VII. Principles of Electrophysiology with Special

Reference to the Heart

Electrical Fundamentals

Maxwell's equations

div

|
ol
|

curl E = -

=
"
©

9 .
+§?§_ div

curl B =

1<

|
0
(=]

electric field

|t
It

jo
"

magnetic field

charge density

I o
0

current density

Remark: %E E = "displacement current". This term

was added by Maxwell to Faraday's laws in order to secure

conservation of charge. If %% + div Jd = 0 and div E = p,
then div (J + %E E) = 0. This shows that there is some
field X such that curl X =J + %? E. The static law

curl B = J suggests that X is the magnetic field.

Capacitor:
v I In the wire we have current;
E +HHettitetivy $ in the space, gésplacement current.
since div(J + z¢—) = 0 the total
A = Area

current flux is the same along the

wire and in the space.
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- a9 _2adv - - -
I =A GE - D at ' where V = ED = voltage across capacitor.
Hence the equation of a capacitor I = C %% and the fact
that capacitance is proportional to A/D.
In biological membranes D = 100 R and the capacitance is

typically 10-6 farads/cmz.

Conducting medium:

In a classical conductor J = oE (in ionic solutions this may

have to be modified by a diffusion term). Then

div J = o div E =0p . But %% + div J = 0 . Hence

Space charge decays away
3 _ op = exponentially in a uniform
conductor leaving a condition

of electroneutrality.

The leaky capacitor:

Consider a slice of thickness D, conductivity o, . between
two semi-infinite media of conductivity o, . We shall use
0, << 04 Let the total current density (including
displacement current) be Jo(t).
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_ 1 2
> > > Jo(t) = J1 + 9t J2 + ot
g [s) ag
1 2 1 9E, 3E,
= 018y * 3% = 9By * 3¢

<D -+

With Jo(t) fixed, as 0y > = El + 0. This is the

case of interest. Let A J0 IO’

I (t)=?.:2..A_E_2_E+éf_2.£ = lv+cg_v.
0 D D 9t R dt

R

F_W_'

Io(t)

—t ———

C

Remark: Although there are no physical plates on the
capacitor formed by the slice of medium of low conductivity,
nevertheless the interfaces act like plates in the sense
that they store charge. This comes about because of the
discontinuity in field across the interface. The integral
form of div E = p then requires a surface charge density
at the interface. More generally, one can show that
non-uniform conductivity yields a possible site for charge

storage.

0=32+aivy

e ke

+ div oE

+ op + E*Vo .
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Work of Concentration:

The immediate source of energy for the electrical events of
interest is the concentration differences of various ions
across the cell membranes. The internal and external concen-
trations are essentially time independent, since the changes
that occur during activity are (1) small and (2) rapidly restored
through the expenditure of metabolic energy.

In dilute solutions the work involved in the transport of
n ions from concentration ¢y > ¢c, can be calculated exactly
as though the ions were molecules of an ideal gas. Thus we
have

PV

nkT ideal gas law
P = pressure
V = volume
n = # of molecules
k = Boltzmann constant

T = absolute temperature

Isothermal compression of the gas yields

av = - 252 ap
P
dWw = = P dV = nkT Q% =d log P , dWw = work of compression.
P2
Wl+2 = nkT log 5
1
Let %= C, the concentration of molecules. Then P = ckT, and
- €2
Wl+2 = nkT log EI .
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Now suppose we arrange things so that an electric field will
perform work W0 per molecule in moving molecules from region
1+2. We get equilibrium when the work done by the electric
field just equals the concentration work. Then
)
w0 = kT log EI .

If g is the charge per molecule and V is the voltage difference

(measured with region 1 positive), then

C,
gV = kT log c.
1
or
2 _ Jav/kT
¢
Let B = L = 1 (mv = millivolts) .
kT 25 mv *

This quantity sets the scale for electrical phenomena in biology.
Whenever the actual voltage differs from the equilibrium
potential for a given ion, then there will be a net flux of that
ion across the membrane. The actual magnitude of the flux cannot
be calculated without a more detailed model. For illustrative
purposes, we here consider the case where the motions of the

individual ions are all independent:

Ionic Fluxes

*
If the ions move independently

- g// g th d by th
e current carrie Yy em must
€1, 2 C2
ez k have the form
< > 2
+ VvV - I = q(kl(V)C1 - kz(V)Cz) ’

* [
This assumption is not too restrictive but would be violated
by a mechanism involving a saturated carrier.
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where the rate constants kl and k2 depend on the voltage.
The functions kl(V), kz(V) are not arbitrary but are restricted
restricted by thermodynamics. Thus the requirement that

we have equilibrium (I = 0) when

Cy v
E——G
1
yields
kl(V) _ eBV
kZIV)
Therefore
C
2 —BV
I =gqk,(WC (1 - == e } .
1l 1 Cl

Let VO(Cl’CZ) be the potential such that concentrations C,,C,

are in equilibrium. Then

-8 (V-vy)
I=gq kl(V)Cl (1 - e ]

It is not possible to choose kl(V) independent of V0 such that
the foregoing current voltage relation is linear for all Vo
(i.e., for all concentrations).

However, we can construct kl(V) to get a linear current-

voltage relation for a particular V,. Let

A(V"V*)
ki (V) = ——F(=v,)
l-e

aw-v,e BV
ky (V) = ——gv=¥,)
l-e




Then

qA(V-V,) -8 (V-v,)
of-e ]

l-e

when V, =V, we get I=gqC A(V—V*) and this displaced
linear current voltage relation holds for all Cl,C2 such
that CZ/Cl = eBV .

The construction of kl(V), kz(V) in the foregoing was not
based on physical considerations, but purely as an exercise
to see whether a linear current voltage relation (for some
ionic concentrations) is consistent with independent movement
of ions. (The squid giant axon exhibits linear current
voltage relations ~-- over what range of concentrations? -- but

other tissues do not). We now inquire whether a simple physical

model can predict the functions chosen above.

Drift-Diffusion in a Constant Field

Suppose a region of membrane of length L in which I, E are

independent of X. Then

9
I=- qD(ax + BC —i) - qD(—g - BCE)
where D = diffusion coefficient
¢ = potential (- %% = E) .

Remark: The origin of the foregoing equation is as follows:

The flux due to diffusion is - D %% . The flux due to drift

is uCE, where p is the mobility of ions in the field. The
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fact that u = 8D where B8 = g/kT was noticed by Einstein, who
derived it by applying the condition I = 0 at thermodynamic

equilibrium. With I = 0, we have

+ %§ B¢ = 0 = log C + Bp = constant

Q-
ol
el

which is consistent with thermodynamics only if B8 = T

Our equation can be written

- %—}% + BCE = Lo constant

q

BEX _ I
where CA = qDBE .

= C = CA + CBe

Assuming the concentrations are known at X = 0 and x = L we have

i

]
+
]

c(0)

BEL
c(L) CA + CBe

Solve for CA and hence for I:

CA(eBEL-]) = C(O)eBEL - Cc(L)

c(0)ePEl-c(r)
I = qDBECA = gDBE BEL
e

-1

Note that when C(0) = C(L), this expression is linear in E.
This corresponds to the case V, = 0 considered above. Thus
we can easily get linearity for equal concentrations. To get

linearity for unequal concentrations is harder. We have to
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assume that there is a fixed dipole layer on one side of the

membrane with potential drop V, as indicated below.

Then equilibrium across the dipole layer implies C(0) = C,e .
At the interface with no dipole layer the potential and hence
the concentrations are equal. C(L) = C,- The expression

for I is therefore

geL _ C2 "RV
8V, e "¢ €
D8
1 =L ¢ C, EL
L 1 oBEL _ ¢
c, B8v,
If - =e then
1
qDBC2 QDBC2
I=—F=EL = —3— (V-V,) .

Thus a membrane with a fixed dipole layer on one side will
yield a linear current voltage relation for a particular ratio
of concentrations. With no dipole layer, linearity holds only
when Cc, = CZ‘ These conclusions are for independent movemeht

of ions in a constant field.
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*
Hodgkin-Huxley Equations

We begin with the ordinary differential equations for current
through a patch of membrane. The partial differential equations
for conduction of the action potential will be discussed below.

Hodgkin and Huxley postulate that the total current through
a membrane patch in squid giant axon can be partitioned as
follows:

dv
(V-ENa) + gK(V EK) + gL(V-EL) +C 3%

where the first three terms give the ionic current, and the

fourth gives the capacitive current, and where:

ionic conductance
= ionic equilibrium potential

membrane potential

Q< ® o\
I

= membrane capacitance

Na = sodium

=
I

potassium

L = "leakage", i.e., currents due to ions other
than Na+, K+.
The equation given above may be summarized by the equivalent

circuit.

%
Hodgkin, A. L. and Huxley, A. F.: A Quantitative Description
of Membrane Current and its Application to Conduction and
Excitation in Nerve. J. Physiol (London) 117 500 (1952).
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OUTSIDE

— C — 8Na By g
U U

s E

INSIDE

The "batteries" E s E have e.m.f.'s which are

Na K L
determined by the appropriate ratios of ionic concentrations.

For example

+
. [Na ]e
E = kT log ——— > 0
Na [Na+]i
+
[x*1,
EK = kT log —5— < 0
k1,

e = external, 1 = internal.
(Since L refers to "other ions" the expression for EL will be
more complicated.) These quantities are, to an excellent
approximation, time independeﬁt.

Interesting dynamics arises in the model stated above
because the Na+ and K+ conductances vary with voltage and time.

The postulated dynamics of these quantities is as follows:

3

Na ~ BNg ™

&x gg 1
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g—lg = rmliv) (m, (V) - m)
B -0
dn _ _ 1 _

It Tn(V) (n (v) - n)

These equations have as a consequence that BNa and 8x
approach equilibrium values which depend on voltage if the
voltage is held constant long enough. On the other hand,
these conductances cannot change suddenly but approach their

equilibrium values at a finite rate.

*®
The Membrane Patch as a Two-State Device

The quantities n, h are slowly varying in comparison with
m, v. This suggested to Fitzhugh that one might get some
insight into the qualitative aspects of membrane behavior by
studying the properties of the equations outlined above with
n, h constant. Here we shall illustrate this procedure in an
especially simple limiting case, when m-dynamics are so fast

that m = m“(v) at each instant. Moreover we shall assume that

mm(v) has the form

m= mJ(y) =

[}

{a(V-EO) » V> Ej
0 , V<Eg

If the total current through the membrane is zero, we have:

This analysls is a simplified version of FitzHugh, R:
Mathematical Models of Excitation and Propgataion in Nerve;
in ed: H. P. Schwan, Biological Englneering, New York:

McGraw Hill, 1969, p. 1 ff.
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v _ =

3 3 = 4 -
it = Bya © h(V-Eg,) (V—ENa) + gyn (V—EK) + gL(V-EL)

- C

Define the quantities 8y » E1 as follows.

R
g, = ggn + g

gE; = éKnuEK + ELEL .
Then
EKn“(v-EK) + g (V-E) = g, (V-E;)
and
c %% = Bya a3h(V-EO)3(ENa-V) - g, (V-E))

We now indicate graphically where the equilibrium (dV/dt = 0)

values of V lie. In constructing the graph we use

EK < E1 < EL < 0 < ENa . Also we assume that EK < EO < EL'
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}k Tonie Current

== 3 3 _
~Iy,= Bya® h(V-Ey) ~(Ey, V)

\'

Na

The points A, B, C are the points where dv/dt = 0. Reference

to the sign of dV/dt in the neighborhood of these points shows
that A and C are stable, while B is unstable. If V > B, V » C,
but if V < B, V> A. Therefore B is a " threshold", spearating

two stable states which may be called the resting state, A, and

the excited state C.

If we now permit the parameters n, h (and hence (El,gl) to
vary, then the stable equilibria and the threshold will move.
Increasing n or decreasing h shifts the line IK+IL up and to the

left relative to the INa curve. This decreases VA and VC ’
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but inéreases VB. At certain critical values of the
parameters the threshold and the excited state collide and
disappear leaving only the resting state. The opposite
phenomenon happens with decreasing n or increasing h. 1f the
latter processes are continued the threshold collides with
the resting state leaving only the excited state.

To the plcture given above we must add the fact that
n, h are not really independent variables but obey equations
of the form

dn 1
& = T [n (V) - n]

dh
dt

1
[h (V) - h]
Th(95 ©

where n_(V) 1s an increasing function, and h (V) is a decreasing
function. Thus the ON state of the membrane ultimately turns
itself OFF by driving n up and h down to the point where the ON
state collides with the threshold and disappears. The fact
that n i1s high drives E1 > EK so that the OFF state reached
immediately after excitation is more negative than the original
resting state.

The membrane will be inexcitable if n is sufficiently large
or h sufficiently small that only the OFF state exists, and it
will be difficult to excite if the threshold 1s near the excited
state even though the excited state still exists. These two

situations are called absolute and relative refractoriness,

respectively.
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Hyperpolarization (holding the membrane at a more negative
potential than usual) can lead to an action potential upon
release from the influence of the hyperpolarizing current.

This 1s because nvis temporarily depressed by the hyper-
polarization to the point where only the excited state exists.

In nerve the excited state has only a brief existence, and
one may question the usefulness of describing the membrane as a
two-state device. In heart, by contrast the excited state is
prolonged and its stability can be proved by direct experiment.
The application of a modified form of the Hodgkin-Huxley theory

to heart is discussed in the next section.
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Adaptation of Hodgkin-Huxley Theory to Heart

This adaptation was accomplished by Noble and Tsien* in a
series of papers the main conclusions of which will be
summarized here:

(1) The initilal depolarization (turn-ON) of the cardiac
cell is accomplished by a rapid inward movement of Na+ ions
obeying the same kinetlcecs as in nerve.

(11) Repolarization is delayed in comparison with nerve
for general reasons:

(a) There 1s a slowly activated channel for inward current
which passes either Na+ or Ca++ ions and which remains activated
after the fast Na+ channel has been inactivated by the fall in h.

(b) The potassium current-voltage relation is instantaneously
nonlinear; it rectifies 1in the inward going direction and this
fact limits the outward potassium current during the plateau.

(¢) The activation of the potassium current is delayed

in comparison with nerve.

Remark: The slowly activated-channel which passes either Na+

+
or Ca * ions 1s probably the channel responsible for excitation -

#*
D. Noble and R. W. Tsien:

The Kinetics and Rectifier Properties of the Slow Potassium
Current in Cardiac Purkinje Fibers. J. Physiol. (London)

195, 185-214 (1968);

Outward Membrane Currents Activated in the Plateau Range of
Potentials in Cardiac Punkinje Fibers. J. Physiol. (London)
200, 205-231 (1969);

Reconstruction of the Repolarization Process in Cardiac Pinkinje
Fibers Based on Voltage Clamp Measurements of Membrane Current.
J. Physiol. (London) 200, 233-254 (1969).
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contraction coupling, and the competition between Na+ and Ca++

for this channel probably explains the dependence of the
strength of contraction on the ratio [Ca++]/[Na+]2 in the
extracellular fluid. (See discussion of Ca++ kinetics, above.)
Thus the prolonged repolarization process is an essential
feature of contraction in heart muscle. The fact that the
prolongation is greatest in the ventricle is therefore not
surprising.

(111) During the plateau (the prolonged excited state), the
instantaneous current voltage relations change with time as shown
below. The change is due to the gradual activation of an
outward potassium current. As a consequence of this change,
the excited state collides with the threshold and disappears.
Direct experimental evidence for the existence of a threshold

for repolarization and measurements of its time course
net outward current

A _ av

increasing time

+

A V |

resting state threshold exclited state
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were obtained by Vassalle.*

(iv) The pacemaker potential (in cells where it exists) is
essentially the same as the afterpotential of the nerve impulse.
Immediately following activity, potassium current is higher than
normal and the potential is low. Turning off of the potassium
current leads to a rise in potential which is responsible for
pacemaker activity.

In summary, the comparison between heart and nerve appears to
be as follows. The fast Na+ current obeys essentially the same
kinetics, but the inactivation of this Na+ channel is followed
by the prolonged activation of a second channel which passes
both Na+ and Ca++ ions and is probably responsible for exclta-
tion-contraction coupling. The outward potassium current is
more slowly activated in heart than in nerve; 1t consists of
more than one component and its instantaneous current-voltage
relation is like that of a rectifier pointing inward. A
component activated by potentials in the plateau region is
responsible for repolarization, a slower component activated
by similar potentials 1s respodnsible for effects of the interval
between beats on the duration of the action potential, and the
turning-off of a component similar to that found in nerve is

responsible for the pacemaker potential.

k3 .
Vassalle, M.: An analysis of Cardiac Pacemaker Potential by
Means of a Voltage Clamp Technique. Am. J. Physiology 210
1335-1341, 1966.
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Nonlinear Wave Propagation

Consider a cell with:

I
£ A4 i = longitudinal current
(:) i - 1 <:) r = resistance per unit length
5 I = transmembrane ionic current
X

per unit length
V = membrane potential (inside
with respect to outside)

C = capacitance per unit length.

The equations for this system are:

Eliminating i we obtain

3V 193V
C 3t - I=3

[+ ¥4

2

If I were known, this would be an inhomogeneous form of the heat
equation; in fact, however, I is determined from the Hodgkin-
Huxley equations for a membrane patch, which we can generallze

as follows:

Cohen, H. Nonlinear Diffusion Problems, in ed: A. H. Taub,
Studies in Applied Mathematics, Prentice Hall, Englewood
Ciiffs, N. J., 1971.

Rinzel, J. and Keller, J. B. Traveling Wave Solutions of a
Nerve Conduction Equation, Biophysical J. 13, 1313-1337 (1973) .
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I= I(Sl...S V)

N’

dSk

g = k(5 V) -
It is instructive to consider some very simple examples of
equations of this type with traveling wave solutions. More

interesting examples are discussed in the references cited

above.

Transition State Wave Form:

0, V<a
Suppose I = - gV + .
IO, V>a

We seek traveling wave solutions V(t + X/8) with velocity 6

fdr the equation

oV _ 1
c - 1=

9

Such a solution will obey the ordinary differential equation

0, V< a 1
CV' + gV -~ -3 v

IO’ V > a

Look for solutions of the form

aelt R s t <0, A>0
V =

aeut + Eo(l—e“t) s

ct
v
o

"

=
N
(@]

where Ej = Io/g (see figure next page).
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AV

This solution 1is a "change of state' wavefront, traveling to
the left with velocity 6. Each section of the line is brought
to threshold a by diffusion, whereupon it turns on and drives

itself to the excited state EO'

The condition of finite longitudinal current in the line

leads to V' continuous at t = 0, and hence

ax = ay - Eou

(We shall refer to y as the " threshold ratio". Large y means
that the threshold is low relative to the excited state.)

A,u are the roots of

1 2 g _
5 z2- -2 -5~ 0
rCo
_ 1 + V1i+o _ u
Asu = 5 > a = -—5—2
‘2 rCo
rCe
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Therefore

y = A=y _ 2vY1+a
v L1+ /Tta
(2=y)V1+a = =y = y > 2

(2-y)°(1+a) = v

It follows that

a=)4l_-_l_§
(y=-2)
and
2
2 _ g (y=2) o
e—rce'TlTl_Y’ 2y«

Thus propagation becomes very slow as the exclted state is

depressed (fixed threshold ) and fails entirely when E, < 2a.

Remark: The procedure used above was to assume propagation

at velocity 6 and to find a bounded smooth solution for the

ordinary differential equation,

1
vt T = —— V"
cv I' 5 AALE

ro

Such a solution only exists for special values of 6, as
determined above. On the other hand if we fix 6 1n advance
and integrate this equation starting from ¢t = -« (as one
might attempt numerically if the expression for I were more
complicated) the following situation arises. For ¢t < 0 we
have the solution a.e>‘t , A>0. At t = 0, to continue the

solution with V and V' continuous we need in general a solutlon

of the form
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V==>=» e)‘t + Db eut + Eo(l—e

t
5 S t > 0.

There are enough conditions to determine bl,b2 as functions
of 8 (recall that A,u depend on 6). The correct values of ©
are those for which bl(e) = 0, since only these remain bounded
as't > @ . This is an indication that any attempt to solve

cVvt - I = —lg V" by integrating forward in time with some

incorrect sglue of 6 will lead solutions which fly off to + =
(depending in the present case on the sign of bl(e)) following
the onset of the action potential. This is precisely the
experience which Hodgkin and Huxley had, in fact they

determined 6 by searching between values which led to increas-

ing ‘solutions and those which led to decreasing solutions.

Pulse-Shaped Nonlinear Waves

If a simple model of the cardiac action potential is sought,
it should as a minimum requirement have the capabllity of
turning off as well as on. Consider the same equations as
previously, but suppose that the active current turns off after
a time interval T following the initial crossing of threshold.

Then we seek a solution of the following form.
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(a,e s, T <0
vV = <a2e“t+a3e“+Eo, 0<t<T
{ aueut sy T < ¢t
\.
L/ T
0 T
Continuity at t = 0 and t =T of V and V' ylelds the four
equations:
a, = a2'+ a3 + E0
alk = a,u + a3A
a2euT + a3eAT + Eo(l—eu ) aueuT
a2ueuT + a3AeAT - EoueuT = auueu
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In addition we have a; = a, and A,u as functions of 8.

After considerable algebra, the equation for 6 Dbecomes

1+ 2 E) -1

If T » o (and A does not tend to zero), then we get

solution only by requiring

™

0

MY 5 - 1 where Yy = ' as above.

A-u

This is the same expression as for the change of state waveform.
Thus, for large T, the wave speed is determined mainly by the
properties of the front which "pulls" the rest of the wave along.
Tt would be of great interest for heart physiology to solve
simple nonlinear diffusion equations of the type outlined above
for cases in which the properties of the fiber depend on X.
For example, one might consider a case in which EO is reduced
drastically along a short segment of fiber. The reason for this
is that experimental preparations which appear to correspond to’
this situation have been produced which exhibit many of the
features of disturbed wave propagation which actually occur in

diseased hearts. The next section will discuss these effects

briefly.
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Disturbed Conduction 1in Heart

This section is a brief discussion of some experimental
results' which are of the utmost importance in understanding
abnormal rhythms of the heart.

In this work the typical experiment was performed on a
bundle of Purkinje fibers (the conduction tissue of the heart).
A short segment of the bundle of fibers was depressed by the
application of high external K+ concentration. Effects
seen with this preparation include the following:

(1) Block. A stimulus applied at one end may fail to pass

the depressed segment.

(11) n:1 block. A certain fraction of stimulli may pass
(e.g. every other stimulus) the fraction typically depending

on the frequency of stimulation.

(11i) One-way block. Stimuli of a given frequency may

pass in one direction but fail to pass in the other.

(iv) Echo. A stimulus may pass the depressed segment with
considerable delay and the excitation of the tissue beyond the
depressed segment may be sufficiently strong to re-excite the

tissue on the original side sending out an echo.

¥
Cranefield, P. F., Klein, H. 0., and Hoffman, B. F.

Conduction of the Cardiac Impulse. I. Delay, Block, and
One-Way Block 1in Depressed Purkinje Fibers.

Cranefield, P. F. and Hoffman, B. F.
Conduction of the Cardiac Impulse. II. Summation and Inhibition.
Cire. Res. 28, 220, 1971.

Cranefield, P. F., Wit, A. L., and Hoffman, B. F.
Conduction of the Cardiac Impulse. III. Characteristics of Very
Slow Conduction. J. Gen. Physiol. 59 227, 1972.
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(v) Circus movement. If a ring of tissue is created with a

short segment exhibiting one-way block, then a stimulus entering
the ring near the site of block can initiate a wave which
travels repetitively around the circuit.

These phenomena appear to be the basis of many abnormal
rhythms in the heart which occur following damage to a small
piece of tissue. They also present an interesting challenge,
since a theory of conduction in the heart ought to be able
to predict these phenomena as a consequence of depression of

a short segment of fiber.

Remark: Since the experimental preparation contalns many
parallel fibers which branch, it may not be possible to construct
a single fiber theory which reproduces the phenomena. One-way
block would seem particularly hard to predict, but if the

pattern of depression is asymmetric such a result would seem

possible even in a single fiber.

Self-Synchronization of the Cardiac Pacemaker

The heart beat is originated in the slnoatrial node,
a region of cells which have the capability of depolarizing
spontaneously toward the threshold firing, and then recovering.
Their action potential is smoother than that of the rest of
the heart, suggesting that the
cells lack the fast Na+ channel.

This suspicion is confirmed by

the failure of tetrodotoxin to
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block pacemaker activity in the sinoatrial node.*

The question naturally arises how the different cells
coordinate their activity so that the whole sinoatrial node
fires at the same frequency and (except for conduction delays)
in phase. The simplest explanation is that the cell which is
inherently fastest drives all the others by bringing them to
the threshold, but this view requires that in principle one
can identify at any instant a single cell which is driving
the heart. Moreover it suggests that injury to a single cell
could set off a rapid heart rate. A more reasonable design
would be a population of cells with weaker coupling, in which
synchrony emerges as a consequence of the interaction and
in which the overall frequency was a property of the population
of cells, rather than any single cell.

In this section we discuss a population of weakly interacting
"pacemakers". The model we use was discussed by Knight**in the
context of the nervous system. He discusses the i1interaction
of a cell with a given periodic stimulus. We shall begin with
this case but consider also the case where the "stimulus"
depends on the population behavior of the cells in question.

Consider our "oscillator'" or "pacemaker" characterized by

state x, 0 < x < 1. Let x satisfy

dx
at - yx t SO + S(t) > 0

but when x 1 the oscillator "fires" and jumps back to x = 0.

¥
Brooks and Lu, The Sinoatrial Pacemaker of the Heart, Thomas,

Springfleld, Ill. 1972.
Knight, B. W. Dynamics of Encoding in a Population of Neurons,
J. Gen. Physiol. 59, T734-766, 1972.
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Regard SO’ y as the intrinsic properties of the oscillator,
and S(t) as an external stimulus.
Let {tn} = get of times when oscillator fires. For

tn £t < tn+l ?

t
x(t) = f Y E=t") ppry gpe

n

where f(t) = SO + S(t)

The equation for the firing times is therefore

-y(t_,.~t")
1= f e  O*L £(t') at'

Let S(t) = x g(t) (X small), so that f(t) = SO + 1 g(t).

Then
t
5, YT n+l ~y(t , -t")
1l = E"S (1L -e ) + A f e g(t?) dt!
tn
where Tn = tn+1 - tn.
Assume

(1) g is a periodic function with period T and mean zero

(2) vy is small.

Then
th+1 th+1
= ' ' ] ' 1
1= 8,T + A f g(t') dt Ay f (b ,,-t") &(t") at
tn tn

t
Let G(t) = f g(t') dt', and choose the constant of integration

270



so that G has mean zero. Since g has mean zero, G 1is

periodic with period T. Integrate by parts to obtain

tri+l tn+l
= ' 1 ' '
1= 8,T, + A f g(t') dt' + Ay f G(t') dt' + Ay T G(tn)
t t
n n
tn+1
= ] 1
1 [S0 + Ay G(tn)JTn + A f h(t') dt
2%
where h(t) = g(t) + v G(t) 1is a periodic function with period T

and mean zero.

We have thus found an implicit recursion relation for the
firing times when an arbitrary periodic stimulus A g(t) 1is
applied. Seek a solution of this recursion of the form
tn+l - tn = T , the period of the stimulus. If tn+l - tn =T,
then

n
f h(g) dt = 0 .
tn

Also G(tn) = G(to). Hence we have

1= [SO + Ay G(to)]T

or

MY G(by) = [% - sd] :

Since G(t) has mean zero, one can find t, such that this
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equation is satisfied provided that Ay is sufficiently large.
There will typically be an even number of such phases to where

the oscillator can fire in step with the stimulus.

ﬁth G(t)

[ - 5,)

N\ops
\\// \J//q? t

Note that the amplitude required to get solutions (to capture

the oscillator) is proportional to the disparity between the
natural frequency of the oscillator and the frequency of the
stimulus.

The stability of the points of equilibrium phase will now
be checked. Let

t. =t

n 0 + nT + Gn

ct
]

to + (n+1)T + 6n+1

s )

taer =T 7 (6n+1- n

Computing the variation of

n
- i 4 1
1= [8; + Ay G(tn)]Tn + A f h(t') dt
t
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about a solution with the property T = T, G(tn) = G(to)

we have

0 = [SO+AY G(to)](6n+l—6n) + Ay G'(t0)6nT + Ah'(to)(6n+l-6n)

1 ' - 1
[T + Ah (to):l(6n+l-6n) = -AY G'(ty)8,T

Ay G' (s )T
6n+1 =1 - 1 . 6n

= '

T + Ah (to)

For small enough A, stability is controllgd by the sign of G',
with G' > 0 giving stability. Thus in the typical case, half
the solutions will be stable and half unstable.

A population of oscillators can thus be driven by a periodic
signal to fire at one or more definite points in the cycle of the
given signal. We now consider a case where the signal is not
imposed from the outside but arises in the population of
oscillators itself.

Consider a collection of N oscillators of the type described
above, each characterized by ka/dt = - Xk+ SO s 0 < Xk < 1.
When X

k
it pulls the others up by an amount e/N, or pulls them up to

=1, Xk jumps to zero. When a given oscillator fires

firing, whichever is less.
For this system one can state the following conjectures:

(1) For arbitrary initial conditions, the system approaches
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a state in which all the oscillators are firing synchronously.

(2)

identical.

for the case N =

This remains true even when the oscillators are not quite

Here we shall demonstrate only (1), and that only

2 with small €, Y. An interesting fact which

emerges even from this simple case 1is that the desired conver-

gence depends on the product

cooperative
convergence
is removed.

Let N =

Let tA

be the first firing time,

ey. 1t is thus in some sense a
effect between the coupling and the dissipation;

disappears when either the coupling or the dissipation

2., Without loss of generality, start the system with

= 0. The equations for Xl(t), X2(t) are

W

X, (6) = =2 (1-e7Y")

<

5o

Y

-yt

X,(t) = ae + (l—e-Yt) .

X2(tA) = 1.

[
1

o
1]

[
1

Xl(tz) = 3
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We are now in essentially the same state as initially, but
with new o, and the oscillators interchanged. Therefore,

to follow the system ahead in time consider the recursion

l-aﬁ.
o‘r1+1 =5 S—an te/2

Let B8 = 1/S, €g = €/2. Then

[1- o
“+1 T |T5Ba |t fo

1- o
n+2 L}—Ban+1 0

Regard o as fixed, and consider the function an+2(B,eo).

This function has the properties

an+2(0,eo) = 1 - an+l(0,eo) + g4 = 1 - (1—an+€0) t ey = a

1l-a ]
1|2 n
1- a_,,(B,0) [;—Ban | o (1-8)
o 45(B50) = Tg5 g0y © T " T(a-p) " "
n+l 1-8

n

l—Ban

Thus 1f we expand O 4o about o as a series in B, €0 » then

the lowest order terms will have the form

o = an + ABeO

where A = 3c. 98 (0,0).
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3o _Bayp %4y N 3%, 40
38 nt+2 90, +1 3B 3B
8an+2 \ _ N
30 -
n+l 8=0
a0
n+2
38 ‘ (141004
=0
J0.
n+l = (l_a )a
98 8=0 n’ n
3a
n+2 - _ - _
- I (1-ada_ + (1-a_, )0

5 | %42 I - (lea ) %41 _ %41 |
e 9B 8=0 ntl” deg dey ntl

oo

.______—.n+1 = = -
But e, =1=A=1 2an+1(0,0)
But an+1(o,o) =1-a

A=1- 2(1-an) = 2an -1 .
It follows that
_ 1

Note that

= >
an+2 0‘n

= < .
0tn+2 %

TR NI
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a 1s therefore driven toward zero or one = the oscillators
are driven together (the equilibrium at o = % is unstable).

P. Ungar has glven the following geometric interpretation.
The pair of oscillators 1s represented by a point (Xl,X2) on
a doubly periodic square.

The coordinates are stretched so that each oscillator moves
uniformly, hence the trajectories are stralght lines with slope 1.
Because of the stretching the size of the Jumps depends on X.

What we have just proved is that the trajectory approaches the

diagonal of the square:

((2)) (k)
%

To treat the N-oscillator case by the recursion method one

could proceed as follows. At the nth firing we have a vector

of N-1 values of a: aél) co aéN'l). These satisfy the
following recursion
K1 aﬁ(s—l)+s(l—a§-l)
a4l T min (1, N=T + e/N]
n (S-a )
n
where ag = 0 . Note that the expression
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k N-1
an(S—l) + S(l-—an )
N-1
S - an

reduces to 1 when k = N-1, as it should since the oscillator N-1
is the next to fire.

In any event this theory is elementary compared with the real
situation. In particular each oscillator has been assumed to be
coupled with all of the others, so that spatial effects have
been ignored. Nevertheless, we have the beginnings here of

a theory of the self-organization of the heartbeat.
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