
Computer Simulation of a Computer

Charles S. Peskin

Courant Institute of Mathematical Sciences, New York University

May, 2025

In these notes and the accompanying matlab programs, we describe the com-

puter simulation of a computer, at the architectural level. The computer that we

simulate has two main parts, a central processing unit (cpu) and a memory.

The memory of our computer is a 213 × 16 array to which we give the name

mem. Each element of mem stores one bit. The memory contains the user’s appli-

cation program, and also any data on which that program operates or which that

program generates. This dual use of memory for both program and data, with no

sharp distinction between the two, is an invention of von Neumann and is known

as the von Neumann architecture. It makes it possible for a program to rewrite it-

self as it runs. Each row of mem is regarded as a word of memory, so our computer

memory contains 213 16-bit words. Each word of memory has an address, which is

simply the index of its row in the array mem. These indices conceptually run from

0 . . . 213− 1, so that they can be represented by 13-bit binary numbers, but matlab

does not allow an array index to be zero, so we add 1 to the conceptual address to

get the corresponding array index. Thus, in matlab, mem(1+addr,:) denotes

the array of bits corresponding to the memory word with the address addr.

A word of memory may contain an instruction that needs to be executed by

the cpu. In that case, the first 3 bits of the word are the instruction code, and

the remaining 13 bits encode as a binary number the address in memory to which

the instruction refers. What is done with or to the data at that address in memory

depends on the instruction, as described below. Since the instruction code contains

3 bits, there are 23 = 8 instructions that our cpu can carry out.

In general, if the address part of an instruction is addr, then depending on

the instruction the cpu may read from or write to the memory word with address

addr, and it may also read from or write to a 16-bit array within the cpu that is

called the register, and denoted reg. The cpu that we describe here has only a

single register, and this makes it more challenging to write application programs

for our computer than if more registers were available, but the lack of additional

registers does not fundamentally limit what our computer can do.

1



The instruction set of our simulated computer is as follows:

• 000 LOAD: copy the content of mem(addr) into reg

• 001 STORE: copy the content of reg into mem(addr)

• 010 ADD: add the content of mem(addr) to the content of reg, treating

both as 16-bit binary numbers, and store the result (mod 216) in reg

• 011 BNZ (branch if nonzero): if any of the 16 bits of reg is nonzero,

reset the program counter so that the next instruction to be executed is the

instruction contained in mem(addr)

• 100 AND: perform bitwise AND of the content of reg with the content of

mem(addr), and store the result in reg

• 101 OR: perform bitwise OR of the content of reg with the content of

mem(addr), and store the result in reg

• 110 XOR: perform bitwise exclusive-OR of the content of reg with the

content of mem{addr) and store the result in reg

• 111 NOT: complement every bit of reg

The only instruction that actually changes the content of the memory is STORE.

When a STORE operation is performed, whatever was in the affected memory

location previously is erased and replaced by the content of the register (which

remains unchanged). All of the operations other than STORE and BNZ put their

results into the register, and whatever was in the register previously is erased (and

the content of memory is unchanged). The only conditional operation is BNZ. De-

pending on the content of the register, it either does nothing or resets the program

counter, which is a variable located within the cpu that determines which word

of memory will be executed next (more about this below). The only instruction

that does not refer to memory at all is NOT, which complements each bit of the

register.

We now turn to a description of the program that is run by the cpu. Note that

this is always the same program, regardless of the user’s application program. In

practice the program of the cpu is implemented in hardware , but we can simulate

its logic in a programming language such as matlab:

2



%cpu_program.m

%mem is the central memory,

%an array of bits with 2ˆ13 rows and 16 columns.

%Conceptually, the rows of mem are numbered 0...((2ˆ13)-1),

%but we have to add 1 in matlab. This will be written "1+addr".

%When a row of mem is an instruction,

%the first three bits are the operation code,

%and the last 13 bits are the associated address,

%that is, the address on which the instruction operates

%by reading or writing there.

reg=zeros(1,16); pc=1; %initialize register and program counter

while pc > 0 %setting pc to zero will stop the program

ins= num(mem(1+pc,1:3),3); %read instruction code

addr=num(mem(1+pc,4:16),13); %read address

%increment program counter to prepare for next step:

pc=mod(pc+1,2ˆ13);

switch ins %execute instruction specified by ins

case 0 %LOAD

reg=mem(1+addr,:); %copy mem line addr into register

case 1 %STORE

mem(1+addr,:)=reg; %copy register into mem line addr

case 2 %ADD mod 2ˆ16

%convert bits in register and mem line addr to integer:

s1=num(reg,16);

s2=num(mem(1+addr,:),16);

%add and store resulting bits in register:

reg=bin(s1+s2,16);

case 3 %BRANCH on NONZERO REG

if(any(reg)) %if any bit of register is nonzero,

pc=addr; %set program counter to addr for next step

end

%In the following, all results are stored in register;

%memory is read (except NOT), but not changed:

case 4 %AND

%bitwise AND of reg with mem line addr:

reg = reg & mem(1+addr,:);

3



case 5 %OR

%bitwise OR of reg with mem line addr:

reg = reg | mem(1+addr,:);

case 6 %XOR

%bitwise exclusive OR of reg with mem line addr:

reg = xor(reg,mem(1+addr,:));

case 7 %NOT

%bitwise NOT of register (addr is ignored):

reg = ˜reg;

end

end

The above program calls two functions num and bin, listed below. The func-

tion num interprets a vector of bits as a binary number, and evaluates that binary

number as an integer. The function bin finds the binary representation of an

integer, and outputs that representation as a vector of bits.

function n=num(b,nbits)

% b = vector of length nbits with entries equal to 0 or 1

% n = integer equivalent of the binary number

% with bits b(1)...b(nbits)

powers=nbits-(1:nbits);

n=sum(b.*(2.ˆpowers));

function b=bin(n,nbits)

%n is a non-negative integer

%b = vector of length nbits with entries 0 or 1 such that

%b is the binary representation of the n mod 2ˆnbits

%This is a recursive program -- it calls itself!

if nbits==1

b=mod(n,2);

else

nn=floor(n/2);

b=[bin(nn,nbits-1),n-2*nn];

end

4



The function num is self-explanatory, but bin is a recursive program that may

not be easy to understand. The function bin is based on two facts. First, the least

significant bit in the binary representation of n is n-2*floor(n/2). Also,

the part of the binary number to the left of the least significant bit is the binary

representation of floor(n/2).

The program cpu_program.m that is executed by the cpu begins by setting

all bits of the register reg equal to zero and by setting the program counter pc

equal to 1. The rest of the program is in a while loop over pc > 0, so the pro-

gram will stop when pc becomes zero. After each instruction is executed, pc is

incremented mod 213 by 1, so one way the program will stop is if pcwraps around

to zero. But pc can also be set to any value by execution of a BNZ instruction

when at least one bit of the register is not equal to zero. Thus, a two-instruction

sequence that is guaranteed to stop the program is:

LOAD ONE

BNZ ZERO

Here ONE is the address of a word of memory that contains the value 1, and

ZERO is the memory location whose address is zero. (By convention, we will also

keep the value zero in the memory location whose address is zero, but that is not

relevant here.)

Within the while loop of cpu_program.m, the first step is to read the in-

struction to which pc is pointing, and to separate that instruction into its 3-bit

instruction code and its 13-bit address. These binary vectors are converted to the

integers that they represent by calls to the function num. The next step is to in-

crement the program counter. This is done sooner rather than later because the

program counter might be re-set by a BNZ operation, and we do not want the in-

crement of the program counter to overwrite a change in pc that might be made

if the instruction to be executed is BNZ. The rest of the while loop is a switch

statement that executes the specified instruction with reference to the specified

address.

Note that initialization of mem is not done in cpu_program.m. It is the

responsibility of the user to put the application program along with any data that

it needs into memory before calling cpu_program.m

5



We give an example of such an application program here:

%multiply_binary.m

%set up and run machine language program to compute

% P = A * B mod 2ˆ16

mem=zeros(2ˆ13,16);

%instruction codes:

LOAD = bin(0,3);

STORE = bin(1,3);

ADD = bin(2,3);

BNZ = bin(3,3);

AND = bin(4,3);

OR = bin(5,3);

XOR = bin(6,3);

NOT = bin(7,3);

%Line numbers in mem at which constants and variables will be stored:

%Note that these are the *line numbers*, not the values.

%Values will be assigned later.

%Line numbers chosen big enough to be out of the way.

BC = 99;

ONE = 100;

BIT = 101;

A = 102;

B = 103;

P = 104;

%Names for some line numbers in the program:

ZERO = 0; %ZERO is both a line number and a constant (see below)

BACK = 8;

CONT = 14;

%Write the program:

mem(1+ZERO,:)=zeros(1,16); %branch here to stop

mem(1+1,:)=[LOAD,bin(ZERO,13)]; %program starts here

mem(1+2,:)=[STORE,bin(P,13)]; %initialize P=0

6



mem(1+3,:)=[LOAD,bin(ONE,13)];

mem(1+4,:)=[STORE,bin(BIT,13)]; %initialize BIT=1

mem(1+5,:)=[LOAD,bin(B,13)];

mem(1+6,:)=[NOT,bin(ZERO,13)];

mem(1+7,:)=[STORE,bin(BC,13)]; %initialize BC = NOT B

mem(1+BACK,:)=[LOAD,bin(BC,13)]; %main loop starts here

mem(1+9,:)=[AND,bin(BIT,13)];

mem(1+10,:)=[BNZ,bin(CONT,13)]; %if relevant_bit(B) is 1 ...

mem(1+11,:)=[LOAD,bin(P,13)];

mem(1+12,:)=[ADD,bin(A,13)];

mem(1+13,:)=[STORE,bin(P,13)]; %P=P+shifted A

mem(1+CONT,:)=[LOAD,bin(BIT,13)]; %CONTINUE here in either case

mem(1+15,:)=[ADD,bin(BIT,13)];

mem(1+16,:)=[STORE,bin(BIT,13)]; %BIT=left_shift(BIT)

mem(1+17,:)=[LOAD,bin(A,13)];

mem(1+18,:)=[ADD,bin(A,13)];

mem(1+19,:)=[STORE,bin(A,13)]; %A=left_shift(A)

mem(1+20,:)=[BNZ,bin(BACK,13)]; %if A is nonzero, goto BACK

mem(1+21,:)=[LOAD,bin(ONE,13)]; %else ...

mem(1+22,:)=[BNZ,bin(ZERO,13)]; %STOP

%Assign value to the constant ONE:

mem(1+ONE,:)=bin(1,16);

%ZERO is both a line number and a constant.

%The value 0 was already assigned when the program was written.

%Assign values to the variables that will be multiplied

Avalue=input(’Avalue=’);

Bvalue=input(’Bvalue=’);

mem(1+A,:)=bin(Avalue,16);

mem(1+B,:)=bin(Bvalue,16);

%run the program:

cpu_program

%output the result:

Pvalue = num(mem(1+P,:),16)

7



The above program is written in an informal assembly language that is trans-

lated to machine language within the program itself, so a separate assembler is

not needed. In assembly language, names are used instead of numbers, so that

the program becomes somewhat readable. There is a name for each instruction

in the instruction set, and also a name for each memory location where a variable

will be stored, and finally there are names for some line numbers that need to be

referenced within the application program. The task of the assembler is to assign

numbers to these names, so that the whole program can be reduced to an array of

bits. Here we make the assignments by hand.

The algorithm that we use for binary multiplication is essentially the same as

the one that is taught in elementary school for decimal multiplication. The binary

case is simpler, however, since we only need to multiply by 0 or 1. The following

example will suffice to recall the algorithm:

1 1 0 1

x 1 0 1

_____________

1 1 0 1

0 0 0 0

1 1 0 1

__________________________

1 0 0 0 0 0 1

In the above method, successive left-shifts of the first factor are considered,

and those corresponding to the locations of 1 in the second factor are kept and

added together. Our computer does not have a left-shift operation, but left-shift in

binary is equivalent to multiplication by 2, and a number can be multiplied by 2

by adding it to itself!

8



The above program multiply_binary.m implements this algorithm in the

following way. We give here the pure assembly language version, which should

be easier to follow, but which requires an assembler to be of any practical use:

LOAD ZERO

STORE P % P = 0

LOAD ONE

STORE BIT % BIT = 1

LOAD B

NOT

STORE BC % BC = NOT B

BACK LOAD BC % main loop starts here

AND BIT % look only at one bit of BC

BNZ CONT % if nonzero skip update of P

LOAD P % else ...

ADD A

STORE P % P = P + shifted A

CONT LOAD BIT

ADD BIT

STORE BIT % BIT = left_shift(BIT)

LOAD A

ADD A

STORE A % A = left_shift(A)

BNZ BACK % if A is nonzero, repeat with shifted data

LOAD ONE % else...

BNZ ZERO % stop; answer is in P

The numbers to be multiplied are assumed to be initially stored in the memory

location named A and B. After the program stops, their product will be stored

in the memory location named P. Line number 0 of memory has been given the

name ZERO, and this line of memory also contains the binary representation of

0. (This is a special case – it is not typical for the address of a word of memory

to be the same as the content of that word. Indeed the address is a 13-bit binary

number, whereas the content is a 16-bit binary number.) There is also a line (i.e.,

word) of memory to which we have given the name ONE, and it contains the

binary representation of 1. It is useful to have the complement of the content of B

available, and this is stored in the line number to which we have given the name

BC. The contents of B and BC do not change as the algorithm proceeds.

9



There is a memory line with the name BIT that is initialized to contain the

binary representaion of 1, and its one nonzero bit is left-shifted after each step of

the algorithm. This is accompanied by a left-shift of the binary represention of the

content of the memory line whose name is A.

At each step of the algorithm, the content of the memory line with the name

BIT and the content of the memory line with the name BC are combined by a

bitwise AND operation, and the result has all bits equal to zero except possibly

the one bit in the content of BC in the same position as the one nonzero bit of the

content ofBIT. This one bit is then used to decide whether to update the product

by addition of a shifted version of the first factor (if the bit is 0) or to skip the

update (if the bit is 1). (Recall here that the bitstring in BC is the complement of

the bitstring in B.)

If the function of the program is not yet clear, it may be good to carry out its

steps by hand on some small example.

Binary addition

The computer we have been considering up to now has an ADD operation, but no

left-shift operation, so to generate a left-shift we had to add a number to itself.

We consider now the opposite situation, in which the computer is the same as

before except that it does not have an ADD operation, and it instead has a left-shift

operation, denoted LSHIFT. Like the operation NOT, the LSHIFT operation is

applied to the register and makes no reference at all to central memory. Its effect

is to discard the left-most bit of the register, and to move all of the other bits one

step to the left, with the right-most bit of the register being set equal to zero. In

matlab-like notation, this is the operation

reg = [reg(2:16),0]

In this computer, we need a program to add two 16-bit binary numbers, each

of which is stored in a word of memory. The addition is to be done modulo 216.

The strategy that we shall use is based on the following considerations, in which

all all arithmetic is understood to be modulo 2n with n = 16:

10



Let

A =

n
∑

k=1

ak2
n−k, ak ∈ {0, 1} (1)

B =

n
∑

k=1

bk2
n−k, bk ∈ {0, 1} (2)

Then

A+B =
n

∑

k=1

(ak + bk) 2
n−k (3)

The expression (ak + bk) can also be written in terms of logical operations in the

following way:

ak + bk = (ak XOR bk) + 2 (ak AND bk) (4)

in which 1 = TRUE and 0 = FALSE . Equation (4) is easily checked by

considering all four possible values of the pair (ak, bk). It follows that

A +B = A′ +B′ (5)

where

A′ =

n
∑

k=1

(ak XOR bk) 2
n−k (6)

B′ = 2

n
∑

k=1

(ak AND bk) 2
n−k (7)

Here A′ is the result of doing binary addition without any carrying, and B′ con-

tains all of the carry bits. but the carry bits have not yet been carried to the place

in which they are needed — the operation LSHIFT is needed for that, see below.

Note that A′ already has the form of an n-bit binary number. In the formula

for B′ we may discard the term k = 1 because it is either 0 or 2 (2n−1) = 2n = 0
modulo 2n. Therefore,

B′ =
n

∑

k=2

(ak AND bk) 2
n+1−k

=
n−1
∑

k=1

(ak+1 AND bk+1) 2
n−k (8)

11



Thus B′ also has the form of an n-bit binary nmber, and moreover the least sig-

nificant bit (k = n) of B′ is 0.

The formulae for the bits of A′ and B′ in terms of the bits of A and B are as

follows:

a′
k

= (ak XOR bk) , k = 1, . . . , n (9)

b′
k

= (ak+1 AND bk+1) , k = 1, . . . , n− 1 (10)

b′
n

= 0 (11)

The above results motivate the following iterative scheme for binary addition:

a
(0)
k

= ak, b
(0)
k

= bk, (12)

and for m = 0, 1, 2, . . .,

a
(m+1)
k

= a
(m)
k

XOR b
(m)
k

, k = 1, . . . , n (13)

b
(m+1)
k

= a
(m)
k+1 AND b

(m)
k+1, . . . , n− 1 (14)

b(m+1)
n

= 0 (15)

In more succinct notation, the above scheme reads as follows:

A(0) = A, B(0) = B, (16)

and for m = 0, 1, 2, . . .,

A(m+1) = A(m) XOR B(m) (17)

B(m+1) = LSHIFT
(

A(m) AND B(m)
)

(18)

This scheme has the property that A(m) +B(m) = A+B for every m.

Now it may not seem that we have accomplished much, since we have just

replaced a problem of binary addition by a sequence of other problems of the same

form. Note, however, that at each stage of the above algorithm, a 0 is introduced

in the nth bit of B. As these zeros propagate to the left because of the left-shift

operation, they remain zero because a AND 0 = 0. Thus, after at most n steps,

all of the bits of B(m) are zero, and A(m) contains the sum A+B.

12



The assembly-language implementation of the above algorithm is very simple:

ZERO

BACK LOAD A

XOR B

STORE A % A = A XOR B

XOR B % recover previous A in register

AND B

LSHIFT

STORE B % B = LSHIFT(A_previous AND B)

BNZ BACK % if not done, repeat

LOAD ONE % else

BNZ ZERO % STOP

The reversible nature of XOR is exploited in the foregoing to recover the previ-

ous value of A in the register after what is stored in the register has been changed

from A to A XOR B. The second XOR B operation restores the content of the

register to what it was right after the LOAD A statement. This avoids the need for

an extra variable to hold a copy of A.

A possible project is to implement this program in the same manner as

multibly binary.m. Note the the program cpu.m then has to be modified to

omit the ADD operation and replace it by LSHIFT.

Arrays, loops, and a program that rewrites itself

In this section we consider the implementation of arrays and loops in the context

of the simulated computer introduced above (as originally defined with ADD as

one of its operations).

An array is simply a collection of adjacent memory locations to which we as-

sign a base address and a name. If the base address is base_addr and the name

of the array is A, then the array element A(i) is stored in the memory location

with address base_addr + i. In a typical use of this setup, the index i takes

values in {1, . . . , n} for some positive integer n, but there in nothing to prevent

i from being zero or even negative. It is the responsibility of the programmer to

prevent the array index from going outside of its intended domain.

Although we are only considering one-dimensional arrays here, it should be

noted that multidimensional arrays are typically implmented as one-dimensional

13



arrays, with conversion internally from a multi-index to the corresponding single

index.

Instructions that refer to an array element can be handled in the following way.

Suppose, for example, we know that a program needs an instruction which con-

ceptually is LOAD A(i). We can allocate a memory location to which we give

the name LOADA. The contents of this word of memory, which remain constant

during program execution, are the 3-bit instruction code for LOAD followed by

the 13-bit base address of the array A. Then, in a program, at a place where i has

been defined and where the instruction LOAD A(i) will soon be needed, we can

execute the following instructions:

LOAD LOADA

ADD i

STORE ILA

Here ILA is the name of the line of memory where the intruction LOAD A(i) is

needed. An example of a program that uses this technique will be given below.

Programs that include arrays generally involve loops over the array index. In

the context of our virtual computer, this is most easily done by letting the index

run down in steps of −1, so that the loop is complete when the index reaches

zero. The reason for this is that the only conditional operation available to us is

BNZ, which resets the program counter to a specified location in memory when

the contents of the register is not zero. Thus, a typical loop will have the following

form

LOAD n

BACK STORE i

% insert here code for instance i of the loop

LOAD i

ADD DECR

BNZ BACK

% code continues from here when loop is complete

The constant DECR in the foregoing has all of its 16 bits equal to 1. This is the

binary representation of 216 − 1, which is equivalent to −1 in the arithmetic done

by the ADD operaction. Thus ADD DECR has the effect of subtracting 1 from

whatever is in the register (and storing the result in the register).

Now we are ready to illustrate the use of the above techniques in an application

program. Given an array of nonnegative numbers A(1), . . . , A(n), we seek an

14



index i such that A(i) ≤ A(j) for j = 1, . . . , n. Of course there may be more

than one value of i with this property, and if so we just want one of them.

The algorithm that we will use to find such an i is far from being efficient, but

it is very simple and can be used to illustrate the above programming techniques

without a lot of irrelevant complication. The strategy is simply to reduce all of

the array elements by 1, and to do this repeatedly until one of them hits zero. (An

important detail is that the check for zero needs to be done before the reduction

by 1, so if there is already a zero in the given array data, it will not be missed. The

assembly language program is as follows:

ZERO %branching here stops the program

BACK1 LOAD n

STORE i

BACK2 LOAD LOADA

ADD i % create the instruction LOAD A(i),

STORE ILA % and store it in ILA.

LOAD STOREA

ADD i % create the instruction STORE A(i),

STORE ISA % and store it in ISA.

ILA % LOAD A(i)

BNZ CONT % if A(i) is nonzero, continue

LOAD ONE % else

BNZ ZERO % STOP (result is in i)

CONT ADD DECR % A(i) := A(i) - 1 (in register)

ISA % STORE A(i)

LOAD i

ADD DECR % i := i - 1 (in register)

STORE i

BNZ BACK2 % consider next element, if any

LOAD ONE % else

BNZ BACK1 % start next sweep through array

The above program has two nested loops. The inner loop sweeps through

the array once, decreasing each element by one. The outer loop is does as many

sweeps as may be needed for one of the elements of the array to reach zero. The

program stops by breaking out of the inner loop when a zero element is found,

and the index of that element is then to be found in the memory location whose

name is i. The original value of A(i) is of course lost during the execution of the

15



algorithm, so if it is wanted, a copy of the array should be made before executing

the above code, or alternatively, a count can be made of the number of sweeps that

were required to reduce A(i) to zero in steps of −1.

Project suggestions

In order of increasing difficulty, with the last one much more difficult than the

others:

• implement either of the programs in the previous two sections in the same

style as multiply_binary.m

• think of another application that can be done by our virtual computer, write

an assembly language program for that application, and implement it, again

following the style of multiply_binary.m

• formalize the assembly language that has been used in the foregoing, and

write an assembler/loader that will automate the steps of translation to ma-

chine language, loading the program into memory, and execution of the

program (by calling cpu_program.m)

Acknowledgement

Thanks to Eric Peskin for helpful and enjoyable discussions related to these Notes!

16


