
NOTES ON ECONOMIC GROWTH AND PRICE EQUILIBRIUM

Charles S. Peskin

September 7, 2019

In these notes, we consider a dynamic version of an economic growth model

proposed by von Neumann [1]. By “dynamic” we mean that we follow the evolu-

tion of the model over time, instead of considering only its balanced-growth state,

which is a state in which the economy as a whole grows at a constant rate.

A distinctive feature of von Neumann’s model is that there is no distinction be-

tween producers and consumers. Instead, the economy is modeled as a collection

of processes, indexed by i = 1 . . . n, each of which has inputs and outputs called

goods, indexed by j = 1 . . .m.

The flow of time in the model economy alternates between production periods of

unit duration, and market days of zero duration on which goods are exchanged to

prepare for the next production period. It is during each market day that prices are

determined.

The model economy starts to function at t = 0, with each process already having

an allocation of goods so that it can begin production. The market days occur at

t = 1, 2, . . ., and throughout these notes, t will be integer-valued.

The ith process, running at constant intensity ri(t) for the production period

(t − 1, t) consumes ri(t)Aij units of good j at time t − 1 and produces ri(t)Bij

units of good j at time t. Note that ri(t) is the intensity of the ith process during

the production period leading up to the market day at time t. How this intensity is

determined will be described below.

The n×m matrices A and B characterize the economy, and the ith rows of these

two matrices characterize the ith process. The elements of these matrices satisfy

Aij > 0, Bij ≥ 0, (1)

for i = 1 . . . n and j = 1 . . .m. Thus, each process needs some positive amount of

every good (a strong but convenient assumption) in order to run, but may produce

only a proper subset of all possible goods as output. It is assumed that the matrices

A and B are independent of time.
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Let

pj(t) ≥ 0, j = 1 . . .m, (2)

be the price of one unit of good j on the market day that occurs at time t. How

these prices are determined will be discussed below. For now, we regard them as

given.

By selling the goods produced during the most recent production period, the ith

process earns cash at time t in the amount

m
∑

j=1

ri(t)Bijpj(t). (3)

We assume that all of this cash is spent on buying goods that are needed for the

next production period, and that this determines the intensity ri(t+1) with which

the ith process will run during the production period (t, t + 1). This gives the

equation
m
∑

j=1

ri(t + 1)Aijpj(t) =
m
∑

j=1

ri(t)Bijpj(t). (4)

Note that ri(t+1) and ri(t) can be factored out of their respective sums, and then

we can solve for ri(t+ 1) as follows:

ri(t+ 1) = ri(t)

∑m

j=1Bijpj(t)
∑m

j=1Aijpj(t)
. (5)

Since the Aij are all positive and the pj(t) are non-negative, the denominator in

the above equation will be zero only if all of the prices are zero. We assume that

this is not the case.

The only trouble with the above story is that the total amount of good j purchased

at time t may exceed the total amount of good j that was produced during the

prior production period. This is clearly impossible! (We are assuming that there

is no mechanism for the storage of goods for later consumption; the only goods

available on a given market day are those that were produced during the prior

production period.) The excess demand for good j at time t in the above scenario
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is

ej(t) =
n
∑

i=1

ri(t + 1)Aij −

n
∑

i=1

ri(t)Bij

=

n
∑

i=1

ri(t)

(∑m

k=1Bikpk(t)
∑m

k=1Aikpk(t)
Aij − Bij

)

. (6)

It is useful to think of the excess demand for good j as a function of the intensity

vector r ∈ R
n and the price vector p ∈ R

m. Accordingly, we define

Ej(r, p) =
n
∑

i=1

ri

(∑m

k=1Bikpk
∑m

k=1Aikpk
Aij −Bij

)

, (7)

and then we have ej(t) = Ej(r(t), p(t)).

Some important properties of the excess-demand functions Ej(r, p) are noted here

for future reference. All of these properties refer to the dependence on p, for any

particular r. To emaphasize this, we drop the dependence on r and just write

Ej(p) from now on:

• The functions Ej are homogeneous functions of p of degree zero, that is

Ej(αp) = Ej(p) (8)

for any positive scalar α. Another way to say this is that only relative prices

matter. (There is a notion of “interest rate” in von Neumann’s original paper

that describes how prices change in overall scale as the economy grows.

As far as I can see, this is completely irrelevant, since the model does not

involve borrowing, and since only relative prices matter. We do not consider

interest rate here.)

Because of (8), we may restrict consideration to price vectors in the set S

defined as follows:

S =

{

p ∈ R
m : p ≥ 0 &

m
∑

j=1

pj = 1

}

. (9)
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Here and in the following, when we apply an inequality to a vector, we mean

that this inequality is applicable to every component. Thus, p ≥ 0 means

that pj ≥ 0 for every j. Note that every p ∈ S has pj > 0 for at least one

value of j, since the sum of the pj is required to be 1.

• The functions Ej : S → R are continuous with continuous first derivatives.

This follows from the inequality

m
∑

j=1

Aijpj ≥ min
j

(Aij)
m
∑

j=1

pj = min
j

(Aij) > 0, (10)

which holds for every p ∈ S.

• For any fixed r, the functions Ej(p) are obviously bounded from below,

since

Ej(p) ≥ −

n
∑

i=1

riBij . (11)

• The excess-demand functions Ej(p) collectively satisfy Walras’ law [2]:

that the monetary value of the total excess demand is zero at any price

vector p. To see this, multiply both sides of (7) by pj , sum over j, and then,

on the right-hand side of the resulting equation, bring the sum over j inside

the sum over i. In this way, we get

m
∑

j=1

pjEj(p) =

n
∑

i=1

ri

(

∑m

k=1Bikpk
∑m

k=1Aikpk

m
∑

j=1

Aijpj −

m
∑

j=1

Bijpj

)

= 0. (12)

The above properties of the excess-demand functions are typical of a much wider

class of models than the specific one we are considering here, and the price

equilibrium problem can therefore be formalized, for this whole class of excess-

demand functions, as follows.

Let E : S → R
m be a given mapping that is continuous with continuous first

derivatives, and let E satisfy Walras’ law:

m
∑

j=1

pjEj(p) = 0 (13)
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for all p ∈ S. Then p∗ ∈ S is an equilibrium price vector if it satisfies

E(p∗) ≤ 0, (14)

and of course the price equilibrium problem is to find an equilibrium price vector.

An important remark is that if p∗ is an equilibrium price vector and if Ej(p
∗) < 0

for some j, then p∗j = 0. The proof of this is very simple. For an equilibrium

price vector p∗, the sum in Walras’ law involves only non-positive terms, since

Ej(p
∗) ≤ 0 (by definition of price equilibrium) and since p∗j ≥ 0 (since p∗ ∈ S).

A sum of non-positive terms can only be zero if every term is zero. This gives the

result that

p∗jEj(p
∗) = 0, j = 1 . . .m, (15)

from which it follows that if Ej(p
∗) < 0 then p∗j = 0, as claimed.

The significance of the above remark is that any good for which there is negative

excess demand (i.e., positive excess supply) at equilibrium is a free good, i.e.,

its equilibrium price is zero. Note, however, that it is not known until the price

equilibrium problem is solved whether any particular good will be a free good or

not.

It should also be mentioned that price equilibrium is sometimes defined in a more

restrictive way than here, to rule out the possibility of excess supply as well as

excess demand. This is called market clearing. By this more restrictive definition,

an equilibrium price vector is any p ∈ S that satisfies E(p) = 0. Since this is a

stronger condition than E(p) ≤ 0, the existence of an equilibrium price vector is

correspondingly harder to prove, and in fact further conditions on the mapping E

are then required to guarantee existence beyond those assumed in our statement

of the price equilibrium problem, above.

The existence of an equilibrium price vector p∗ ∈ S that satisfies E(p∗) ≤ 0 is

proved in the following way [3]. Let P : S → S be defined by

Pj(p) =
pj +max (0, Ej(p))

∑m

k=1 (pk +max (0, Ek(p)))
, j = 1 . . .m. (16)

To see that P (p) ∈ S for all p ∈ S, note that Pj(p) ≥ 0, and sum both sides of

(16) over j to obtain
∑m

j=1 Pj(p) = 1. The mapping P is continuous, since the
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functions Ej are continuous, since max(0, x) is a continuous function of x, and

since the denominator in (16) is bounded from below by 1 for all p ∈ S.

The set S is a closed, bounded, convex subset of R
m. It follows, then, from

Brouwer’s fixed-point theorem [4], that there exists at least one price vector p∗ ∈

S such that p∗ = P (p∗). Writing out what this means, we have

p∗j =
p∗j +max (0, Ej(p

∗))
∑m

k=1 (p
∗

k +max (0, Ek(p∗)))
, j = 1 . . .m. (17)

We claim that p∗ is an equilibrium price vector. To prove this, multiply both

sides of (17) by Ej(p
∗), sum over j, and apply Walras’ law, equation (13). The

denominator on the right-hand side drops out because the left-hand side becomes

zero, and we are left with the equation

0 =
m
∑

j=1

Ej(p
∗)max (0, Ej(p

∗)) . (18)

Because of the max function, we have here a sum that is equal to zero in which

every term is non-negative, so every term must be equal to zero, and this implies

that Ej(p
∗) ≤ 0 for j = 1 . . .m, as required. This completes the proof of existence

of a price equilibrium.

For the computation of a price equilibrium, it is helpful to reformulate the problem

as one of minimization. Let φ : S → R be defined by

φ(p) =
1

2

∑

j:Ej(p)>0

E2
j (p). (19)

It may seem redundant to use E2
j instead of Ej in the definition of φ, since the sum

is only over terms for which Ej is positive anyway, but the choice E2
j is needed to

make the gradient of φ be continuous, see below.

Note that φ(p) ≥ 0 for all p ∈ S. Also, φ is continuous on S, with continuous first

derivatives. To see this, recall, first, that the functions Ej are continuous on S with

continuous first derivatives, so the only possible discontinuities are related to the

discrete nature of the condition j : Ej(p) > 0 that decides whether or not a term

is to be included in φ. The dangerous points are those for which Ej(p) = 0 for

one or more values of j. At precisely such points, however, any term that might or
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might not be included in the sum has the value zero, and likewise (since E2
j was

used instead of Ej in the definition of φ), all of the first derivatives of such a term

are zero at such points as well.

From the definition of φ, equation (19), it is obvious that φ(p) = 0 if and only

if Ej(p) ≤ 0 for all j, which means that p by definition is an equilibrium price

vector. (Recall that the domain of φ is S, so p ∈ S is implied by φ(p) = 0.)

Since φ(p) ≥ 0 for all p ∈ S, it follows that every equilibrium price vector is

a global minimizer of φ, with the value φ = 0. We can therefore compute price

equilibria by minimizing φ, and we can distinguish actual price equilibria from

any non-global minima that may be found simply by evaluating φ.

We anticipate that global minima of φ will sometimes occur on the boundary of S,

see the discussion of free goods, above. Although minimization software can deal

with this, it is a complication that we can avoid by making a change of variables.

Let p(q) be defined by

pj = q2j , j = 1 . . .m. (20)

The domain of q is the unit sphere in R
m:

S =

{

q ∈ R
m :

m
∑

j=1

q2j = 1

}

, (21)

which of course has no boundaries. If q ∈ S, then p(q) ∈ S. Note that this method

of putting the problem on the unit sphere is different from another approach that

is sometimes used, which is to normalize the prices by setting the sums of the

squares of the prices equal to 1, see for example [5]. Here we retain the more

natural normalization that the sum of the prices themselves, not their squares, is

equal to 1.

The function that we need to minimize over the unit sphere in R
m is

φ(q) =
1

2

∑

j:Ej(q)>0

E
2

j (q), (22)

where

Ej(q) = Ej(p(q))

=

n
∑

i=1

ri

(∑m

k=1Bikq
2
k

∑m

k=1Aikq
2
k

Aij −Bij

)

. (23)
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The components of the gradient of φ are therefore given by

∂φ

∂qk
(q) =

∑

j:Ej(q)>0

Ej(q)
∂Ej

∂qk
(q) (24)

where
∂Ej

∂qk
(q) = 2qk

n
∑

i=1

riAij

Bik

∑m

ℓ=1Aiℓq
2
ℓ − Aik

∑m

ℓ=1Biℓq
2
ℓ

(
∑m

ℓ=1Aiℓq
2
ℓ )

2 (25)

Note the important point that

m
∑

k=1

qk
∂Ej

∂qk
(q) = 0, (26)

which implies that
m
∑

k=1

qk
∂φ

∂qk
(q) = 0. (27)

The meaning of this result (which is a consequence of the homogeneity of degree

zero of the excess-demand functions) is that the gradient of φ is tangent to the unit

sphere in R
m.

We can therefore use gradient descent on the unit sphere in R
m to find minima

of the function φ. One way to think about gradient descent is in terms of the

initial-value problem

dq

dτ
= −

(

∇φ
)

(q(τ)), (28)

q(0) = q(0), (29)

in which τ is a time-like parameter (not to be confused with actual time), and q(0)

is a given initial point on the unit sphere. A natural choice for q(0) (except on the

first market day) is the value of q corresponding to the prices that prevailed on the

previous market day. On the first market day, the choice of q(0) can be made by

choosing a random point on the unit sphere in R
m.

Because of equation (27), solutions to (28) remain on the unit sphere if they start
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on the unit sphere. Also,

d

dτ
φ (q(τ)) =

m
∑

k=1

∂φ

∂qk

dqk

dτ

= −

m
∑

k=1

(

∂φ

∂qk

)2

≤ 0, (30)

with equality if and only if ∇φ = 0. Since the unit sphere in Rm is closed and

bounded, it follows that any solution to that starts from any point on the unit

sphere will converge as τ → ∞ to a stationary point of φ, i.e., a point at which

∇φ = 0. Such a stationary point may or may not be one of the global minima

that we seek, but we can easily tell whether it is or not by evaluating φ at the

point in question. If φ > 0 (in practice, we have to allow some tolerance, say

ǫ, so if φ > ǫ), then we need to try again to find a global minimum by starting

the search from a different initial point. We could, for example, choose a random

initial point on the unit sphere, and continue to do so until a global minimum is

found. (Recall that the existence of a global minimum, with φ = 0, is guaranteed).

Another strategy that might be better is to choose multiple random points on the

unit sphere until a starting point is found at which the value of φ is below the value

at the latest stationary point that has been found. This would guarantee that the

same stationary point will not be found again.

The numerical solution of (28) can be done by Euler’s method with projection

onto the sphere, that is

q(τ +∆τ) =
q(τ)− (∆τ)(∇φ)(q(τ))
∥

∥q(τ)− (∆τ)(∇φ)(q(τ))
∥

∥

. (31)

Another possibility is to use a Matlab ODE solver, and yet another possibility is

to avoid using the ODE formulation, and to conduct the search by means of the

Matlab function fmincon, which does constrained minimization (the constraint

here being that we are on the unit sphere), and which can take advantage of having

an analytic gradient. All of these methods have in common that a starting point

needs to be specified, so the strategies discussed above for choosing a starting

point are applicable to all of them.

Once the prices have been found for the market day at time t, we can evaluate

the intensities ri(t+1) of all of the processes for the next production period from

9



equation (5), and proceed to the next market day. The whole process is determin-

istic except for the random initial guess concerning the prices on the first market

day, and also the random re-start procedure if it turns out that this procedure ac-

tually has to be used. The effects of either of these sources of randomness can be

assessed by running multiple simulations and comparing the results.

It would be an interesting project to implement the above model with random

choices of the matrices A and B. For example, one could choose all of the el-

ements of these matrices as independent random variables, uniformly distibuted

on (0, 1). Many other ways of choosing these matrices will no doubt occur to the

reader. I suggest choosing n >> m, so that there are many more processes than

goods. What I expect to happen over time is selection, in which unproductive

processes are gradually eliminated in favor of more productive ones. Some goods

may also, in effect, be eliminated by becoming free goods. It will be interesting

to see whether the economy as a whole settles into a state of balanced growth,

as predicted by von Neumann, or whether more complicated behaviors such as

cycling or chaos are observed.
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