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Abstract. We develop computational methods for the simulation of osmotic swelling phenomena
relevant to microscopic vesicles containing transformable solute molecules. We introduce stochastic
immersed boundary methods (SIBMs) that can capture osmotically driven fluid transport through
semipermeable elastic membranes subject to thermal fluctuations. We also develop numerical meth-
ods to handle within SIBMs an elastic shell model for a neo-Hookean material. Our extended SIBM
allows for capturing osmotic swelling phenomena driven by concentration changes and interactions
between a discrete collection of confined particles while accounting for the thermal fluctuations of
the semipermeable membrane and the hydrodynamic transport of solvent. We use our computa-
tional methods to investigate osmotic phenomena in regimes that go beyond the classical Van’t
Hoff theory. We develop statistical mechanics theories for osmotic swelling of vesicles when there
are significant interactions between particles that can transform over time. We validate our theo-
retical results against detailed computational simulations. Our methods are expected to be useful
for a wide class of applications allowing for the simulation of osmotically driven flows, thermally
fluctuating semipermeable elastic structures, and solute interactions.
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1. Introduction. Osmotic phenomena play an important role in many biological
systems and technological applications [2, 3, 4, 5]. Examples include the manipulation
of fluids in microfluidic devices [27, 30, 37] and the transport of nutrients/turgidity
in plants [6, 7, 40]. The basic mechanism underlying osmosis involves a concentra-
tion difference in the solute particles within a system that often arises from either
a semipermeable barrier or an electric field. This allows solvent fluid to cross the
barrier but does not allow some species of the solute particles to cross. This results
in a chemical potential difference in the system that generates pressures that when
out-of-equilibrium can drive elastic deformations of the semipermeable barrier or the
transport of solvent fluid.
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The basic theory of osmosis was introduced by Van’t Hoff [8] for the osmotic
pressure difference II between two domains separated by a semipermeable barrier [38].
Van 't Hoff showed that the pressure can be described by II = §¢RT, where R is the
ideal gas constant, dc = ¢o — ¢1 is the molar concentration difference between the
domains separated by the semipermeable barrier, and T is the temperature of the
system in Kelvin. However, the Van’t Hoff theory requires a number of stringent
assumptions concerning the solute particles in such a system. These include the
following: (i) solute particles are dilute, (ii) solute particles do not interact strongly
with one another, and (iii) solute particles interact with the semipermeable barrier as
a hard wall with no appreciable interaction length-scale relative to the domain size.

For many biological systems, especially in cell biology, these assumptions are not
expected to hold. For example, when proteins or protein assemblies are transported
within a cargo vesicle, the confined particles are expected to interact significantly
through sterics and electrostatics over an appreciable scale with one another and the
vesicle membrane [40]. The Van’t Hoff theory also does not address important ques-
tions concerning out-of-equilibrium phenomena that can depend on the transport of
solvent driven by osmotic effects, changes in the interactions between solute particles
over time, or the role of flexible thermally fluctuating elastic barriers.

In this paper, we introduce a model for osmotic phenomena that can account
for hydrodynamic transport of solute, solute particles having significant interactions,
and flexible elastic barriers subject to thermal fluctuations. Our work builds on the
ideas introduced in the prior works [27, 28] that treat osmotic phenomena in the
much more simplified setting of symmetric geometries and impermeable rigid walls.
As a motivating application, we develop our model for spherical vesicles that confine
a collection of interacting solute particles. We study particular phenomena associated
with the osmotic swelling of vesicles that can be driven by the depolymerization of
the solute particles that in effect changes the number of confined particles. We show
that at equilibrium our mechanical model for osmosis agrees well with the classical
Van’t Hoff law. We then perform further investigations and develop a theory for the
case when the solute interactions are significant and account for these contributions
to the osmotic pressure [28]. We then study through simulations the osmotic swelling
of vesicles when the interactions and solute transform over time.

In section 2, we describe the details of our SIBM model and equations of motion for
fluid-structure interactions subject to thermal fluctuations based on [21, 24]. We then
formulate our model for the mechanics of our elastic membrane taking into account the
surface tension, a neo-Hookean shear resistance [32], and Helfrich bending rigidity [22].
We also introduce a potential energy to account for solute particle-particle interactions
and membrane-particle interactions.

In section 3, we present numerical methods for the spatial and temporal discretiza-
tion for the fluid-structure interactions and our elastic shell model for the membrane.
We discretize the elastic shell into a triangulated surface and use this representation
in our elasticity energy to derive forces in the material coordinates. We use the im-
mersed boundary method kernel introduced by Peskin [1] to couple the Lagrangian
and Eulerian coordinates in the fluid-structure interactions.

In section 4, we present simulation results for our model and develop theory. We
first validate our model and numerics by simulating the Brownian motion of solute
particles diffusing in a spherically symmetric potential. We compare our results with
the classical Van’t Hoff’s law [9, 10, 11] by a direct computation of the osmotic
wall pressure and also by observing the hydrostatic pressure that develops in the
fluid. Next, we generalize to the case of a semipermeable vesicle subject to thermal
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fluctuations, which deforms in accordance with the elastic energy, and interactions
with confined solute particles. We investigate the swelling of the vesicle in size when
the solute-solute interactions transform over time (weaken or strengthen). We also
develop a statistical mechanics theory for our system based on the solute particle
interactions, and we compare our theoretical results with our numerical simulations.
We find good agreement between our theory and simulations.

To our knowledge, this work is the first to simulate osmotic swelling of a vesicle
incorporating the effects of the elastic membrane, hydrodynamic transport, thermal
fluctuations, and, at the particle level, the membrane-solute and solute-solute interac-
tions. Our methods are expected to be useful for a wide class of applications allowing
for the simulation of osmotically driven flows, thermally fluctuating semipermeable
elastic structures, and, at the particle level, solute-solute interactions.

2. Equations of motion. For mesoscopic systems thermal fluctuations play
an important role, giving rise to important entropic contributions to the free energy
or contributions in the kinetics such as Brownian motion. We adopt a continuum
description of the solvent fluid based on the Navier—Stokes equations that incorporates
stochastic fields to account for thermal fluctuations. We consider physical systems
where the Reynolds number is rather small [18], allowing us to neglect the nonlinear
advection term in the material derivative. However, given the rapid local fluctuations
we retain the time derivative term as in the prior works [21, 24, 39]. This leads us to
the stochastic time-dependent, incompressible Stokes equations:

ou
pa (.’13, t) =+ vp (xvt) = ILLAU (xvt) + ftotal (.’1}, t) )

(2.2) V-u(x,t) =0.

(2.1)

Here u (x,t) denotes the Eulerian velocity field of the fluid at spatial position x €
G C R? and time t € RY; p(x,t) is the pressure; u is the uniform dynamic viscosity;
p is the uniform fluid density; and fi.. (x,t) is the total force density acting on the
fluid, including body forces and force densities that arise from thermal fluctuations.

We remark that there has been a lot of work on fluctuating hydrodynamics con-
cerned with both their mathematical structure and their use in physics as a description
of mesoscopic phenomena. An analytical study of the Navier—Stokes equations driven
by “white noise” was first undertaken by Bensoussan and Temam [12]. Later, this ap-
proach was substantially developed and extended by many authors [13, 14, 15, 16, 19,
20, 45, 46]. Computational methods for fluctuating hydrodynamics were developed
in [21, 28, 42, 41, 43, 44, 47].

In our work, we use similar fluctuating hydrodynamic descriptions coupled to
elastic microstructures by employing the immersed boundary method coupling of [1,
25, 26, 29, 31] and the stochastic Eulerian-Lagrangian method framework of [21]. A
significant extension that we introduce here is the ability to capture the dynamics of
mechanical structures that are semipermeable to the fluid and the discretization of
an elastic shell model for neo-Hookean materials.

We describe the semipermeable membrane as an embedded surface

(2.3) Xmemb (q,t) C R?,
where q = (q1,q2) € R? are material curvilinear coordinates attached to the mem-

brane. The topology of the membrane is that of a sphere. Let 2 be the region
contained within this membrane, and let 02 be the membrane itself.
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The elastic energy associated with a fluid phase lipid bilayer membrane was in-
troduced by Helfrich [22] through the bending energy:

(24) Sbcnd [chmb] = % H2dA,

o0
where k; is the bending modulus, dA is the element of area, and H is twice the
mean curvature; i.e., H is the sum of the two principal curvatures at any point of the
membrane.
In addition to the bending energy, we consider a membrane that resists both
stretch and shear in an elastic manner. For the energy associated with changes in the
area of any part of the membrane, we introduce the surface tension energy

(25) Etension [chmb] =0 dA,
o0

where o is a constant equal to the surface tension at every point of the membrane,
and dA is the element of area on 9f). This is the kind of surface tension that we use
throughout this paper. We remark that this is unrealistic for a lipid bilayer, which
resists local changes in area much more strongly. The reason that we use a simple
surface tension model is so that we can easily see osmotic swelling as a change in size
of the vesicle, and not merely as a change in shape or as a rise in pressure.

A more realistic model for the stretch resistance of the vesicle that could be
considered is

(26) gtension [Xmemb] = 0/

Q0

m

dA — dAy Ao,

dAy

where m is a parameter that controls the sensitivity of the surface-tension energy to
local changes in membrane area, 0€) is the reference configuration of the membrane,
dAy is the area element of the reference configuration, and dA is the area element of the
deformed configuration. Strictly speaking, even when m = 1, (2.6) does not reduce
0 (2.5) because of the absolute value in (2.6). However, if m = 1 and dA > dAy
everywhere, then (2.5) and (2.6) are effectively the same since the absolute value
becomes irrelevant and the extra term in (2.6) becomes constant. We do not use (2.6)
in this paper, however, and mention it here only as a generalization that would be
considered in the future.

Besides curvature and stretch, our model membrane also resists shear. This is
modeled using a two-dimensional neo-Hookean energy (without any bulk term). Let
Z (q) € R? be the reference configuration, and let X,emb (g, 1) be the corresponding
deformed configuration at time ¢. Then 0Xemb/90q and 0Z/0q are 3 x 2 matrices,
and right Cauchy—Green deformation tensors are defined by

. aXmemb T aXmemb
@7 G_< dq > < dq )

o (2) (%)

and are 2 x 2, symmetric, and positive definite matrices. Notice that the “row vector”
convention is adopted for the vector-valued derivative in (2.7). The two-dimensional
neo-Hookean shear potential is

_ & —1 detG 7% o %
(2.9)  Eshear [Xmemb) = 5 / (trace (GGO ) (det G()) 2) (det Gg)2 dg,
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where kg is the shear modulus of the membrane.

Although we use (2.9) directly for computational purposes (see Appendix A.3 in
the supplementary material), the meaning of (2.9) is clarified by rewriting it in terms
of the principal stretches A\; and Az, which are positive numbers such that A\? and A3
are the eigenvalues of GG, ! The expression for Egpear in terms of Ay and Ay is

21 1\2 .
(210) gshcar [chmb] = E / )\1 i AQ -2 (det GO)E dq
2 A1 A2

The above formulation of a neo-Hookean surface shear energy differs from that of
a three-dimensional neo-Hookean material in two important ways. The constant —2
that appears (2.9) would be —3 in the case of a three-dimensional material, and the
exponent —1/2 that appears (2.9) would be —2/3. Our choices of these constants have
the effect that Epear is invariant under a change of scale. That is, with the reference
configuration held fixed,

(211) gshear (TX) = gshear (X)

for any configuration X and any positive constant r. Since the Helfrich bending
energy is also scale-invariant, the only term in the membrane energy that resists
osmotic swelling is the surface tension.

In addition to the elastic potentials of the membrane, we consider the osmotic
effect of V), identical and possibly interacting solute particles Xgﬁ% contained by the
membrane vesicle X ,empb. For each solute particle we take into account the particle-
membrane interaction potential

(212) 6 (||x5 = Xuem(a)|))

and the particle-particle interaction potential

(2.13) (HX(k) x)

prt prt

)

where ||-|| denotes the Euclidean norm. In what follows, the total interaction potential
is given by

(2.14) /Z@ (/%% = X H)dq+Z\Ika(HXprt Xph
k,j

3J
k<]

).

with

(2.15) X = (chmb,x(” . X<NP>),

prt» prt

so that X gives the combined configuration of the membrane and the solute particles.
We combine the four potentials from (2.4), (2.5), and (2.10), and let

(216) & [X] = gbend [Xmemb] + gtension [Xmemb] + gshear [Xmemb] + o [Xmemba Xprt]

be the total potential energy of the system, including both the elastic energy of
the vesicle membrane and also the solute-membrane and solute-solute interaction
potentials.
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The membrane-solute system described above is immersed in a thermally fluc-
tuating fluid. To model this, we use the methodology described in [21], specifically
regime II of the stochastic Eulerian—Lagrangian method (SELM), which assumes that
the immersed materials (membrane and solute) are neutrally buoyant and that their
interactions with the ambient fluid are overdamped. We use this formulation and
adjust the drag operator so that the immersed material can slip relative to the sur-
rounding fluid. We use this to model the permeability of the membrane to the fluid.
This feature is essential for us to allow for the osmotic swelling to occur by the in-flux
or out-flux of fluid through the membrane.

Two types of random forces are used. A Lagrangian random force is applied
directly to the immersed material to achieve fluctuation-dissipation balance with the
slip resistance. An Eulerian random force is applied to the fluid to achieve fluctuation-
dissipation balance with the fluid shear viscosity. Together, these random forces bring
the system to thermal equilibrium at a specified temperature 7.

The governing equations are as follows. For the fluid, we have the time-dependent
Stokes equations (2.1)—(2.2), in which

(217) ftotal (.’B,t) =AF + (VX A)kBT+gthma

and for the immersed material we have the overdamped equation of motion

0X
E :l—‘u(w,t)—f—'rfl (F+Fthm)

(2.18)
Here T is the absolute temperature in degrees Kelvin, kg is the Boltzmann constant,
and Y is a positive definite dissipative operator describing the viscous interactions
coupling the structure to the fluid. Along with T, the other two operators I' and A
in (2.17) and (2.18) will be defined later.

In these equations, the force density F is the variational derivative of the elastic
energy functional & [X]:

8¢ [X]
2.19 F=——.
(2.19) 60X

Here we use & instead of the more conventional symbol ¢ to avoid confusion with
the kernel function, which appears later. We point out here that (2.19) has both a
continuous and a discrete part:

(220) F = (Fmemb (q) 7F£)1r)ta F}()Qr)tv R F]()Jr\ip)) .

The meaning of (2.19) is that, to first order in §X,
NT’

(2.21) 5E = - / Finemb (@) - Xmemn (q) dg — Y FLil - 6X%).
k=1

Note in particular that Fiemp is a force density with respect to the Lebesgue measure
dq, but that F is a force, not a force density.
The force density Femp applied by the membrane to the surrounding fluid is

88 [X]

2.22 Fromb = — —oid
( ) b axmcmb
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and the force acting on the kth solute particle and transmitted by that particle to the
fluid is

X 08 (X)

(k)
2.2 F = =
( 3) prt axk an

In (2.23), we are using the notation of a partial derivative with respect to a vector.
Thus, in components,

(2.24) B ==

for a =1,2,3.

The stochastic driving fields (random forces) are taken to be Gaussian random
fields that are white noise in time with zero mean and spatial covariance structure
given by the fluctuation-dissipation principle [21]:

(2.25) (Fenm(q, 8)Fipn (', 1)) = 2ksTYS(t — 5)5(q — @),
(2.26) (Ginm (T, 8)G i (@, 1)) = —2kpTpAs(t — 5)5(x — '),
(227) <Fthm(q7 S)ga]m(m7 t)> =0,

where A is the vector Laplacian.

In this paper, we construct Y as a block diagonal matrix with 3 x 3 blocks by
assigning a scalar 7, to each Lagrangian point in the simulation and then setting the
kth diagonal block of T equal to v4I, where I is the 3 x 3 identity matrix. For solute
particles, the value of 7 is given by the Stokes drag formula

(2.28) Vi = 6mpry,

where p is the viscosity of the fluid and rj, is the Stokes radius of the solute particle.

In our model, the slip-coefficient 7, ' in (2.18) accounts for the permeability to
fluid of a patch of the membrane. Our model accounts for the passage of fluid through
the membrane by allowing for “slip” of the control points representing the membrane
relative to the local fluid velocity. Our model is an analogue of Darcy’s law where at
steady state our membrane velocity is proportional to the normal component of the
local “pressure” acting on the membrane. In our model this pressure (force per unit
area) is determined from F + Fyp,.

Because we have chosen to make all of the diagonal blocks of T be multiples of the
identity, we get tangential as well as normal slip between the membrane and the fluid.
The tangential slip could be avoided by making the kth diagonal block of Y= be of
the form ~, 1nknf, where ny is the unit normal to the membrane at the membrane
point k, and the superscript T' denotes matrix transposition, so that nknf isa3x3,
rank-1 matrix, but we avoid this complication for now.

To convert between Lagrangian and Eulerian coordinates, we introduce two linear
conjugate operators [1, 21]: A, a spreading operator defined by

(AF) (. 1) = / P (4,1) 5 (2 — X (q,1)) dg

NP
(2.29) +>FR 10 (2 =X ®),
k=1
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and, similarly, the local averaging operator I', denoted by I'emp and I'pp¢ for mem-
brane and solute particles, respectively:

(2.30) (Tmempu) (g, t) = /u (x,t)d. (x — X (g,t)) de, qen,
(2.31) (Cprpua), (£) = /u (z,t) b, (m -x% (t)) de, ke{l...N,},

for arbitrary functions F and w. These operators both involve a three-dimensional
kernel function d.(r) similar to the one in the discussion in [1, 21]. This function will
be defined below.

We remark that there are two primary reasons that we introduce a kernel function
(as opposed to a Dirac d-function) in our continuum mechanics description of the
system. The first reason has to do with calibrating the mobility M of a particle
represented in the immersed boundary method by the operators that perform the
force-spreading A and velocity-averaging I'. The mobility M gives the steady-state
velocity V in response to an applied force F by V = MF. The operators I', A have
been shown to be related to an immersed boundary particle’s mobility by M = I'L~1A.
The £~! denotes the solution operator for the fluid velocity u of the steady-state
incompressible Stokes equations with force density f = AF; see [21, 24]. An important
result is that the particle mobility satisfies V. = MF = TI'u for the force density
f. If the Dirac é-function (¢ = 0) is used for the operators, the force density is
a Dirac d-function and generates in the Stokes flow a singular velocity field u at
the particle location. The I' operator then involves a Dirac d-function (¢ = 0) and
results in evaluating the velocity field at the particle location which is singular. As
a consequence, a model of a single particle must use an operator A that spreads the
force over a finite length-scale ¢ > 0. To calibrate the immersed boundary particle
mobility M we use the kernel function 0. and introduce the length-scale ¢, which is
closely related to the particle’s hydrodynamic radius.

The second reason we use a kernel function d. has to do with the behavior of
fluctuating hydrodynamics. In the continuum description the thermal fluctuations
are modeled by a stochastic driving field that is Dirac J-correlated in space. As
a consequence, the fluctuating hydrodynamic equations generate a fluid velocity u
that is a generalized function (distribution) which is not defined pointwise. When
modeling the diffusion of material points the operator I' cannot simply evaluate the
fluid velocity u at the particle location but instead must perform an average over some
nonzero length-scale. Similar to the mobility calculations, to obtain a finite diffusivity
for the particles and membrane we introduce the kernel function . and length-scale
¢, which for isolated particles is closely related to the particle’s hydrodynamic radius.
More discussion can be found in [21, 24].

The operators A and I' are adjoint in the following sense:

(2.32) / (o) (a) - (q) dg = / o (@) - (M) (z) da

g

for all smooth functions ¢ and v, where the domains of the structures and the fluid
are denoted by 2 and G, respectively. This ensures a form of conservation of energy in
the Eulerian-Lagrangian coupling, in the sense that the rate at which the immersed
boundary does work in the fluid comes out the same, regardless of whether it is
expressed in terms of Lagrangian or Eulerian variables.
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The operator A also appears in (2.17) through the term (Vx - A)kgT. This
describes a deterministic drift induced by the fluctuations that vary with the con-
figuration of the immersed structure. This arises from the It6 calculus formulation
of the stochastic PDEs and is explained in [21], and its implementation here is de-
scribed below (see (3.32)). In summary, the complete structure-fluid coupled system
of equations is given by

ou
(233) 5 (e, t) + Vplat) = MAU (,0) + Frora (1)
(2.34) u(x,t) =
& [X] 5bcnd [chmb] + 5tcnsion [chmb]
(235) + gshcar [chmb] +o (X) )
X
(236) Fmemb - axmcmb )
k) 35 [X] o 0P (X)
(237) Fprt - an - 8X}€ )
(238) ftotal (iL’, t) = AF + (VX : A)kBT + Gthm>
X
(2.39) 88_75 =Tu(z,t) + Y (F + Fium) -

3. Numerical method. In this section, we discuss the discretizations of (2.33)—
(2.39). First, in section 3.1, we discuss the three different elastic membrane energies.
Subsequently, in section 3.2, by introducing a particular kernel function, we specify the
coupling between the Lagrangian and Eulerian variables. The interaction potential
is discussed in section 3.3. The spatial discretization of (2.33)-(2.39) is given in
section 3.4, followed by the temporal discretization in section 3.5.

3.1. Discretization of membrane potentials and evaluation of the cor-
responding forces. Given a deformed configuration X,emp (¢) at time ¢, we present
the discretizations of the bending, tension, and neo-Hookean potentials. We discretize
the membrane vesicle by a triangular mesh with N, vertices:

2 NIJ
() s X (8)- 5 X, ().

memb

(3.1) x

memb

The discretized elastic energy functional will then be a function of the form

(3.2) €7 Kuermts (1] = €2 XLy (8), Xy, (6),- - X000 (1)
for the subscripted index Z = bend, tension, or shear. The specific function we

use in each case is described in Appendix A in the supplementary material. The
parenthesized superscripts index the vertices of the discretized membrane, and the
tilde symbol stands for the discretized approximation to the elastic energy. As we
refine the discretization of the vesicle, that is, as N, — oo, &7 approaches £7. From
now on, we consider the time-dependence to be understood and write Xyemn (t) =
Xmemb'

Recall that in (2.36), the first variational derivative of the elastic energy functional
is minus the Lagrangian force density. We define the analogous discrete quantity by
taking the gradient of the elastic energy: Vx&z. Consequently, the force at the kth
node becomes

aENI [ momb]
8X(k)

memb

(3.3) F*) — —
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for K =1,...,N,. Recall that we are using the notation that the partial derivative
with respect to a vector denotes the gradient with respect to that vector. That is, in
components,

(3.4) ) — _ 962 Xmemb]
’ « (k)
9 (Xmemb)a
fora=1,2,3.

It is worth pointing out that as we refine the triangular mesh, i.e., in the limit
that the mesh width goes to zero or as the number of the vesicle markers N, — oo,
F®*) — 0. The reason is that F(*) is the force, rather than the force density. On the
other hand,

N,
(3.5) lim F =F(V),
N, —c0
kst

where V is any sufficiently regular subset of R®. Here, F(V) is finite and typically
nonzero if V contains any point of the vesicle membrane, and has the interpretation
of being the total force applied to the fluid by the part of the vesicle membrane
that lies within V. For the details of the force computation, see Appendix A in the
supplementary material.

3.2. Interaction kernel. Once we find the Lagrangian forces from the elastic
energy as described above, the next question is how to compute the force density in
Eulerian coordinates. For this purpose, we introduce an interaction kernel function.
This same kernel function will also be used later for velocity interpolation.

We use the interaction kernel of width 4c described in [1]. It is defined as follows:
for any r = (r1,r9,73) € R3,

1 1 T2 T3
= 5o (2)o(2)(2).
(3.6) (r):=Se()el7)e (S
where ¢ (r) is compactly supported (its support has width 4) and is defined piecewise
by

%(3—2|7“|+ 1+4|r|—4|r|2) for 0 <|r| <1,
B0 el = 1 <5 —2r| - \/—7+ 12|r| — 4 |r|2) for 1 < |r| < 2,
0 for |r| > 2.

The derivation of this kernel from a collection of properties that one would like
an interaction kernel function to have is described in [1]. For completeness, we also
include the analytic derivative of ¢ that is used to find the force density of the wall-
solute interaction potential:

sgn(r) [ 1—2|r|
1 ( 1+ \/1+4r|4r2) for 0<r] <1,

1N
(38) #(r) = | seni) (_1 _ 32 _> for 1 < |r| <2,
\/ —T+12|r|—4r2
0 for |r| > 2.
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Note that ¢(r) and ¢'(r) are both continuous functions.

We remark that as the grid is refined, one should hold ¢ constant as h — 0.
However, in practice, one often finds in a typical immersed boundary simulation that
¢ ~ h. This arises since the parameter ¢ is comparable to the particle’s hydrody-
namic radius and serves to determine the mobility of an immersed particle. On the
other hand, the mesh width A used in numerical discretizations is often employed for
computational efficiency to be on the order of the smallest relevant features in the
fluid flow. Since these two length-scales are comparable, this results in the use of the
grid refinement h ~ ¢. During grid refinements ¢ should be held fixed to retain the
particle mobility. A best practice to benefit from the numerical advantages of the
Peskin kernel function [1] is to choose a mesh width so that ¢ is an integer multiple
of h.

3.3. Interaction potential. In this section, we describe the discretization of
the interaction potential ®(X) that is defined in (2.14) above. Also we specify the
functions © and V¥ ; from which that interaction potential is constructed, and we
give expressions for the forces that are derived from the interaction potential.

The discretization is accomplished simply by replacing the integral in (2.14) by a

suimn
v NP NP
4 k L k j

(3.9 2X) =Y 0 (X0 - X ) Aa+ 3w, (x5 -x5)).

=1 k=1 k,j=1

k<j

where
(3.10) X = (X s Xy Xt X

and where NN, is the number of solute particles, N, is the number of Lagrangian points
representing the vesicle membrane, and Aq is the Lagrangian measure assigned to
each membrane point, so that N,Aq is the total Lagrangian measure of the vesicle
membrane.

The function © can be any bell-shaped function of one variable. The argument of
O is the distance R between a point on the vesicle membrane and a solute particle. For
computational efficiency, © should have finite range, i.e., bounded support. Since we
already have such a function available, we use a scaled version of the one-dimensional
kernel function for this purpose. Thus, we use

(3.11) O (R) = X (R) = 2 <§> ,
where ¢ is defined by (3.7), and A\ is a scaling parameter chosen to make a potential
barrier that is large enough to prevent solute particles from crossing the vesicle mem-
brane. The distance 4¢ can be thought of as the effective “thickness” of the membrane
in our model; see Figure 1.

The function ¥ is needed only for applications involving solutes with internal
structure, so that each solute molecule needs to be represented by more than one
particle. The only example of this that occurs in the present paper is a collection of
dimers. To describe such a collection, let D be the set of ordered pairs (k, ) such
that k£ < j and particles k and j belong to the same dimer. Then N, = 2|D|, and

KR, (k.j) € D,
0 otherwise,

(3.12) Ui (R) = {
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Interaction potential barrier

Interaction

15k T

Fic. 1. The thin shell around the boundary represents where solute particles interact with
the vesicle wall. A wall-particle interaction potential © is chosen such that the energy barrier is
approzimately 15kgT to avoid significant leakage, that is, to ensure that the particles stay inside the
vesicle.

where K is a constant with units of force/length that gives the stiffness of each dimer.
(We are assuming here that all of the dimers are identical.) In applications involving
monomers only, the terms involving ¥ in (3.9) are not used at all.

The forces that result from ® are as follows:

w 0P
prt — k
ox )
Ny (£) (k)
X - X
k 4 mem T
ot S
=1 HXmemb - Xprt ‘
N @) x®
Sy X9 ox
/ (k) _ x @ ||} _Zprt — Pprt
(313) + Z \Ilk,j (HXprt Xprt ) HX(J) B X(k) ;
inl} prt prt
0 0P
Fmemb ax(g)
memb
N (k) _ 5 ()
X —X
oS- xf)
= X i —X
=1 H prt membH

where f/(z) denotes the derivative of any function of one variable f(x).

In the special case that the solute molecules are monomers, the term involving ¥
in (3.13) is zero, and in the special case of dimers, the whole sum involving ¥ reduces
to the single term

j (k k
(3.15) K (X0 - x)

where j (k) is the index of the particle that is linked to particle & to form a dimer.
Note that the Fgﬁz and the Ffﬁlmb are forces, not force densities. Also, as Aq — 0,

F¥ = O(1), since N,Aq = O(1), but F) O (Aq), since Ny,Ag = O (Aq).

prt — memb

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/01/20 to 128.122.149.92. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

B672 C.-H. WU, T. FAL, P. ATZBERGER, AND C. PESKIN

Finally, for completeness, we note that

A R
(3.16) o (B) = 2 (—) |
and that ¢ is given by (3.8).

We remark that in principle the total number of operations required to compute
the particle-membrane forces is O (N, Np,). It should be mentioned that this cost can
be reduced by taking advantage of the finite range of the interaction, which we have
denoted by the parameter c. For the range of N,, encountered in our models in the
present work, we have found that the fluid calculations dominate the computational
cost at each time step. However, for other models this may not be the case, and
we mention briefly a way the particle-interaction costs can be reduced. This can be
done by introducing a cubic lattice of cells of width 2¢ and sorting the membrane
points and the solute particles according to the cells in which they lie at any given
time step. Since each solute particle or membrane point can be classified based on
its coordinates alone, the work to do this sorting is O (N, + Np,). Now a given solute
particle in a particular cell can interact only with a membrane point in the same or
in a neighboring cell, where all 26 cells that touch a given cell (even at only a corner)
are included as neighbors. The actual amount of work required will now depend on
the spatial distribution of solute particles and membrane points, but it is clear that
in many cases it will be drastically less than N, N),.

3.4. Spatial discretization. The spatial discretization of our system is as fol-
lows. At time ¢t > 0 and at the Eulerian position @, let the fluid velocity be denoted
by w (z,t) and the pressure by p (x,¢). The fluid variables u and p are represented
with periodic boundary conditions in all three directions. Let

(3.17) Um () = u(mbh, 1),

where h is the grid width, and m = (mq, ms, m3) is a vector with integer components,
and similarly let

(318) pm(t) =D (mhv t) )

(319) (ftotal)m (t) = ftotal(mh7 t)

Then the spatial discretization of (2.33) and (2.34) is

(3.20) oD D] (1) = L)1)+ (Frat) (0,
(3.21) D" - up(t) =0,

where we define the discrete gradient, Laplacian, and divergence in the following way:

- m+teq t) — m—e, t
(3.22) [th}m (t) = ; Pme, )zhp ( )’
3
(3.23) [Lhu}m (t) = ; Ume, (t) + un;l;ea (t) — 2um(t)7
- Umte, (t) = Um—e, (¢
I I

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/01/20 to 128.122.149.92. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIMULATION OF OSMOTIC SWELLING BY THE SIBM B673

Here {e, : a = 1,2,3} is the standard basis of R3.

We remark that we could have used a spectral discretization in space. We have
instead chosen a spatial discretization that is motivated by considering a finite volume
formulation of the fluid-structure equations. This ensures that our discrete numerical
methods—even with truncation error—transfer momentum through a local flux while
globally conserving the fluid-structure momentum.

Recall that the spreading and interpolation operators I'memb, I'pre, and A account
for the conversion between Lagrangian and Eulerian coordinates. We denote the
spreading forces and interpolated velocity by

(325) felastic :KF
and
(3.26) UXE o)1) = Tnempu and  UXS) (1)) := Tpru,

respectively. We use the lattice versions of fmomb, fprt, and /~\, and replace the inte-
grals with the corresponding sums. That is, (2.29), (2.30), and (2.31) are discretized
as follows:

(327) KF = fm clastlc Z F k) ( - X(k) (t)) l

(3.28)  Tamempt = UXY (1) 1) = Z U (1) 0 (@m — XL, () 7,

(320)  Tprw = UX) ( Z tm (1) 6 (@m — X1 (1)) 17,
where

(3.30) F® (1) = - gi[(xm((t))]

or simply

(3.31) F(t) = —VxE [X(1)].

The term (Vx - A)kgT in (2.38) is the local divergence in the configuration X of
the spreading operator A. It is evaluated as follows, using ¢ and h interchangeably
since later on we will set ¢ = h:

kBT(vX-K)
m
o (mw_an) ; (zg_xw,z)) ; (zns;)_xwm)
h h h
N
kT = 2D X (kD @ X (2) 2 X3
832 =S| e(m) e () e ()
k=1

(1) (k,1) (2) (k,2) (3) (k,3)
x ) —X x 2 —X [ ) —X
o (Bt e () @ ()

where ¢ and ¢’ are defined as in (3.7) and (3.8). We denote

(3.33) Fnstrue =kpT (Vx : 7\) :

m
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and combining with f we write

m,elastic?

(334) .fm (t) = .fm,olastic (t) + fm,struc (t) .

Using the finite difference operators (3.27)-(3.29), the whole spatially discretized
system becomes

Oum

(3.35) P + [th]m = H[Lhu]m + fm totals
(3.36) D" um =0,
(337) (E,:[X] = (E/:bcnd [X] + gtcnsion [X] + é:shcar [X] + &) (X) ’

9E [X]

(k) — _ZZ
(3.38) FY = IX ()’
.fm7tota1 - kBT (VX ’ K)
N,
+ Z F(k) (t) 50 (CCm - X(k) (t)) =+ gm,thm

k=1

(3.39) =fm t 9m thm>
oxX*)
_ 11k —1 (1 (k) (k)

(3.40) = =uM (F®+FE,).

3.5. Temporal discretization. For our numerical simulations, the spatially
discretized system of equations must be further discretized in time. Since there is
no nonlinear advection in the time-dependent Stokes equations and we use periodic
boundary conditions, the fluid solver can be entirely based on the discrete Fourier
transform (DFT). The forward and backward DFTs over the N? lattice points are
defined by following formulae:

~ 1 —2mim-
(3.41) Uk = 573 Zume Zmim-k/N
(3.42) Um = Zﬁke%im'km,
k

where 0 < k, < N—1and 0 <m, < N —1 for a =1, 2, 3 representing the Cartesian
components of the indicated vectors, for instance, k = (ki1, kg, k3) € R3.

To solve (3.35)-(3.36), we use a projection scheme to satisfy the incompressibil-
ity constraint. In the discrete Fourier domain, the discrete equations (3.35)—(3.36)
become

Oty 1. 1 1-
(3.43) e + ;kak = _Euk + ;fk,totalv
(3.44) Dy - iy =0,

where the discrete gradient and —pu/p times the Laplacian in the frequency domain
are given by

(3.45) Dy = < sin (@) :

8.10 net a3 ()
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In (3.45), the sine function is applied to a vector by applying it to each component,
so that the oo component of sin (2rk/N) is sin (27k, /N) for o = 1,2, 3.

We also define two operators, the projection onto the Dy direction and the pro-
jection onto the plane orthogonal to the Dy direction:
Dy - DT
L2
D

1 _]jk']jg

(3.47) Py = P =27 >
D

To ensure that the above notation is well defined, for the set of modes K for which
Dy = 0, we set the corresponding operators P, = 0 and ’Plf = 7. This set is given
by

(3.48) K ={k=(k1,ka,k3) | ka =0 0r N/2 for « =1,2,3}.

Note that, for all k, Dy -ty = 0 by incompressibility, and therefore Dy - Oyt = 0.
For any ¢t > 0, the pressure can be derived by taking an inner product with Dy on
both sides of (3.43):

7Dk'}k total
. — =1z k # ’C,
(3.49) Pk = [[Dx][*
0, keK.

In the sense of the It6 calculus notation, the fluid equations with both structure
and thermal forces can be expressed as shown in [17, 24], in the following way:

A~ 1 ~ - ¥
duy = _Eukdt +p 1P1Jc_fk,totaldt

1. 1 N ~

(3.50) = <—T—uk + ;Plffk> dt + /26 Pi-dBy(t),
k

where dBy represents a three-dimensional complex-valued Brownian motion, with

the constraint df’:N_k = df’:k to ensure that the thermal forcing is real-valued, where
N = (N, N, N). Based on the covariance structure (2.25)—(2.27), the thermal forcing
coefficient is given by

pL37y

2553;}( for k ¢ K.

(3.51)

{ kp T for k € K,
fe =

In the temporal discretization, we use the same increment At for all time steps,
and the state variables at the nth time step corresponding to the time t,, = nAt are
denoted by a superscript integer n. We take the instantaneous force to be constant
over the time increment At. The procedure by which the fluid velocity is updated
from one time step to the next is described analytically by the following recurrence
relation based on an exponential time stepping scheme [24]:

~m ~m 1—a e =T
(3.52) gt = ey + (7[)1‘)71«7’1?& + Pic Bx,
where
(3.53) ax = e~ 2/ and where EZ = 01 G,
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accounts for the thermal fluctuations over the time step. Here, the random variable
Gy is obtained by generating a three-dimensional complex-valued standard Gaus-
sian random variable with mean 0, variance 1, and independent real and imaginary
components for each Fourier mode k. The variance of EZ is therefore given by

(3.54) op = &k (1 —ag) .

Upon discretizing (3.40) in time, the immersed boundary positions X" (k) are
updated by

tn+1
Xn+]_7(k;) _ Xn,(k) + Zé‘c (wm _ Xn,(k)) h3/ Um (S) ds
t
m

n

- mn, n(k)
(3.55) AT (B0 L B,
where
(3.56) tn =nAt and X% = X®) (nA),

and similarly for all Lagrangian variables. In (3.55), the fluid velocity wum(s) is inte-
grated to resolve the dynamics of the Fourier modes of the fluid. We define

tnit
(3.57) ar - / ten (5) ds.
t

n

To update the position of the structure, as discussed in section 3.3.5 of [24], QZ can
be expressed in the Fourier domain as

(3.58) QZ = I:Ik + CLk’P]féZ + Cz,k'Plfék,

AN
where Z). has been defined above, and

~n

(3.59) Flic = 7 (1= a) @ + (At = nc (1 - ) p~ ' Pic Fi -

The two sets of coefficients in (3.58) are given by

At
(3.60) ¢1x = Tk tanh <—> and ok = \/2&(7'13 (At —2c1 k) .
27'k

In this manner, (3.55) becomes

- 2YkpT
(3.61) Xr+hk) — xm() L T[] + Aty (F"=(k) + 733 ) ,

where we have approximated F?};gf) by

(3.62) gt _ [ 2TkBT

thm At N’

and N is a three-dimensional real-valued Gaussian random variable with independent
components, each of which has mean 0 and variance 1. Notice that when the time
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step is taken small, the temporal integrator presented in (3.61) has weak first order
accuracy. A detailed error analysis is given in [33].

We remark here that the reason we represent our fluid velocity field in a Fourier
series is twofold. First, we use the fast Fourier transform and symbols of the discrete
Laplacian (as discretized by the finite volume method) to solve efficiently the pressure
equations that impose incompressibility of the fluid. Second, we use the Fourier series
representation of the time-dependent velocity field to develop an efficient stochastic
integrator for the temporal dynamics of the PDE. The linear fluid equations decom-
pose in Fourier space into a system of first order ODEs that can be partially integrated
analytically using exponential factors. This is the basis of our numerical methods that
overcomie stiffness in the temporal dynamics, allowing us to use comparatively large
time steps relative to the relaxation time-scales of the fast fluid modes.

4. Numerical experiments in equilibrium statistical mechanics. In order
to validate our methodology and assess its accuracy, in this section we give several
numerical examples of processes in thermodynamic equilibrium.

4.1. Temperature. The stochastic forces were introduced to model the system
as if it were in contact with a heat reservoir at a prescribed temperature. We check in
practice our stochastic thermostatting. This can be done by considering the amount
of kinetic energy per fluid degree of freedom. According to the equipartition theorem
of classical statistical mechanics, each degree of freedom contributes a kinetic energy
of %kBT at thermal equilibrium. The kinetic energy per unit volume is given by

P 2_ P
(4.1) 5 lull” = 5 (uf +3 +u3)

and the total kinetic energy can be calculated by integrating over the entire fluid
domain. Of course, we can discretize this integral by defining a grid with cell volume
h? on which the integral becomes

(4.2 53 lum 1
If the grid is N x N x N, the number of degrees of freedom is
(4.3) 2(N® —8)+3x 8=2(N3+4).

Note that, in the calculation of the number of degrees of freedom, the factor that
multiplies N2 is 2, not 3, even though there are three components of velocity. This is
because the velocity has to be divergence-free, and this removes one degree of freedom
per grid point. In the above formula, there are eight modes that are multiplied by 3
instead of 2. This is because these modes are automatically divergence-free.

Thus, the kinetic energy of the fluid is expected to be

1
(4.4) 2(N3 + 4)§kBT = (N3 +4)kpT.

Putting all of the above together, one gets an output temperature (like putting a
thermometer in the fluid) at each time step, which may be averaged over many time
steps and compared to the input temperature. This is a good check of whether the
method controls the system temperature correctly.

Setting the kinetic energy (4.2) and (4.4) to be equal and solving for 7', we have

P Um 213
(4.5) () = QZ&HV |3+4()t;]|3| h
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Fi1c. 2. (a) The temperature in the simulation of the system fluctuates around the input temper-
ature setting of 311.16 K. The test is done with a vesicle and solute particles in the simulation. (b)
Histogram of the temperatures of all the Fourier modes. The simulation was run with the parameters
N = 256, L = 2000 nm, T = 311.16 K, At = 1 ns. 2,000 time steps were simulated.

As shown in Figure 2, the actual temperature in our simulation fluctuates around the
input temperature setting. In fact the average temperature over 2000 ns is 311.1587,
which differs by merely 0.000421% from the input temperature setting.

Statistical mechanics and thermodynamics interpret temperature as an observable
quantity associated with the ensemble instead of any particular microstate of the
system. While it is true that for a collection of particles the average kinetic energy
does appear to manifest properties similar to those of the temperature, the actual
instantaneous kinetic energy fluctuates significantly. It is not until we consider a
system that is either infinitely large or an average over time that we get a meaningful
value for the temperature.

As discussed in [21, 24], the temperature is imposed on the ensemble of parti-
cles/structures. Here we explicitly thermostat the system by our choice of stochastic
driving fields to achieve a given target temperature. This is done in the sense that
we obtain a particular Boltzmann ensemble for the probability distribution of micro-
states of the system. That is the sense in which temperature 7" has meaning, not
instantaneous microstates or instantaneous kinetic energy. With that said, there are
further estimators that can be constructed to compute 7" from simulation trajectories
to verify the implementation of the thermostat.

Now, we validate the equilibrium “temperature” (variance) of each of the Fourier
modes, not just the total kinetic energy. We assign to each mode a “temperature”
based on each empirical variance, i.e.,

skpTe | c |C
(46) |'&k|2 _ pL3 9 )
< > ofle, kK,

or rearrange terms, i.e.,

pL? (i)

—1  k

(4.7) Tie= pLs?Ekl2>, o
Gyt k¢K.
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Notice that (4.7) is not an actual thermodynamic temperature but simply an
approximation for the magnitude of the energy fluctuations—temperature here is
constant by definition, and energy fluctuates. In theory, if a very small time step
were adopted, and statistical errors were eliminated in the sense of an average over a
significantly long time, the distribution of temperatures would be a delta function. A
histogram of all the Fourier modes is shown in Figure 2(b).

4.2. Spherically symmetric potential. As a preliminary test before consider-
ing the full vesicle, we consider particles confined in a spherically symmetric potential
given by

NP
k
(48) Er [1Xpmll =AY e (||X00 | - R).
k=1
where Xgﬁ% is the position of the kth solute particle, IV, is the number of particles, R

is the radius of an imaginary vesicle, and ¢ is the kernel function as defined in (3.7).
Note that in this setup there is actually no vesicle, but rather a potential barrier. To
avoid leakage of the solute particles, A is chosen so that as a single particle passes
through the vesicle from position R — ¢ to position R, the energy changes by roughly
15kpT.

The forces exerted on the wall can be easily computed by taking the gradient of
(4.8), and thus the osmotic wall pressure is defined as the time average of the sum of
the normal forces exerted by the solute particles divided by the area of the wall [27],

N,
1 - .
(4.9) (Pyall) = o=y < _F®) -n<k)>,
k=1
where
. k k
(4.10) atk) = Xér%/ Hxérz )

since the spherically symmetric potential is centered about the origin.
We simulated 100 solute particles confined by the spherically symmetric potential,
and the osmotic wall pressure in the equilibrium state should obey Van’t Hoff’s law,

N,
(4.11) (Pwanl) = 7’%37’ ~ 31.6225 (amunm ™~ 'ns~?).
We ran our simulations for 10000 ns and found good agreement with Van’t Hoff’s
law, as shown in Figure 3.

4.3. Equilibrium size. In this section, we present a variety of simulations of a
semipermeable elastic vesicle immersed in an incompressible viscous fluid. Given the
initial temperature of the system, we determine the corresponding kinetic energy of
the system, as well as the initial mean deformation velocity of the elastic shell and
mean elastic forces. Statistically speaking, the vesicle’s equilibrium size should be
determined by a balance between the osmotic pressure and surface tension. (Recall
that the bending energy and shear energy are scale-invariant for a sphere, and so they
are not expected to contribute to the osmotic force balance.) If the initial size of the
vesicle is too large, it should shrink; if it is too small, it should grow. Actually, we can
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Fia. 3. The solute particles are confined by a spherically symmetric potential. As the fluctuating
solute particles get within a distance ¢ of the wall, as illustrated by the shaded spheres around the
solute particles, they begin interacting with the potential. The solute particles are pushed back inward,
and thus confined to the vesicle. The dashed line of the time average of a1 (t) is slightly lower than
the theoretical prediction of (pyal1) Since the solute particles create no wall pressure at the initial
state until reaching an equilibrium at time 1750 (ns).

estimate the equilibrium size. From Van’t Hoff’s law, the osmotic pressure depends
on the volume V (or, equivalently, the concentration C') according to

N,
(412) Posmotic = kBTC = k‘BTvp
On the other hand, given the radius of the vesicle, the pressure can be found
analytically from the elasticity law. The work done by the elastic pressure, pelasticdV,
is the work done on the elastic membrane, which is converted into elastic energy. Thus
PelasticdV must equal the infinitesimal change in the elastic energy, so that

(413) DelasticdV = g (V) av,
or
(4.14) ksTN, = VE (V).

Here, £ (V) denotes the elastic energy of the vesicle as a function of its volume V|
and &£ (V) is the derivative of £ with respect to V. Since &' (V) > 0, (4.14) has a
unique solution V' for every choice of IV,,.

We approximate £ (V') by assuming that the vesicle is spherical. In that case, as
remarked above, the bending and shear energies are scale-invariant, i.e., independent
of V, so the only contribution to £ (V') comes from the surface-tension energy, which
is 047 R?, where R is the radius of a sphere of volume V, so that

(4.15) R (%)1/3.
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TABLE 1
Numerical results for different numbers of solute particles Np.

Np Rgimulation (nm) Rthcory (nm) Psimulation (n:g:;;l) Ptheory (ﬁ)
50 70.7333 70.7107 93.8278 87.2598
100 99.1332 100.0000 68.8845 63.3955
200 137.8191 141.4214 44.4221 47.1865
300 169.8998 173.2051 33.2902 37.7785
Thus
2/3
_
(4.16) E(V)=o4r | 41— ,
§7T
and
~1/3 ~1/3
8mo [V 1 % 20
(4.17) ey =0 (V) T Lo (L) =2
3 §7T §7T §7T R

Substituting this result into (4.14) gives

4 20 8TR%0
4.18 knTN, = —TR3-—_ =
(4.18) B 3" R 3

which shows that the effective radius' of the vesicle at equilibrium is given by

(4.19) o /3TNy
8ro

Also, the osmotic pressure at equilibrium is given by

_ kgTN, (3 (810\*? e
a2 (850

It is a striking prediction that the osmotic pressure decreases with increasing N,,. This
is because the vesicle is increasing in volume, and the resulting reduction in curvature
makes the surface tension less effective at generating internal pressure.?

Results are shown in Table 1 and Figure 4. The dynamic processes of the
swelling/shrinking vesicles due to different numbers of solute particles are shown in
Figures 5 and 6. The numerical parameters used in the simulation are shown in
Table 2. These parameters are chosen based on realistic values. For instance, the
temperature is body temperature in Kelvin, and the bending/shear moduli used are
close to their values for biological materials such as DOPC/DPPC [34, 35, 36]. The
computed radius of the vesicle is obtained by evaluating the volume contained within
the triangulated surface, averaged over time in the steady state, and then finding
the radius of a sphere with the same volume. The computed pressures are found by

IThe effective radius of the vesicle is the radius of a sphere that attains the same volume.

2Note that this result is peculiar to the particular form of the elastic energy that we have chosen.
If the elastic energy increases sufficiently rapidly with increasing vesicle volume, then the osmotic
pressure will increase with increasing Ny,.
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Number of solute particles vs equilibrium radius
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Fia. 4. For different numbers of solute particles, Np, the figure shows that the computed
equilibrium radii (open symbols) almost coincide with the theoretical prediction (solid line).

considering the centroid and the exterior of the vesicle:

N
L S~y ®
(421) Xin - Fy Z Xmemb ’
=1
L
(4.22) Xout = Xin + bY (e1 +e2+es3),

where L is the length of the domain, and e, are the unit vectors of a three-dimensional
Cartesian coordinate system. Then, the pressure jump is given by the difference of
the interpolated pressures at Xi, and Xous:

(423) [p(t)] = me(sc(xm - )(in)h3 - me(sc(xm - Xout)hg-

4.4. Dimer test. In this section, we take the solute particles contained by the
elastic vesicle to be connected pairwise by elastic springs with zero rest length. Then,
at some specified time, we transform them by cutting all the springs and observe
the resulting change in the size of the vesicle. If the springs are sufficiently stiff (see
below), there are effectively twice as many particles after cutting the springs, and the
size of the vesicle therefore increases.

As shown in Figure 7, there are initially N dimers, and the immersed vesicle starts
swelling when the springs are cut. The vesicle eventually reaches an equilibrium state
determined by the surface tension and the osmotic pressure of 2N monomers. In
Figure 7, there are clearly two equilibrium states: one for the dimers and one for the
monomers, even though the total number of solute particles does not change at all.
The only difference is the existence of the particle-particle interaction in the dimer
state before the springs are cut. We remark that the mechanism illustrated here, in
which a chemical reaction is used to change the effective number of solute particles
and thereby regulate the volume of a vesicle, could in fact be used within biological
cells to regulate the size of vesicles or organelles.

The simulation described above raises an important question. If a pair of particles
connected by a spring counts as one particle, and the same pair of particles when not
connected by a spring counts as two particles, what happens if we go continuously
from one situation to the other by continuously varying the stiffness constant of the
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(a) Shrinkirgﬁg vesicle with 50 solute particles
244

t=10000

Theoretically predicted volume

0 0.5 1 1.5 2 2.5 3 P
time (ns) x10

(b) Swelling vesicle with 100 solute particles
x10°

Theoretically predicted volume

44

t=30000
t=10000

0.5 1 . 1.5 2 2.5 3
time (ns) x10°

Fi1G. 5. Initially, Np solute particles are randomly placed inside the vesicle. The vesicle size
approaches the equilibrium size and then fluctuates around equilibrium. The simulations are run
up to 30000 ns using different numbers of solute particles: (a) Np = 50, (b) Np = 100. Beginning
with a larger volume in (a) and a smaller volume in (b), eventually the vesicle sizes approach their
theoretically predicted equilibrium values. The initial volumes of the vesicles are different in the two
cases (note different scales on the vertical azes).

spring? Intuitively, we expect that the equilibrium size of the vesicle should depend
continuously on the stiffness constant of the spring. We remark that this contrasts
with the Van’t Hoff theory, where only the number of molecules matters, and not the
properties of their internal degrees of freedom.

Using statistical mechanics theory, we can express the transition between equi-
librium volumes as a function of the spring stiffness. Since we are considering an
isothermal system, we begin by writing the Helmholtz free energy in terms of the
canonical partition function. This provides the osmotic pressure as a function of the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/01/20 to 128.122.149.92. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

B684 C.-H. WU, T. FAI, P. ATZBERGER, AND C. PESKIN

(a) Shrinking vesicle with 200 solute particles
x10”
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F1a. 6. Vesicles are swelling and shrinking for (a) Np = 200 and (b) Np = 300 solute molecules
with initial volume 1.39 x 107 (swelling) and initial volume 1.17 x 107 (shrinking), respectively. For
the other parameters, the simulations used the same values as the results in Figure 5.

spring stiffness by taking a partial derivative of the Helmholtz free energy with re-
spect to the equilibrium volume at constant temperature. It is important to note that
the thermal fluctuations of the membrane are not taken into account in this theory
(only the effective free energy of the contained volume). We assume in the theory
that the membrane maintains its spherical shape, although we do allow the sphere
to change volume. To obtain our condition of equilibrium, we balance the changes
in elastic energy of the membrane, assuming an effectively spherical shape, with the
free energy of the confined volume. Despite this approximation in our theory, we get
good agreement between the theoretical and computational simulation results.

The computational results are shown in Figure 8, where they are compared to
a theoretical curve that is the result of a statistical-mechanical calculation; see Ap-
pendix B in the supplementary material. In agreement with physical intuition, but
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TABLE 2
Numerical parameters.

Parameters Description Value
T temperature 311.16 K
L domain length in each direction 500 nm
kp Boltzmann’s constant 8314.46 nm? - amu - ns—2K~!
P uniform density of water 597.98 amu - nm 3
w dynamic viscosity of water 4.63 x 10° amu-ns~! - nm~—1!
o surface tension of the membrane 3088.2 amu - ns 2
Kp bending modulus 51525 nm? - amu - ns~ 2
Ks shear modulus of the membrane 2.5871 x 10® amu - ns—2
N number of Eulerian meshwidths 64
in each direction
At time step 1 ns

nesh width 7.81 nm

Déimers cut to form monomers
6x10

wn

ES

Equilibrium volume
for 2N monomers

N

Volumf (nm)

1 Equilibrium volume
for N dimers :

0 05 1 15 2 25 3 35 4 45 5
. x1¢*
time (ns)

(b)

e I

)

Fic. 7. (a) Swelling of a vesicle when solute dimers dissociate into monomers. Initially the
vesicle contains 50 dimers. FEach dimer is modeled as a pair of particles connected by a spring.
The spring has zero rest length, and initially the two particles coincide, but they move apart because
of thermal fluctuations. At t = 1bus, the springs are removed, and the 50 dimers become 100
monomers. The wvesicle swells accordingly. The figure shows the vesicle and solute particles at
equally spaced times starting with t = 0 (upper left) and continuing in increments of 4.17us from
left to right across each row. The event on which the springs are removed (vertical dashed line)
occurs between the frame at the end of the first row and the frame at the beginning of the second
row. (b) Plot of vesicle volume as a function of time for the computer experiment shown in (a).
Horizontal dashed lines show the theoretical equilibrium volumes for N solute particles and for 2N
solute particles. Vertical dashed line indicates time at which dimers were cut to form monomers.

in disagreement with Van’t Hoff’s law, we do indeed see a smooth transition from
dimer-like behavior to monomer-like behavior as the stiffness constant is reduced. The
transition happens at spring constants which are such that the typical distance at the
ambient temperature T between the particles that compose a dimer is comparable to
the size of the vesicle that contains them.

The need to account for effects beyond Van’t Hoff’s law is fundamental for many
microscopic phenomena. In a macroscopic situation there is, by definition of “macro-
scopic,” a huge (in principle, infinite) gap between the size of a solute molecule and
the size of the container. Thus, if a spring is present at all, its stiffness cannot be so
small that the size of the dimer is comparable to the size of the container. If it were,
the container could not be considered macroscopic, since it would have molecular-
scale dimension. In some sense, Van'’t Hoff’s law is valid only macroscopically, and
our method can capture these important deviations in the microscopic regime.
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Equilibrium Volume vs Spring Stiffness

6
4.4x10

e simulation
— theory

8 6 -4 —2 0 2 4 6
12

Spring Stiffness lo 2K

pring gm(%kBT)

Fic. 8. Plot of equilibrium vesicle volume for %Np immersed dimers as a function of
logq (%K@z/%kBT), where K is the stiffness of the spring in each dimer, and £ is such that
%w (€/2)% = (VNP/2 + VN, )/2, where VN,,» and VN, are the theoretical equilibrium volumes with
Ny, /2 solute particles and Ny solute particles, respectively. Note that 0 on the horizontal azis cor-
responds to the stiffness at which the typical size of each dimer at temperature T is about the same
as the vesicle diameter. Symbols are computational results, and the solid line is from a statistical-
mechanical theory derived in Appendix B of the supplementary material.

5. Summary and conclusions. We have introduced computational methods
for the direct numerical simulation of osmotic phenomena involving semipermeable
elastic structures, hydrodynamic transport, and solute interactions at the particle
level. We have used these approaches to investigate the swelling of vesicles having
spherical topology and membrane elasticity described by a surface tension, a neo-
Hookean shear modulus, and a Helfrich bending modulus. We have shown that our
computational model is capable of capturing important osmotic phenomena beyond
the classical Van 't Hoff theory. We expect our methods to be useful for the simulation
of osmotically driven flows and deformation in a wide class of applications arising in
technological systems and biology.
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