960.
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dRCE

dt

= V(TA’ R, o)

where o is a parameter that determines the state of actlva-
tion of the muscle. These two equations plus a third equa-
tion describing the load suffice to determine the three

unknowns T, R, R if o is given. It 1s reasonable to take

CE
a as a glven function of time since stimulation of the
muscle.

The function v has been well-characterized in skeletal

muscle, where it is possible to stimulate the muscle contin-

ually and hold a constant. The form of v is (v > 0)

(V+vo)(1+ro) v [ro + a(t)]

o
or _ a(t)-T
V_V — S —
o T tt

where T is gilven by TA = g(R)T

~and where g(R) is a function

g(R) 4 1ike this.

(P marks the normal operating

point of heart muscle: g' > 0)

Substituting for t we have

L 4

R gR)alt) - T,

V= vo_g(R)TO + T

A




v Force - velocity curve

A for several values of R.
(o fixed)
Vmax
> T
TI(R) A
= = =g£-£)— £
when TA = 0, v Vinax T independent of R, When Vv 0,
T, = T;(R) = a(t)g(R), the "{sometric tension". Thus the

form of g(R) 1s precisely the isometric tension as a function

of length.

Remark: When T, >> TI(R) the equation for v no longer agrees

A
with experiment. (In particular, when a = 0 the observation

is TA £ 0.) PFor TA

stretched than the foregoing equation for v would indicate.

>> TI(R) the muscle is more easlly

In fact it appears to "yleld" at T ® 2T .

We are now in a position to state how this model of
muscle mechanics can be incorporated into our link formalism.
Between each pair of boundary points which are to be connected
by heart muscle we introduce two links corresponding to the
two arms of the model. The first is a passive link like that

used for natural valve. In the second we use the same type

of link, but identify Ro with RCE’ the length of the contractile




element. This means that Ro changes with time, according to
the equations that we have developed above. (Note that dRo/dt
depends on the tension TA at any instant, and hence on what

the fluid is doing to the ends of the link).

Remark: At present we have only used thin muscular walls for
the heart chambers, but nothing in the present formulation
excludes thick walls. In fact, the heart muscle is neutrally
buoyant in blood, and 1ts contractions are volume preserving
(the muscle gets thicker as it shortens). Both of these
features are automatically preserved by the present method,
in which the muscle 1is regarded as a special region of the

(incompressible) fluid where extra forces are applied.

" Numerical Stability:

In the devélopment of Chorin's scheme (previous lecture)
we have seen that numerical stability was secured by using at
each time step a sequence of implicit fractional steps. In the
present case the force field F which appears in the fluid equa-
tions is not known, but depends on the boundary configuration.
The use of the boundary configuration x" to calculate F for
the time step n » n+l leads to numerical instability, bﬁt if
we precede each time step of Chorin's scheme with an implicit
fractional step for the boundary forces, numerical stability

can be secured.
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Thus we write

* *
u = u’ o+ 8t F(x )
. * % *
[T+ dtQ (u)lu  =u
* % % * %
+ 6 =
[T to(uy)Jg_ 1_1_***
utt - u - §tGp

*
where x 1s the configuration

* *
x =x +étu

Solving the pair of equations

* *
u = u' + &t F(x )

* *
x =x'+8u

constitutes the first fractional step.

Written out explicitly this pair of equations 1s

.UL;J = ij+ §t :DiJ(J_C_k)f (x :;;)

*
X, = )_(ﬁ + &t %: (Gx) i,j( )uij

Eliminating uij we have
2 *

<2 X0+ Kit_)__@s)_ :z—_'_ D, (E) L, (X 0 ox

=% =k T 1Jv === xy)

xp X, + 8t Z;; (8x) DiJ(J_C_k)u_,L‘j

known quantity at beginning of time step.
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Let

- n n
Ky = %: Dy 5 (30D, 5 (%)

Because of the manner in whj.ch.D_,L'j was constructed, we have

the following:
-4
Koo ihé%-(ax)
with equality holding when k = &, and

= 0 when max lxn - xn
Kkz p=1,2 kp Lp

> 4(sx)
As an approximation, then, we make the replacement

Kep * Sig 2 (81278

where B is a parameter of order 1.
This replacement eliminates all reference to the fluld

mesh (for the first fractional step) and we get the system

¥ _ .0, L R
e = Xt Ml -exy)
where
2
A= &—Sﬁ)—— B .

N(Gx)2
This is a non-linear fixed point problem on the boundary.

The solution of this problem can be accomplished by

th m+1l

_ m * .
Newton's method. Let gk be the m guess for X Then gk
is found by solving the linear system of equations which
results when the functions gk are expanded about gﬁ. Dropping

the subscripts, we have, to first order
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e(g™ly = £(g™) + g-g[m(_gm*l- ™)
and |
gm+1 =>x° +_Af(gm) +vA%£1mC5m+l' Em)
or

m
(1-GE] F ™ g™ = [x® + arEM "]

m
In the foregoing df 1s a 2Nx2N matrix with components of the
v dx

form Bfkp/axz p, @ =1, 2. Fixing k and &, k # & we get the

q
2x2 matrix le which was evaluated under Link Formalism (above).
From the propertiles derived there we have the following: That
matrix (I - A %g ) is symmetric, and it is positive definlte

1f the 1link structure is stable. Moreover it is a sparse matrix,
whose graph 1s precisely the link structure itself. These

m+1 by the

considerations suggest solving the equation for g
Cholesky factorization.* Moreover, to preserve sparslty as
much as possible we seek a numbering of the unknowns in which,
except for a small number of special boundary points, points k
and % are linked only if |k-£| is small. The special points

(a "separation set", see Read, Graph Theory and Computing) are

then numbered last. The importance of this is that during the
factorization, when a node k 1s eliminated, all of the neighbors
of k whose subscripts are greater than k become coupled to

each other.

See Isaacson and Keller, Analysis of Numerical Methods,
New York. Wiley 1966.
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j<k<2,<m

It follows that if all of the links (k&) k < & have
|k-2l < b or £ €8S, the separation set, then this property is
retained during the factorization provided that the points of
S are numbered last. An appropriate numbering for a heart

valve calculation is indicated here:

S = {A, B, C}

lk-2] <2 or L €S




Summary of the Numerical Scheme

(1) Solve:
¥ o ) SR S
e = X G (Ey ey
(2) Let
N
¥ 1 ¢ Ny o % %
BN E—; Dy 3 (xy 2y (%y -+ - 2y)
* _n 6‘F*
Ugg= Byy * OCEyy
(3) Solve:

[T + ath(.ui)']g** -y

Ny, ¥EE_#E
[T + .Gto(.uy)]_u_ =u

' *E%

Dun+l=’0.

(4) Evaluate:

. htl_ .n T 2p (xMyuitl

This completes the time step.
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Heart Sounds and Murmurs

Observations:

(1) Valve closure is heard as a sound.

(2) Valve opening is normally silent.

(3) Murmurs are heard when flow is driven through an
abnormally narrowed opening. The time variation of the ampli-
tude of the murmur reflects (in a qualitative way) the amplitude
of the pressure drop or flow across the narrowed valve.

(4) Murmurs are heard best in the circulation itself
just downstream of the obstruction or at a point on the body
surface near that part of the circulation which is downstream
of the obstruction. They are heard poorly within the circulation

*
at other points (e.g. upstream of the obstruction).

In the following we shall consider the nature of sound
in an almost incompressible fluid. Begin with the Navier-
Stokes equations for the compressible case supplemented by an

equation of state for the medium of the form p = p(p).

Yellin, E.L. "Hydraulic Noise in Submerged and Bounded
Liquid Jets" in Biomedical Fluid Mechanics Symposium
ASME pp. 209-221.
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Neglecting
(1) non-linear terms

(2) dissipation

ou
P3E = VP
3& o (° =
5% + Ve(pu) 0
p = p(p)
If
p =P,
Then
M
Po 5t - ~'P
t
9p ey =
poat+poV1_1_ 0
Let
u=vé
then
b = =P, %%
And
2
]
~PoPo 3_% * pov2¢ =0
at
2
lé 2—% - V2¢ = 0 The wave equation
c” 9t

]-1/2

¢ = sound speed ='[%%[o

Consider a solution of this of the form

_ =f(t-r/c)
¢ = pr—es
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As will appear below, this represents the vibrations of the
medium produced by a source at the origin with a volume rate

of flow given by f(t). The velocity and pressure fields are

a [ £'(t-r/c) , £(t-r/c) ]

Iqre Mnrz

f'(t-r/c)
0 T

The instantaneous power radiated through a shell of radius r

is 5
: 5 p (£1) P I'f
P = f pv ds = lUwr + 3

167°r°c 16n2r
and the instantaneous kinetic energy density 1s given by

(£1)° . _errr 2
l6n2r262 16ﬂ2r30 16ﬂ2;u

-3
"
-

)
<
I
roj
©
o

Now assume that f(t) is periodic. Then letting ~ denote mean
values we have f'f = 0, and therefore

po(f')

[a)
[N

P = independent of r
and _
2 2
= 1 Sf') 1 f
T:— + =
2 "o 16v2r202 2 "o l6n2r
= L + T

Note the following
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P = Hﬂr2c(2Tl)
1im P =0
c3o
i 1 ;—2—
1im =T, = % p .
osoo 2~ 2 Po 16w2rﬁ

The latter quantity falls off rapidly with distance (y’u) and
represents the non-radiated part of the kinetic energy. In

the 1limit c+», there 1is no radiated power, but there is still

a vibration in the fluid which is sometimes referred to as
"pseudo-sound". Note that the properties of this vibration can

be found from incompressible fluid dynamics.

As a first approach to this problem consider the vibrations
of the aorta (Just after the closure of the valve) in the plane
of an aortic cross-section. We assume fluld of density p (inside
and outside), a membrane under constant tension T supported by

a resting internal pressure P, = T/a, where a iIs the radius.

r = all + 6(0)]12
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Curvature of the membrane

K = |dt/ds| where T = unit tangent
s = arc length
_ lagrasl
|dr/d6|

We calculate K to first order in & only.

i = unit vector 1n radial direction
§ = unit vector in circumferential direction
dr/de = 8
d8/d8 = -r
dI‘ ~ A
35 = a([1+6(8)18 + §'(8)E}
ar
|55l = all + &(e)}
_ dp/as A , A
T/ CEFO (e)x
d A
35 = [-1+6"(8)1z + 8'(0)8
dt
155] = 1 - 8"(8)

_Jdz/a8| 1 [ 1-8"(e) ] - 2 . |
K = 1gp/a] " & [ 330882 ] = & n-sncer-s(on]

CALCULATIONS ON THIS PAGE ARE TO FIRST ORDER IN § ONLY!
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Equilibrium at the membrane:

Let

Py + Po = inner pressure

Py = outer pressure

P, *+ by - Pp = = (1-8(0)-8"(8))

. "r
In the fluid
99
1 =
P 3g- TP =0
3¢2
P 3% + Py, = 0
"3
p 5t (#7-65) + (py-py) =0
2 2
9 ) d
0 (¢-¢.) - P_ == (8+ §) =Q
8t2 1 Y2 0 ot de?
Note that a 2 § = %il =9 ’ = normal velocity at the membrane
' ot rly ri, -
(same on both sides)
2 2
) ) 9o _
ap 22 - p (1 + g =0
at 98
r=a
In the fluld V2¢ = 0 inside and out.
3% . 1 9¢ , 1 29
st Ear T 50
or r- 236
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Let
o = rkeine

Then
k2 = n2 .

Use k > Q inside, k < 0 outside. In the following assume n > 0.

The solutions

¢y

-n
by = - () (5 &

5

The boundary condition becomes

satisfy

f(t)na_leine

a

2

20a 2L - P na~1(1-n°)f = 0
(o]
3t |
2
3L+ w?r=0
9t )
5 n{n“-1)P
- (o]
w - A ———— i —— .

2pa2

The first mode with a non-zero frequency is n = 2. It

looks like this:

To estimate the frequency use

“~
A P, = 100mmHg = 1.33x10° gxgga
cm
) ,/ p = l_gm/cm3
-
a =1.5cm
P
o b -2
— = 3x10 ' sec
2pa
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n m2 w(radians/sec) f% cycles/sec
2 18x10% 425 68
3 72x10” 850 135
s | 180x10" 1350 215

The figufes in the last column are in the appropriate
range for heart sounds. (A heart sound is a brief event with
a broad frequency spectrum). R. Burridge has worked out the
frequencies in the spherical case with similar results.

One may wonder how these circular modes of vibration would
be excited at the closure of the aortic valve. The fact that
the aorta is curved 1s suggestive in this regard: Even though
the vibration of the valve itself 1s not
explicit in the foregoing, it should be
clear that both valve and wall will be
vibrating and that valve closure 1s the

event which initiates the sound.

Murmurs
Heart murmurs seem to be produced by turbulent flow which
arises when blood is forced through narrow openings in stenotic

or incompetent valves, or through holes between the different
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heart chambers that occur in congenital heart disease. The
mathematical description of turbulent flow is an unfinished
subject, but at least the broad outlines exist for a mathe -
matical theory of the origins of turbulence. This is the
theory of hydrodynamical stability.* In this theory a given
solution of the Navier-Stokes equations is examined to determine
whether small perturbations superimposed on the given solution
will grow or decay. The possibility of growth (instability)
arises because of the coupling between the given flow and the
disturbance. This coupling comes from the non-linear terms in
the Navier-Stokes equations. For example, consider the two-
dimensional flow between parallel planes under the influence
of a (possibly time-dependent) body force F(t) in the x direc-
tion. The undisturbed flow has the form u = uo(y,t) which
obeys the equation

3&2 azub
2

+ T(t) .
oy

Then we seek a more general flow of the form

u=u_ +u'
o)
v = v'

p =p'.

*

Landau, Lifshitz, Fluid Mechanics
*

Schlichting, Boundary Layer Theory

¥
Lin, The Theory of Hydrodynamical Stability




Substituting in the Navier-Stokes equations and neglecting

terms with.products of the small ' quantities, we obtain

du 2 2.}
au' ou' o ap' 3 u', 3 u'
= ru gzt v gt =v|l—s t+t —5
] 0 9x oy 3X (ax2 ay° |
ot o} 9x dy ax2 ay2 J
ou' ov'_
3% + s-y— =0 .

One can reduce this to an equation for the vorticity of

the disturbance in the following way. Let

Then

The pair of equations

yield

no
Y
»
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One can now consider a disturbance with the form of a wave:

lax

w' w(y,t)e

.G(y:t)eiax

V'

(At this point it is also customary to include an exponential
time factor, which is avoided here so that the case where U,
depends on time can be included.) These substitutions yleld

the pair of equations:

L Al
a—% - a2v = iaw (1)
oy
2 .
e 2 ~ R a u
%% + iauo(y)w = v(§—§-- a2)w + v 20 (2)
Ty 3y°

The bhoundary conditlons are

(1) ¥ =0 at y = ta. This can be used as a boundary

condition for solving (1) when w is known.

(2) 3% =0 at y = ta. (This comes from %% + §%_= 0 and

The boundary condition (2) imposes a‘constraint on w.

To see this, write the solution of (1) in the form
a
o) = | 1ailr,)K(r.y,)ay,
-a
where K(y,yo) is the solution of

125




Q
|
Q
=~
]

K(a,yo) = K(—a,yo) =0

oK
§§ we have

Then, letting K'
a
I w(y )K'(~a,y )dy

-a
a

'f Wy K" (a,y,)dy,
-a

(@]
"

(@]
1

These two integral constraints are the "boundary conditions"

for equation (2).
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