
Homework 2
Course : The Immersed Boundary Method
Teacher : Charles Peskin
Student : Ramiro Rebolledo

1 Model problem

Use the rigid pIB method in 2D to simulate an immersed boundary in the form of a straight line with
uniform mass density and with a pivot point on the line that is held at a fixed location in space (see
Figure 1).

Figure 1: Model problem.

Let the domain be (0, L)× (0, L) with periodic boundary conditions. Let the flow be driven by an applied
force density that is constant in space and time

f0(x, t) = (f0, 0) . (1)

The pivot point is fixed in space at
(L/2, L/2) (2)

and the line rotates freely about the pivol point.
Let s denote distance along the line measured from one end. The line has length L0, so

0 ≤ s ≤ L0 . (3)

The pivot point is located at s = Lp.
The rigid line has only one degree of freedom θ(t), so its spatial configuration at time t is given by

x = Z(s, t) =

(
L

2
+ (s− Lp) cos(θ(t)),

L

2
+ (s− Lp) sin(θ(t))

)
. (4)

Because the line boundary has a fixed pivot point, it is better not to make any reference to its center of
mass, and instead to define angular momentum, moment of inertia, angular velocity, and torque with
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respect to the pivot point. Also, because we are in 2D, we have the simplification that these are all scalar
quantities. In particular, the moment of inertia is a number, not a matrix, and it is constant in time even
in the laboratory frame. These are major simplifications.
Let m0 be the mass density of the boundary. Then its moment of inertia is given by

I0 =

∫ L0

0

m0 (s− Lp)2 ds

=
m0

3

(
(L0 − Lp)3 + L3

p

)
. (5)

The equations of motion of the whole system, in the rigid pIB formulation, may now be written as follows

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p = µ∆u + f0 + f IB (6)

∇ · u = 0 (7)

f IB(x, t) =

∫ L0

0

K (Z(s, t)−X(s, t))δ(x−X(s, t))ds (8)

∂X

∂t
(s, t) =

∫
(0,L)2

u(x, t)δ(x−X(s, t))dx (9)

I0
dω

dt
= (− sin θ, cos θ) •

∫ L0

0

K (X(s, t)− Z(s, t))(s− Lp)ds (10)

dθ

dt
= ω (11)

In these equations f0 is given by (1), Z(s, t) is given by (4), and I0 is given by (5). In particular, at any
time t, Z(s, t) is determined by the value of θ(t).
The curve X(s, t) is held close to Z(s, t) by the spring-like force density

K (Z(s, t)−X(s, t)) (12)

and at the same time X(s, t) is moving at the local fluid velocity. This enforces the no-slip condition in the
limit K →∞. The same force density (12) but with opposite sign acts on the rigid line, and the resulting
torque about the pivot is evaluated on the right-hand side of (10).

A note on units
When doing fluid mechanics in 2D, there are two ways to think about the problem:

1. We can think about it as if we are really in a 2D universe. In that case the units are as follows:

ρ ∼ mass/area

µ ∼ (mass/area) (lengh2/time)

u ∼ length/time

p ∼ force/length

f ∼ force/area

m0 ∼ mass/length

K ∼ (force/length)/length

2. Alternatively, we can think about the x, y plane of our computation as a cross-section of a 3D
problem in which every plane perpendicular to the z-axis is the same and in which there is no
velocity in the z direction.

From this point of view, our rigid “line” is actually the cross section of a rigid planar strip that is
infinitely long and has width L0, and the pivot “point” is actually a pivot axis that is an infinitely
long line running parallel to the z-axis.
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The equations are exactly the same from either point of view, but the units are different. From the
3D perspective we have more familiar units for fluid quantities, but some quantities like the moment
of inertia become the moment of inertia per unit length, where the length is question in the z
direction.

From the 3D point of view, we have the following units

ρ ∼ mass/volume

µ ∼ (mass/volume) (lengh2/time)

u ∼ length/time

p ∼ force/area

f ∼ force/volume

m0 ∼ mass/area

K ∼ (force/length)/area

The task for this homework is to simulate the above system and observe its behaviour for different
positions of the pivot and the line (including the center as one special case) and for different boundary
mass densities (but note that zero mass density is not possible without a change of methodology, which
you might think about).

2 Numerical implementation of the pIB method

We divide the fluid domain L× L in N2 squares with side length h = L/N , and we divide the rigid
boundary in Nb subdivisions with length ∆s = L0/Nb. The set of the nodes on the fluid mesh is the
following

gh := {x : x = (j1h , j2h), jα ∈ {0, . . . , N − 1}, α = 1, 2} .

• We begin with the preliminary substep from n→ n+ 1/2: For k = 0, . . . Nb,

Xn+1/2(k) = Xn(k) +
∆t

2

∑
x∈gh

un(x)δh(x−Xn(k))h2 (13)

θn+1/2 = θn +
∆t

2
ωn (14)

Zn+1/2(k) =

(
L

2
+ (k∆s− Lp) cos(θn+1/2),

L

2
+ (k∆s− Lp) sin(θn+1/2)

)
(15)

τn+1/2 = (− sin θn+1/2, cos θn+1/2) •
Nb∑
k=0

{
K [(Xn+1/2(k)− Zn+1/2(k)](k∆s− Lp)

}
∆s (16)

ωn+1/2 = ωn +
∆t

2

1

I0
τn+1/2 (17)

f IB
n+1/2

(x) =

Nb∑
k=0

K
(
Zn+1/2(k)−Xn+1/2(k)

)
δh(x−Xn+1/2(k))∆s (18)
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Now solve the fluid problem for un+1/2 and p̃n+1/2, considering the force acting on the fluid

f IB
n+1/2

+ f0 (see equation (6), and pp 6 of Lecture 1 for the definition of the operators D, S and L):

ρ

(
un+1/2 − un

(∆t)/2
+ S(un)un

)
+ Dp̃n+1/2 = µLun+1/2 + f IB

n+1/2
+ f0 (19)

D · un+1/2 = 0 (20)

• The next step is from n→ n+ 1: For k = 0, . . . Nb,

Xn+1(k) = Xn(k) + ∆t
∑
x∈gh

un+1/2(x)δh(x−Xn+1/2(k))h2 (21)

θn+1 = θn + ∆tωn (22)

ωn+1 = ωn +
∆t

I0
τn+1/2 (23)

Now solve the fluid problem for un+1 and pn+1/2,

ρ

(
un+1 − un

∆t
+ S(un+1/2)un+1/2

)
+ Dpn+1/2 = µL

(
un + un+1

2

)
+ f IB

n+1/2
+ f0 (24)

D · un+1 = 0 (25)

Remark. Note that we do not require Zn+1 in the algorithm, but is needed to show the numerical results.
We can calculate it in each step time as follows

Zn+1(k) =

(
L

2
+ (k∆s− Lp) cos(θn+1),

L

2
+ (k∆s− Lp) sin(θn+1)

)
(26)
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