III. The Differential Geometry of the Heart

Consider a curve in space x(s), s = arc length. The
unit tangent vector to the curve 1s given by T ='5§ s and
the curvature is given by k = ldz/dsl. Any vector n such

that n*t = 0 is normal to the curve, but the vector

n, = Tg%é%ZT- is called the principal normal, and the plane
containzhg T and n, is called the osculating plane to the
curve.

The connection between these geometrical concepts and
some aspects of mechanics can be seen in the following example.
Consider the equilibrium of a fiber which is constrained to
lie along a given curve in space, but 1s free to slip tangen-
tially along that curve. Let T(s) be the tension in the

fiber. Then the force exerted

- by the arc of flber AB on the

constraints is

- 0—0
Let
_4dF 4 _d dt
) = z7 = F(TW = FHF2* T 5
dT;
= 'a—s_l + kr_l_lT .

*
see: Stoker, Differential Geometry, New York, Wiley 1969.
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Because of free slip in the tangential direction

aT

as - O

(frx =0~

f£(s) = knyT .

Conclusions:
(1) Tension is constant.
(2) Force is in the direction of the principal normal.
(3) Force is proportional to fiber curvature.

(Remark: k = 1/r where r = radius of curvature).

Curves on surfaces:

Let x(u,v) be a surface with unit normal n(u,v). As the
parameters u, v are varied, the vector X sweeps out the surface
and the vector n sweeps out a locus on the unit sphere. This
locus is called the spherical image of the surface. A curve
on a surface would be given by x(s) = x(u(s), v(s)) and the
spherical image of the curve is given by n(s) = n(u(s),v(s)).

Parallel transport of a vector along a curve on a

surface 1s defined by the differential equation

dw }
= = a(s)n(s)

where oa(s) is chosen such that

"

‘wen = 0
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The first equation asserts that the changes in w are
always normal to the surface, while the second asserts that
w itself always lies parallel to the surface. The two equa-

tions can be combined as follows

dw

——-d_‘o E e
0 =g (wn) = g3-n

GhE

-W'_.

dn
a(s) + _w_"ag.

Therefore:

o 'g% - :._;; 1 ( X 3% I '»9'(73 L.

Note that if‘gi and w, are subjected to parallel transport

along the same curve on the same surface, then

_ dw aw
d ) ) = —j—o o—-:—'2—-
gz (W W) = FW, * ¥y
=0
since
newW, =n'w, =0 .

It follows that lengths of vectors are preserved during
parallel transports (let W, = ge), and that angles between pairs
of vectors are preserved when the palr 1s subjected to parallel

transport.

Remark: Since n(s) is the same for a curve on a surface and
for the spherical image of that curve, parallel transport of
a glven initial vector along a curve on a surface ylields the

same field of vectors as parallel transport of that same
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initial vector along the corresponding curve on the spherical
image. (Since Q(S) is the same, the two flelds obey the same
differential equation.)

Parallel transport around a closed curve ylelds an angle
8 between the initial and final vectors. (It can be shown that
8 is a property of the curve and the surface but not of the

starting point of the initial vector).

Examples

(1) In a plane 8 = 0 for all curves.

(2) On the surface of a sphere,
consider the following special

curve consisting of three arcs:

B (1) pole to equator along a
Fole longitude
(11) around the equator through
an angle 8
(111) return to the pole along 2

Equator
longitude.

If we start with a vector at
the pole which points tangent to the
first longitude, then parallel
transport consists of keeping this
vector pointing south everywhere.

The vector returns to the pole
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pointing tangent to the second longitude, and therefore the
angle between the initial and final vectors is also B. Note:
If the sphere is a unit sphere then the area of surface enclosed

is
_hwr g
A'-T%’-B-

In general, if we have a region on a surface bounded by
a simple closed curve and we partition the region into two
parts we get g = By * Bo- To prove this pick an arbitrary
vector at A and construct its parallel
transport around region 1 (counterclockwise).
Then take the final vector from the trans-
port around region 1 as initial vector for
region 2, which is also circumnavigated in
the counterclockwise direction. Thus we
have defined a field of vectors on each of
three arcs. The two fields on the interior arc are identical
since parallel transport 1s reversible. Itvfollows that the
fields on the exterior arcs join up without a discontinuity
at point B and therefore that together they constitute a
parallel field on the exterior closed curve. If we call this

field w, then we have

ginitial _ Eiinitial

= W

.Efinal final

final _ initial
LA = Wy
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It follows that 8 81 + 82,

since
B =49 (E?nitial’ Efinal)

.9.(Elinitial’ V_I'lfinal)

By

9.(E21nitial,. final)

Since the formula B = Bl + 62 holds for an arbitrary
partition of an arbltrary region into two parts 1t follows by
induction that for a general subdivision into many parts that
B =) _ B;. This shows that 8 has the form 8 = f Kda where K
is a,%unction of position on the surface, and where the inte-
~gration extends over the area enclosed by the curve in question.

On the unit sphere, by symmetry, K = constant, and we
have already shown by a specific example that the constant
is 1.

Therefore

>®»
(]

8 =.f K da in general
f da unit sphere .

Now make use of the remark made above that parallel trans-
port is the same for a curve and for its spherical image.

Letting ' denote the spherical 1lmage we have

B = I K da = f da'
or
_ da'
K= 3a
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since the integral equality holds for arbitrary regions. The

quantity K is called Gaussian curvature.

Geodesics
Consider a fiber under tension which is constrained to
lie on a given surface but may slip freely parallel to the

surface. Since (see above)

(f(s) = kn)T

we requlre for equilibrium that

;= n

where n is the surface normal. This yiéldS'

dr
ds =1 -

I
5
5

T°n =0

which is the pair of equations for parallel transport of the
vector t. We now define a geodesic as a curve whose unit
tangent forms a parallel field and we see at once that flbers

under tension on a surface form geodesics.

Some examples of geodesics:

(1) A straight line on a plane.

(2) A helix on a cylinder.
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*
(3) A great circle on a sphere.
(4) The shortest curve Joining any palr of points

in any surface (if there is a shortest curve).

Differential Geometry of Heart Valves:

Valve leaflets are surfaces under tension; the load on

the closed valve is approximately a constant pressure.

(1) The line of closure. Valve leaflets touch along a

curve called the line of closure. The non-zero tension in .the
leaflet must be supported along this line (which 1is approximately
the edge of the leaflet.) Let T be the tension in the line of
closure x(s) with unit tangent 1, and let f£(s) be the force per
unit length exerted by the membrane on the line of closure.

Then f(s) is parallel to the membrane. The equilibrium of the

line of closure is

L (D) + £(s) = 0

- dT 4T . _
Ta‘g*‘a—s-l‘i'g(S) —'0

The vectors I and f(s) are in the tangent plane of the membrane,

dt dt - . § .
so ag must also lie in this plane. But Is is the principal normal

to the line of closure. Thus the line of closure has the property

that its principal normal lies parallel to the surface. Such a

*
A circle cut by a plane which Includes the center of the sphere.
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curve is called an asymptotic line on the surface, and such

a curve can be constructed only on a surface where the Gaussian
curvature, K < 0. This theorem, that the edge cables supporting
a membrane under tension form asymptotic lines 1s proved in *.
Here we note the following consequence: If two membranes under
tension touch and are separately supported along the same curve
(the 1line of closure of two heart valve leaflets) then the
membranes not only touch along this curve but are tangent

there.

Proof: The common line of closure 1s an asymptotic line on
both surfaces. Therefore its osculating plane is tangent to

both surfaces and hence the surfaces are tangent to each other.

Remark: The material stress (force/unit area) at the edge of
the leaflet is of different (larger) order of magnitude than

in the interior. Let

pressure load on the leaflet

R = typical radius of curvature of the leaflet
r = typical radius of curvature of the free edge
§ = thickness of the leaflet.

Then the stress in the leaflet is of order pR/§, while the
stress in the free edge is of order pRr/G2 which is larger by

the factor r/8§. Two way to support the stress at the edge:

*
F. Otto, Tensile Structures M.I.T. Press 1967.
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(1) provide a thickened cable-like structure near the free
edge (aortic valve)

(2) break up the free edge into a sequence of sharply curved
arches (i.e., reduce r). The mitral valve has this kind

of structure.

(2) Load-bearing fibers.

Suppose that the load is borne by a single family
of fibers covering the surface. Introduce parameters u, V

where v = constant is the equation of a fiber and the parameter
X

u measures arc length along fibers. The unit vector t = 30
points in the fiber direction.

Consider a patch du, dv. The load on such a patch due

p([ X )du dV .

If Ttdv is the force in the collection of fibers dv, then the
net force on the patch due to the fibers islga (IT)du dv.

Hence the equation of equilibrium

T 3T X
sy It T gt elnxg)

1
o

The last two terms above are normal to T. Therefore

aT

-a—a-=0"*T=T(V).

It follows that

a1 9X _
5T = T G5y X D

9X
X




This pair determines a surface if an initial curve is given
together with initial fiber directions and the function T(v).
Since %éix T 1s normal to the surface, we conclude that the
fibers are geodesics. If the initial curve is the line of
closure then the two leaflets which meet there are both

generated by the differential equation if we insert a * sign

in front of the pressure.

(3) Leaflet motilion:

Suppose that there are one or more families of
fibers covering the surface and that during the motion of the
leaflet (opening and closing) when the load is small these can
be regarded as inextensible. If there is more than one family,
assume that the fibers of one family do not slip through those
of another. We examine the constraints imposed on the surface

metric by these inextensible fibers. Arc length is given by

ds2 = E du2 + 2Fdu dv + G dv2

(i) A single family of inextensible fibers: Let u = arc length

along fibers which are given by v = constant. Then E = 1 but
F and G are arbitrary. Such parameters can be introduced on
an arbitrary surface, so there is no restriction on the sheape

of the surface in space.

(1i) Two families of inextensible fibers: Let

u constant -+ fibers of one family

constant » fibers of other family
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Then E, G are givén functions of (u, v) but F is arbitrary.
(This is a net of fibers with fixed intersections but vari-
able angles between fibers - a special case 1s a Tchebychef

net which has E = G = 1).

(1i1) Three or more families of inextensible fibers. Pick

two families of fibers and introduce parameters u, Vv as above,
This fixes E(u, v) G(u, v). A third family of fibers will

then have the form u(r, s), v(r, s) where r identifies the
fiber and s measures arc length along i1t. Taking differentials

along such a fiber we have

2 2
d duy (d d
1= 53 +FEE @@

Now E(u, v) and G(u, v) are fixed, and

and &L = (%g)

du _ (Bu
ds

ds oS

|r=constant r=constant

are known as functions of (r, s) and hence of (u, v). Therefore
. . dusy (dvy _

F 1s also determined unless (5}{(gg) = 0. The latter would

imply that the third family of fibers was parallel to one of

the first two. With three or more families of fibers the sur-

face metric is completely determined, and the motions of the

surface are those which leave all lengths of arcs invariant.

Fiber Architecture of the Heart Wall:

Each point of the muscular heart wall can be characterized

by a direction in which the muscle fibers run at that point.
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These directions vary smoothly throughout the heart wall;

they have been measured by Streeter* in the equitorial plane

of the left ventricle with roughly these results. The fibers
60° are circular near the center of the

wall but become progressively more

inclined with respect to the equi-

torial plane as one moves toward
IN oUT P

either the inner or the outer sur-

S face of the heart. In the reference

~60° cited the authors use this fiber
distribution to calculate the
distribution of pressure and fiber stress in the heart wallf*
To do this they make the assumption that the fibers lie along
surfaces which are elipsoids of revolution.
Here we shall take the opposite point of view and see
whether a differential equation for the shape of the heart can

be derived from the equilibrium of its muscle fibers.

Consider a region of heart wall bounded by a surface S.

Streeter, D.D., Vaishnav, Patel, D.J., Spotnitz, H.M., Ross, J.,
Sonnenblick, E.H., "Stress Distribution in the Canine Left
Ventricle During Diastole and Systole" Biophysical J. 10,

345 (1970).

*%
This and other efforts to compute the stress distribution are

reviewed and compared in Stroot, M.T., Douglas, M.A., and
Bailey, J.J., "An Analysis of Myocardial Stress Formulations
in the Human Left Ventricle" Preprint (National Institutes of
Health).




Let

=
W

Force on the region bounded by S
n = Unit normal on S

1 = Unit tangent to fiber directlon
T = Tension per fiber

o = Fibers per unit area

F = Force per unit volume due to

the fibers.

v = Region bounded by the surface S

E = J oTt (r+n)da .
S

The component of E in the space direction k 1s

=
L]

oTt, (r°n)da = IV'(UTTKE)dV

i V
|

[Ve(ox)Tr), + oz+V(TT,)ldv

But Ve(ot) = 0 (conservation of fibers). And T-V =,§% where

s measures arc length along fibers, and where‘é% denotes the

derivative with respect to arc length in the fiber direction.

It follows that

d

Q

d
(o] ag(TT)dV

1
e
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F=g é%(Tl) = force per unit volume due to the

fibers.

It we assume that the flbers are free to slip tangentially, then

the tangential component of force o %g T must vanish and we

have
dT _ _ dt
I - 0 F_ = gT 3s

Now assume that the fibers of the heart wall are always
approximately in equilibrium with the pressure gradiant in

the wall. Thils allows us to write

dt

Therefore
dt _ oT 4 2
IVp = 0TIt 55 = 7 g5 lzl
so the fibers lie on the surfaces p = constant. Moreover they
are geodesics on these surfaces since thelr curvature vector
d
= lies parallel to p and hence normal to the surface p =

ds
constant.

Remark: The foregoing explains the sense in which 1t can be
true that fibers in the interior of a tissue can be geodesics
(without being straight lines). They are geodesics on the
surfaces of constant pressure. It has often been mentioned
that fibers in the walls of blood vessels are helical, and a

helix is a geodesic on a cylinder. Of course, the wall is a
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gg;gg_cylinder, not a surface, but the surfaces of constant
pressure should be concentric with the inner and outer surfaces
of the vessel wall.

The results derived above suggest the introduction of a

special coordinate system as follows. Use the parameters

(s,v,p)
s = arc length along flber
p = pressure
p,v = constant along each fiber.
Note that:
9x 90X
01-[—§ X 5;% dvdp = # of fibers in the collection dvdp .

Therefore the quantity A defined by

1 9X 89X
%= ox (5% * m]

9X
is constant along each fiber. X = A(v,p). Since 1 = 3%, the

f9x X
quantity 1-[55 x 5;% can also be written

3X | (93X 23X} _ 3(x,y,Z)
s (3V 8 3pl ) S,V,pP

the Jacobian of the change of coordinates. The quantity

vp a(s,v,pg vp ap [as X 3V
]

99X 9X
But 5: R 37'both lie on the surface p = constant and therefore

09X 9X
(ég x 57% 1ies normal to this surface and hence parallel to Vp.
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Therefore we can interchange the role of Vp and this vector in

the foregoing to obtain the identilty

vp 3(S,V,p) = Vp op (as * 3y

30X 9Xx) _ 9x
3s X 3v) (XX aV

where we have used

9Z _

N = l .

Z 9P

k&

VPO.—E:?-RB_.}.(.-'- +

ap 3x 9p

s
3
Q

Now take the equation of equllibrium

dT
aT ag-—va

and multiply both sides by %%g*%‘%%— to obtain
sV

. o 3%

B C R T

where A 1s independent of s.

ahs

1
)

Next, we apply this equation to the heart wall. We make
Streeter's assumption of axial symmetry but otherwise we don't

assume the shape of the heart in advance. Introduce cylindriecal

B

coordinates r, 6, z and the corresponding unit vectors i, §,

Note that £ and § depend on 6, with,acL r =8, g% § = =r. The

unit tangent to a fiber 1s given by

where




The equation of equilibrium is

dr X
a§=)\(§—v-xl}.

Here we let v = 6 in the plane z = 0. Then v remains constant
along a fiber so that in some other plane v = 6 + 60. It

’ ax " .
follows that 55 = r6 and the equation of equilibrium for the

case of axial symmetry becomes

dr
Is

o
>
~
2]

j>
X
1
_v

L

}
>
H

N>

-+
>
=

Here A is iIndependent of s (as before) and also of 6 because

of the symmetry. Thus A = A(p). Differentiating the formula

for 1 (From here on ' indicates'é%Q we get

= [p" - I‘(G')2]:f'_+ [(ro')' + r'e']§_ + z"'z_\_ .

Q,Q
A

Comparison with the equation of equilibrium yields

r(e')2 + arz!

" =
| | - . 2 1 1
R ¢
97 -7 0
z" = <\rr'

and one can verify that
[(r)2 + r2(8")2 + (21)%]" = 0

as required by the interpretation of s as arc length.
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Simplify the foregolng system of equations as follows:

g" = -Aprr' = - % A(rz)'
.Zj,é.' % Ar2 + K
rr" = r2(6')2 + Arzz'

1 - (r')2 - (z')2 +_Arzz'

1 - (r")? - (K - % Ar2)2 & Are (K - % Ar?)

But |

%(rz)" (rr')' = re" + (r')?

(1 - K%) + 2kAr® - ¢ A2p

Let p =_r2. Then we have the following differential equation
for p
To" = (1-k°) + 2Kkdp - $2%0° = £(p)
l "n. .t = ]
Se"e" = fplp"
T(0"? = F(p) + a
where
2 2
F(p) = (1-k%)p + Kap® - jA%p7
so that
aF  _
o £ .




Suppose that at p = p_, p' = 0. (This will be in the equitorial

plane z = 0). Then a = —F(po) and we have

p' = +2/F(p)-F(p )

But we already have

z' = K ~ % Ap
Therefore 1
az _ __ XT3
dp +2/F(p)-F(p,)
where
2
p=r
2
P(p) = (1 - K2)p + Kho® - PA%07 .

This differential equation defines a three parameter family of
surfaces of fevolution which are possible shapes for the surfaces
p = constant in the heart wall. The parameters are_k,po,K.

The parameter po fixes the initial radius but does not affect

Ao

the shape of .the surface 1f A 1s varies according to A ='E—
o}

where.xo is dimensionless. Thus there are essentlally only two
parameters K and.xo. The parameter K is easily interpreted in
terms of.)\0 as follows. The quantity g: in the equitorial
plane 1s the sine of the fiber angle measured by Streeter.

Therefore

i
=
i
L
©
"
=
1
T
>

sin ©

Thus we can write K ='%-Ao + sin 6. For each initial fiber

‘angle 6 we get a one parameter family of surfaces, the parameter
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being Ao' It would be extremely interesting at this point if
some "design criterion" could be invoked to predict Streeter's
distribution of initial angles 6 through the wall and also the
distribution of‘)\o through the wall and hence to determine the
architecture of the myocardium uniqguely.

Such a criterion might involve uniformity of o or T
through the wall, or perhaps the necessity that the whole

structure hang together as it is deformed during its motions.
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