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In these notes we describe a generic endemic disease model, which we then
elaborate into a model for the evolution of the prevalence of the sickle-cell hemoglobin
gene in the presence of malaria.

1 Endemic Disease Model

We consider a chronic disease, from which recovery does not occur. The popu-
lation thus involves two categories of people, susceptible and infected. We track
only females, but make the assumption that there are equal numbers of males and
females in each of the two categories. Thus

S = number of susceptible females

I = number of infected females

N = S + I = total number of females

All three of the above variables are functions of time.
The parameters of the model are as follows (see also further explanation and

more precise definition below):

a = infectivity of the disease

β = female birth rate per susceptible female

β ′ = female birth rate per infected female

δ = death rate for a susceptible person

δ′ = death rate for an infected person

The “infectivity” a is defined by the statement thata(I/N) is the probability per
unit time that a given susceptible person becomes infected. The birth rateβ is the
probability per unit time that a given susceptible female in the population will give
birth to a female offspring. The birth rateβ ′ is the probability per unit time that
an infected female will give birth to a female offspring. This raises the question
whether the offspring of an infected female will be born infected. Although this
is certainly possible, we assume here that it is not the case. Thus, in the present
model, everyone is born susceptible. The death rateδ is the probability per unit
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time that a given susceptible person dies, and the death rateδ′ is the probability
per unit time that a given infected person dies.

Note that2β/δ is the expected number of offspring that a female will have in
her lifetime, counting both male and female offspring, assuming that she remains
susceptible, i.e. uninfected, for her entire life. Similarly,2β ′/δ′ is the expected
number of offspring that an infected female will have in her lifetime, assuming
that she becomes infected so early that she is effectively infected for her entire
life.

The following inequalities are important:

β > β ′ (infection lowers fertility) (1)

δ < δ′ (infection increases death rate) (2)

β > δ (with no infection, population grows) (3)

β ′ < δ′ (with everyone infected, population declines) (4)

The equations of the model are as follows:

dS

dt
= −a

(
I

N

)
S + βS + β ′I − δS (5)

dI

dt
= +a

(
I

N

)
S − δ′I (6)

N = S + I (7)

The following properties of the model can be verified by analysis or simula-
tion, and will simply be stated here.

First, regardless of initial conditions, the long-time behavior of the model is
that the population settles into exponential growth or decay, with some fixed pro-
portion of infected people. That is

S(t) ∼ S0 exp(λt) (8)

I(t) ∼ I0 exp(λt) (9)

N(t) ∼ N0 exp(λt) (10)

where
N0 = S0 + I0 (11)

It is important to note thatS0, I0, andN0 are not initial conditions, but simply
constants that describe the longterm behavior of the system. The growth rateλ
may be positive or negative (or zero in borderline cases).
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It is quite remarkable that exponential behavior of this kind emerges in a non-
linear model. The fundamental reason is that the equations, despite being nonlin-
ear, are scale-invariant. If we have a solution(S(t), I(t), N(t)), we can multiply
all three variables by any constant, and the result will again be a solution.

The second property of the model is that there are two critical values of the
infectivity a, which we denote here bya0 anda1 with 0 < a0 < a1. These critical
values are functions of the other parameters of the model, that is, they depend on
β, β ′, δ, andδ′.

Whena < a0, the only longterm exponential solution of the type described
above hasI0 = 0. Thus, the infectivity is too low for the disease to become
endemic in the population. No matter what its initial prevalence (infected fraction
of the population), the disease will be gradually be “diluted out” of the growing
population. The absolute number of cases may continue to grow, but the fraction
of the population that is infected declines and approaches zero as time increases.
The longterm growth rate of the population is therefore the maximum possible,
namelyβ − δ, since in the long run essentially nobody is infected.

Whena0 < a, on the other hand, the disease does become endemic, and the
prevalence settles down to a fixed nonzero value as time increases. The growth
rateλ also settles down to a fixed value, which may be positive or negative (or
zero). This is where the critical valuea1 comes in. Whena0 < a < a1, the growth
rateλ > 0, so the population grows, albeit at a slower rate thanβ − δ. When
a1 < a, on the other hand,λ < 0, which means that the population is headed
for extinction. In the limita → ∞ the steady-state prevalence of the disease
approaches 1, andλ → (β ′ − δ′), which is as negative as the growth rate can be.

It should be noted that only in the middle range of infectivity, namelya0 <
a < a1, is it possible for there to be a mutually successful outcome, both for the
pathogen that causes the infection and also for the host population. If the infectiv-
ity is too low, the pathogen fails to become endemic in the population, and if the
infectivity is too high the pathogen kills off the host population, and in the process
destroys itself. Thus it is important thata0 < a1, so that there is a nontrivial inter-
val of infectivity in which endemic disease can occur. In the present model, this
turns out to be a consequence of the nonzero fertility of infected females. If we set
β ′ = 0, then we find thata0 = a1 which means that there is only one value of the
infectivity at which a mutually successful outcome is possible for both pathogen
and host. In practice, such a fine-tuning of infectivity would be impossible for
nature to achieve, so the outcome would either be the extinction of the host or the
diluting out of the pathogen.
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2 Malaria and the Evolution of the Prevalence of the
Sickle-Cell Hemeoglobin Gene

The gene for sickle-cell hemeoglobin has the peculiar feature that it confers re-
sistance to malaria but also causes a potentially fatal condition, sickle-cell ane-
mia. Moreover, one copy of the sickle-cell gene is enough to confer resistance
to malaria, but two are needed to cause sickle-cell anemia. That is, the gene is
dominant with respect to malaria resistance but recessive with respect to its cause
of sickle cell anemia. This means that natural selection will operate on the sickle-
cell gene both in a positive and in a negative way, with the strength of the positive
selection depending on the prevalence of malaria.

The purpose of this section is to describe a model in which one can observe
the evolution of the prevalence of the sickle-cell gene in response to the above se-
lective pressures. The model is an elaboration of the endemic disease model pre-
sented above. The genetic details will make the model of this section look much
more complicated than the previous one, but remarkably, it has exactly the same
parameters, since all of the genetic effects follow unambiguously from Mendelian
laws and do not therefore introduce any additional parameters. To achieve this,
however, we have to idealize the model in various ways that will become clear as
we proceed.

We use the symbol “0” to represent the wild-type hemeoglobin gene, and “1”
to represent the sickle-cell hemeoglobin gene. The genotypes that will appear in
our model are therefore “00” and “01” (which is the same as “10”). The genotype
“11” does not appear explicitly because it represents the phenotype of sickle-cell
anemia, which we regard as fatal. We are concerned here with evolution that
happened over the long span of human history before the intervention of mod-
ern medicine. For the same reason, we do not consider the medical treatment of
malaria.

The possible matings that can occur in the population, and the probabilities of
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the resulting genotypes are as follows:

00 × 00 → 00 with probability 1

00 × 01 → 00 with probability 1/2

→ 01 with probability 1/2

01 × 01 → 00 with probability 1/4

→ 01 with probability 1/2

→ 11 with probability 1/4

We do not show any matings involving 11 as the genotype of a parent, since we
are making the assumption that genotype 11 (sickle-cell anemia) is fatal.

People with genotype 00 can be in one of two categories: susceptible, or in-
fected with malaria. People of genotype 01=10 are in a different category that we
shall call “resistant”. In our model, they cannot get malaria, but they are otherwise
just like susceptibles, i.e., their birth and death rates are the same as those of the
susceptibles. As in the simpler endemic disease model of the foregoing section,
we track only females, but we assume that there are equal numbers of males as
females in each category. This will be a valid assumption if the male/female birth
ratio is 1:1; if malaria affects males and females equally except for any effect on
fertility, which we assume operates on the females only; and if the population is
large enough for differences that arise by chance between the numbers of males
and females in a category are small enough to be negligible.

Thus, the variables of the model are

S = number of susceptible females (genotype 00)

I = number of infected females (genotype 00)

R = number of resistant females (genotype 01)

N = S + I + R = number of females in the population

All four of these variables are functions of time.
Although we use the letter “R” for resistant, this should not be confused with

the “R” in the “SIR” model of an epidemic. In particular, in the present model,
it is not possible to move from the infected category to the resistant category, as
the people in these categories have different genotypes. Also, biologically, the
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resistance to malaria that is conferred by the sickle-cell gene has nothing to do
with the immune system and is not the result of having experienced malaria.

The processes that cause changes in the numbers of people in the different
categories are infection, death, and birth. We discuss each of these in turn (saving
birth for last because it is by far the most complicated of the three).

We model infection exactly as in the endemic disease model of the previous
section. That is, the probability per unit time that a given susceptible person be-
comes infected isa(I/N) wherea is the “infectivity” of malaria. This is, of
course, a drastic oversimplification of the biology of malaria. In fact, malaria is
not directly contagious from one person to another, and has a complicated life
cycle involving the mosquito and its larvae as intermediate hosts. Nevertheless,
if we view the mosquito population merely as the means by which the malaria
parasite gets from one human to another, then it does not seem completely un-
reasonable to use a generic infection model as a first, crude approximation. The
way that mosquitos appear in our model, then, is simply through their influence
on the infectivity parametera. In warm, wet climates favorable to the reproduc-
tion of mosquitos,a is larger than in cooler, drier places. Similarly, public health
measures such as the use of mosquito netting can drastically reduce the infectiv-
ity parametera. This is one of the most important tools in the ongoing efforts to
control malaria worldwide.

The death rates in our model areδ for susceptible people and also for resistant
people, andδ′ for infected people. As before,δ is the probability per unit time
that a given susceptible or resistant person will die, andδ′ is the probability per
unit time that a given infected person will die.

Similarly, the female birth rates in our model areβ for susceptible and also for
resistant females, andβ ′ for infected females. Thus,β is the probability per unit
time that a susceptible or resistant female will give birth to a female child, andβ ′

is the probability per unit time that an infected female will give birth to a female
child. We assume in this case that the child is born uninfected, and hence either
susceptible or resistant, depending on her genotype.

The complication regarding birth concerns the genotype of the offspring, which
depends not only on that of the mother but also on that of the father. We assume
here random mating, so that for each birth a father is chosen at random from the
population, without regard to genotype or infection status. Now the probability
that a randomly chosen male is of genotype 00 is(S + I)/N , and the probabil-
ity that a randomly chosen male is of genotype 01 isR/N . Note that these two
probabilities add up to 1, sinceS + I + R = N .

Thus, if a mother is of genotype 00, her offspring are of genotype 00 with
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probability

P00,00 =
S + I

N
(1) +

R

N

(
1

2

)
(12)

since 1 is the probability that the offspring has genotype 00 when the mother and
father both have genotype 00, whereas1/2 is the probability that the offspring has
genotype 00 when the mother has genotype 00 and the father has genotype 01.

Similarly, if the mother has genotype 00, her offspring are of genotype 01 with
probability

P00,01 =
R

N

(
1

2

)
(13)

since in this case the only way that the offspring can be of type 01 is if the father
is of type 01, and then the probability of that outcome is 1/2. Note that

P00,00 + P00,01 = 1 (14)

since 00 and 01 are the only possible offspring genotypes when the genotype of
the mother is 00.

In exactly the same way, we can calculate the probabilities that the offspring
will be of type 00, 01, and 11, when the genotype of the mother is 01. These are
given by

P01,00 =
S + I

N

(
1

2

)
+

R

N

(
1

4

)
(15)

P01,01 =
S + I

N

(
1

2

)
+

R

N

(
1

2

)
(16)

P01,11 = +
R

N

(
1

4

)
(17)

Note that the fractions that multiply(S + I)/N in the above three equations add
up to 1, and likewise the fractions that multiplyR/N in the above three equations
add up to 1. Therefore,

P01,00 + P01,01 + P01,11 =
S + I

N
+

R

N
= 1 (18)

With the help of the above probabilities we can now say that the number of
susceptible female births per unit time is given by

BS = (βS + β ′I)P00,00 + βRP01,00 (19)
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and the number of resistant female births per unit time is given by

BR = (βS + β ′I)P00,01 + βRP01,01 (20)

Finally, the number of females born with sickle-cell anemia per unit time is

Bfatal = βRP01,11 (21)

Note that no one is born infected with malaria in our model.
Finally, we can write the differential equations of the model as follows:

dS

dt
= BS − δS − a(I/N)S (22)

dI

dt
= −δ′I + a(I/N)S (23)

dR

dt
= BR − δR (24)

N = S + I + R (25)

As advertised, the parameters are exactly the same as in the simple endemic
disease model of the previous section, and we assume that they obey the same
inequalities.

Like the simpler endemic disease model, this malaria model is scale invariant.
Its longterm behavior is that all solutions settle down to exponential solutions of
the form

S(t) ∼ S0 exp(λt) (26)

I(t) ∼ I0 exp(λt) (27)

R(t) ∼ R0 exp(λt) (28)

N(t) ∼ N0 exp(λt) (29)

where
N0 = S0 + I0 + R0 (30)

Recall thatS0, I0, R0, andN0 are not initial data, but simply constants that char-
acterize the large-time behavior.

As before, there is a threshold value ofa denoteda0. In fact,a0 depends on
the parameters of the model in exactly the same way as before. Whena < a0, no
matter what the initial conditions, malaria cannot become endemic — it is diluted
out of the population. Here, however, we have a new phenomenon, which is that
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the sickle-cell gene is diluted out of the population as well. Thus, witha < a0 the
longterm behavior hasI0 = R0 = 0, and thereforeλ = β − δ > 0.

Whena > a0, malaria, and with it the sickle-cell gene, can become endemic
in the population. Here, however, it is not necessarily the case thatλ eventually
becomes negative fora sufficiently large. Because of the protective effect of the
sickle-cell gene, it is possible for the growth rate of the population to remain pos-
itive no matter how large the infectivity of malaria may be. See whether you can
find a sufficient condition on the parametersβ andδ which will indeed insure the
survival of humanity no matter how great the threat from malaria. Interpret your
condition in terms of the number of children a typical woman has in a lifetime.
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