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IV. Heart-Lung Interactions
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(Steady-State).

i = index of alveolar unit
C = concentration of oxygen
C_ = atmospheric

C. = alveolar

C. = systemic veins (and hence pulmonary artery)

Cc, = systemic arteries (and hence pulmonary veins)

alveolar ventilation
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= blood flow.

J.B. West, Ventilation/Blood Flow and Gas Exchange, Oxford,
Blackwell Publications, Ltd. 1965.




Remark: The hemoglobin dissoclation curve is usually given as
% saturation as a function of partial pressure of oxygen. At
constant hemoglobin concentration, however, % saturation is
proportional to the concentration of oxygen CA‘ Similarly, at
constant temperature in the alveolus the partial pressure of
oxygen 1is proportional to the concentration of oxygen Ca’ For
the purposes of the discussion to follow here, we do not need
the exact form of the hemoglobin dissoclation curve, but only
the fact that the arterial concentration is a function of the
alveolar concentration of oxygen. The latter is true 1f equi-~
librium is attained during the passage of the blood through
the alveolar capillaries.

The pair of equations:

1 _ i
vvi(co-ca ) = Qi(CA-Cv)
i _ i
CA = f(Ca )

oy

i -
as a function of ry = F

i .
determines CA and Ca (with‘co, C., as

v

i
parameters). To make this dependence expllcit we write
i_
Cp = g(ri).

The ratio r, of blood flow to alr flow may differ in the

i
different parts of the lung. As a design criterion one could
seek to maximize the rate of oxygen extractlon
E =¥ Q¢ -c)

T i*"A v

subject to V, given (not necessarily equal for different i)

i
and subject to thevconstraint
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) Q, = Q
T i
Taking 1St order variations we find

= i i
0 =) GQi(CA - CV) + Q,8C,

But

[o ]

Q
i_ = o! i
GCA —g'ari g Vi

| ad

Q 8C, = ry8' 8Q
It follows that
0 = Ei §Q; (g(ry) + ryg'(ry) - Cp) .
This must hold for arbitrary GQi consistent with
0=§ GQi 3
i
which will be true if and only if the coefficient of GQi is

independent of i. That is:

Ag(ri) + rig'(ri) - C, 1independent of 1
or

ry =r independent of 1

Thus the optimal choice of Qi has the form

Q = rvy

One can show that the foregoing solution ylelds an absolute

maximum in the following way: Note that the problem has the form
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E = Ei Vih(ri)
Ei Vir1 = Q , constant. Vi >0
Let rg satisfy Ei vyr, = Q apd let Ej ='Ei Vih(ro)
Then
E-E = 21 Vi[h(ri)—h(ro)]
- . ' _ l. " * _ 2
_Zi Vi{h (ro)(ri ro) +5h (ri)(ri ro) }
: ]
where r; € [ri,ro
But

z;:'vi(ri—ro) =0 .

Therefore one need only show that h" < 0 everywhere. But
h = CO-Ca, since the oxygen extraction in each alveolus 1is
V,(C_—cl). Therefore h" = -C} and we want to show that
c" > 0.
a
Dropping the index 1 the pair of equations which

determines Ca is

(Co—Ca) r(CA-Cv)

c, = £(C) .

Differentiate with respect to r

! ]

—Ca '(CA-CV) + rCA

[
- '
CA Cv + rf Ca
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1 .
' = e -
Ca(l + rf') (CA CV) .
|
Therefore Ca < 0 since CA > CV . Differentiating again:

" | 1 1 ]
! n 1 = - = - '
Ca(l + rf') + Ca(rf Ca + ') CA £ Ca
or

" ' 1
1 = . t 1"
Ca(l + rf') Ca(2f + rf Ca)

In the region where f" < 0 (which is certainly true in the lung),

1"
we have Ca > 0 as required. This completes the proof.

Mechanical Influences on the Distribution of Ventilation

and Perfusion

In a collapsible but inextensible

tube with end pressure PA’ PV and

Alveolus gide pressure P_, three separate
flow regimes may be distinguished.

In the following assume that Py < Py

PA FaN PV

R Rz I. PA < Pa + Collapse of the tube Q =0
Pulmonary Pulmonary
Artery Veln

II. PV«<Pa< PA + Partilal Collapse
(at end of tube)
PA - Pa = RQ
(Pa - PV =vR2Q + PA - PV = (R + R2)Q, but R2

depends on flow)

IIT. Pa < PV + Tube open (PA - PV) = RQ

West (cited above), also see

(SIAM).
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In the lung of a person who is standing, hydrostatic

effects lead to the conclusion that PA and PV decrease linearly

with height, while Pa is constant because of the negligeable

density of the air. Consequently all three regimes occur and

the distribution of perfusion with height looks like this:

Height

IT

of vessel walls

\ . Increase 1n flow due to distension
\f
IIT ‘
1
|

Perfusion Per Alveolus

Ventilation also increases going down the lung because
in the lung at maximal expiration the alveoll near the bottom
are more collapsed probably because of the weight of the lung.

Then at maximal inspiration the alveoli all stretched maximally

and are roughly equal in volume. The change in volume is

greater lower down, and this determines the ventilation.
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inspiration

hY
I
0]
i

expiration

Bottom

*
Shear Stress and Pulmonary Vascular Diameter

For steady flow in cylindrical tubes of radius a

D Q

o
i

2
uy (1 - =)
a

a 2
r
2w £ ruo(l - —g)dr

2

Shear stress at the wall is given by

o1a
w

Now suppose that in a system of symmetrically branching tubes

%
P. Grassman, "Chemical Engineering and Medicine" The Chemical
Engineer, June 1969 CE233-2.40.
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c = constant
and
Q.1 = % Q
k+l 2 “k

where k is an index giving generation number. Then

3 -1 .3
ap+1l - 3 %

= »—1/3
A+ - 2 ag

and this branching law is observed in the pulmonary arterial

tree.

(1) Let
Pk = pressure drop across kth generation of vessels
Nk = 2k = number of vessels in the kthjgeneration.
Lk =v1ength of vessels 1in the kth generation.
Assume that Lk voa . Then
-1
N. 7L
Tk "k .~ ,=k_-=3
PV V2 g -
4k

The total pressure drop P is given by

: ' 1

The volume occupied by the aggregate of vessels in the kth

generation is v aazk‘since Lk n ay so we might pose the problem.
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Minimize E A

k_3
k 2 ap

subject to the constraint

E 2k‘3 = constant
k.

or, equlvalently,

minimize'f' % subject to Z X = constant.
k

The solution is obviously to make X independent of k, that is,

as before.

(11) Regulation of size of vessels using wall stress o as a
stimulus. In a vessel with given flow, holding o = 0, amounts

to setting

=

3 - 4nQ
a = ee—m——
0'Ov

=2

Thus the vessel radius is regulated according to flow. One can

even imagine a simple control system like %% = k(d—Oo). Then
since o = Eﬂ% we get stable equilibrium when a, Q are related
Ta

as above.

The time scale of the foregoing is very slow, since a
~growth phenomenon is involved. Two examples which would be
qualitatively explained by the existence of such a control

mechanism are:

Increased diameter of pulmonary arteries in cases of

left-to~right shunt with large pulmonary flow.
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Development (actually enlargement) of collateral
circulations when a main vessel 1s obstructed, e.g. coarcta-
tion of the aorta.

Regulation of Blood Flow to Individugl Alveolar Units

Constriction of small arteries leading to the pulmonary
caplllaries appears to occur in response to

(1) low oxygen - to maintain ventilation/perfusion ratio

(i1) high pulmonary venous pressure, e.g. from initial
stenosis or from left heart failure - to protect
against fluld being pressed out of pulmonary

capillaries into air spaces of the lung.
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