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FLOW PATTERNS AROUND HEART VALVES:

A Digital Computer Method for
Solving the Equations of Motion

ABSTRACT

The flow pattern of blood in the heart is intimately connected
with the performance of the heart valves. The motions of blood and
valve leaflet interact strongly. Points of the valve leaflet are
carried along at the local fluid velocity. At the same time these

points exert forces on the fluid which significantly alter the fluid
motion.

A mathematical method for studying these phenomena is introduced.
Its basis is an idealization of the cardiac tissue as a neutrally
buoyant, force-generating structure, immersed in a viscous incompress-
ible fluid. A unified mode of representation has been found for such
structures which encompasses natural valves, prosthetic valves, and
heart muscle. 1In this "link formalism", specified pairs of points
of the structure are connected by links which fix its topology and
embody its physical properties. The length-~tension relation for each

link is fixed for the passive valve leaflet and time-varying for the
active heart muscle.

A numerical method is introduced which incorporates a previously
existing algorithm for solving the Navier-Stokes equations on a
rectangular mesh. Points of the link structure (cardiac tissue) need
not coincide with fluid mesh points. We introduce an analog of the
0 =function which is used to interpolate the fluid velocity field to
points of the cardiac tissue and also to spread the cardiac forces
ontc the fluid mesh. Numerical stability is secured by using at each
time step a system of forces which are approximately the final forces
for that time step. In sclving for these forces we exploit the special
mathematical structure of the link formalism to introduce a version

of Newton's method which is efficient despite the large number of
unknowns.

We use this technique to study the physiology of mitral valve
closure. Four distinct streamline types are identified, %ogether
with a universal sequence of their appearance in time during a single
diastole and a hierarchy of their effects on valve performziice. This
classification is also applicable to prosthetic valves. These stream—
line types are:

A. Fills the ventricle; does not move the valve.

B. Circulates and closes valve; no effect on ventricular volume.

C. Closes the valve and reduces the ventricular volume.

D. Reduces ventricular volume; does not move the valve.
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The type B circulating streamlines are of special interest in that
they move the valve toward closure witheut reducing the ventriculer
volume. In our work the valve leaflets themselves participate in
the formation of the circulating streamlines, which are only formed
when the open valve is restrained by the chordae. This contrasts
with the views of some workers that the chordae are slack during
diastole. Thus our mathematical method gives the physiologist the
freedom to postulate the properties of the heart, to create a
corresponding cardiac structure in the computer, and to observe
its performance. In this way he refines his understanding of
cardiac physiology.

Projected uses of this technique include the design and

computer testing of prosthetic valves. As shown in this work

the details of the flow pattern significantly influence valve
performance. The flow pahtern is not accessible in vivo, however,
and in vitro testing chambers usually have rigid walls, unlike
the chambers of the heart. The present, method can provide an
appropriate setting for the systematic variation of the parameters
of prosthetic valve design.
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I. INTRODUCTION

The aim of this work is the prediction of the flow pattern of
blood in the heart from Newton®s laws. Newton's laws have been known
for several centuries. There has been interest in the flow patterns
around heart valves for even longer, beginning with the work of
Leonardo da Vinci. The questions that we seek to answer in this work
are old questions, and the physical principles that we shall use have
been known for a long time. It was not known untii recently how to use
the principles to answer the questions. In other words, the equations
could be written down, but they could not be selved.

Tn this work, the aim of solving the equations is to explore
the interaction of heart valves with the flow of blood in the heart.
This interaction is strong in both directions. The movements of the
flexible valve leaflets are completely determined by the motion of the
fluid, but the velve leaflets strongly influence that motion. For
example, when the valve is closed, it completely prevents backward flow.
More subtle aspects of the interaction are illustrated by the hypothesis
of Leonerdo da Vinci that frictional drag on the thin layer of fluid
ad jacent to the valve leads to the production of a vortex and that this
vortex is responsible for the early closure of the valve and for the
lack of any observed backflow asscciated with closurs. Such mechanisms
are interesting in their own right, and it is reasonable to assume that
understanding them will lead to improved design of artificial heart
valves.

The main result of this thesis is the introduction of a method
for investigating such phenomena. The method coneists of a computer

technique or numerical scheme for constructing approximate solutions
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of the equations of motion of the blood-valve~heart system. Some of
the main strengths end weaknesses of the method will be mentioned here
with more detailed discussion in subsequent sections.

The method is not limited to any particular geometry of heart
or valve. The correct geometry can be specified to any desired degree
of accuracy —— the only limitation being the endurance of the programmer
who is supplying the data to the computer.

The physical properties of the heart, in particular, the active

muscular properties of the heart wall can be included in the scheme,
again with any desired degree of accuracy.

A unified mode of representation has been found that inclﬁ;es
both flexible structures (natural valves) and almost rigid structures
(artificial valves).

In principle, the method can be used in three dimensions with-
out making any assumptions about axial symmetry. (However, this poten—
tial cennot yet be realized, see below).

With the present generation of computers, the method is very
expensive in computer time and space. As a practical matter, this
1imits what one can do as follows: First, one can only study two
dimensional heart-like structures. Second, one can only study small
hearts. As to the former limitation, it will be seen by the results
that much can be learned (especially about the mitral valve) from a
two dimensional representation. Asg to the latter, it is likely that
the flow patterns and valves of small mammals are roughly scale models
of the human. (See Section IV on Comparative Fluid Dynamics of
Mammalian Hearts). The limitations will be gradually removed as

computer technology advances, and perhaps more rapidly removed by the
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3.

further development of the present methods.

The xﬁethod assumes that all structures of the heart are neutrally
buoyant in blood. Studies with artificial valve occluders of varying
mass confirm the idea that the inertia of the blood itself completely
dominates any other inertial effects in the heart. [1]

The method assumes that all structures are immersed in flnid.
Strictly speaking then, we are studying a heart beating in an aquarium

of fluid,; rather than in situ.
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TI. BRIEF STATEMENT OF THE PROBLEM AND METHOD OF SOLUTION

e are concermad in this work with the flow patterns of blood
in the neighborhood of heart valves. The valves themselves have a
strong influence on this flow pattern, and the flow pattern has a strong
influence on the performance of the valves. The aim of this work is to
study the interaction.

As a starting point, we take the laws of fluid mechanics for
a vi%ous incompressible fluid. From these laws it is possible in
principle, given the state of the fluid at one time; to predict its
state at all subsequent times. Of course, to do this one needs to
know the forces acting on the fluid. An importent example is the
force applied to the fluid along a material boundary, such as the heart
valve leaflet. This force is central to the function of heart valves:
when the valve is closed it is the force that stops the flow. Similarly,
the force applied by heart muscle to the fluid constitutes the function
of that muscle. In the present work, material boundaries are represented
in terms of the forces they exert on the fluid. This is to be contrasted
with the more classical approach in which boundaries are regarded as
constraints on the fluid motion. It is simplest to calculate the
influence of such forces if they are applied to the interior of the fluid
rather than at its edges. In the case of the heart valve leaflet, which
is immersed in fluid, the forces really are applied in the interior.
It is convenient, however, to regard the whole heart as immersed in fluid
so that the muscular forces also are applied to interior points. When
the material boundaries are thus immersed, snd represented as forces,
they disappear as boundaries in a mathematical sense. Instead, they

are simply specialized regions of the fluid where extra forces are
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applied. The next step is the calculation of such forces. An essential
principle here is the following.

If the material boundaries do not introduce any additional mass
into the fluid (i.e. if they are either infinitely thin or neutrally
buoyant) then the forces they exert on the fluid can be calculated
entirely from the state of the boundaries, without regard to the state
of the fluid.

The proof of this requires only Newton's laws. Let B* be a
chunk of the material boundary B. The forces on B' are of two types.
There are forces £, exerted by the fluid on B and forces f, exerted
by the rest of the material boundary B on B®. The force ;1 depends on
the state of the fluid and gQ depends on the state of the material
boundary. If the mass of B' is zero, we mst have gl + £, = 0 to avoid

.—2
infinite acceleration of B®. Consequently, ﬁgl = f,. But fﬁl is the

=2
force exerted by B' on the fluid. Since it is completely determined
by gz the theorem is proved. One way to summarize this theorem is
to state that in the case of massless material boundaries all forces
applied to one part of the boundary by another are transmitted directly
to the fluld.

Consequently, we restrict attention to material boundaries
which do not add mass to the fluid. For example, we approximate the
heart muscle as a bag of neutrally buoyant fluid in which additional
forces (the muscular forces) act, over and above the usual fluid forces.
This point of view guarantees automatically the constant volume “eature
of muscular contractlion, since the fluid in the muscle is incompressible,
like the rest of the fiuid. The forces due to the boundary will be

calculated purely from the state of the boundary. This avolds the
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necessity of evaluating the fluid stress tensor in the neighborhood of
the boundary. |

The next step is the specification of the state of the bound-
aries in such a manner that the forces can be evalucted 5% each instant
of time, For elastic structures the state of stress (i.e. the set of
forces exerted by one part of the structure on another) is completely
determined Ly the configuration of the material points of the structure
in space. One can teke a structure which is formally elastic in this
sense and make it active (like a muscle) by having the relation between
its configuration and its state of stress change with time. Consequently,
we have adopted the point of view that the configuration in space of the
material boundary is the central determinant of the boundary forces,
whether the boundary be active or passive.

Moreover, we have found that an especially simple type of
elastic structure is sufficiently general for our purposes. Thus, we
restrict consideration to structures in which all forces act along
straight line segments joining pairs of points of the structure. Such
segments are called links. The topology of the structure is determined
by giving a list of all of the links together with the names of their
endpoints. The physical properties of the structure asre determined by
stating how the tension in each link depends on the length of that link.
Tn Section VII it is shown that this type of structure may e used to
represent natural valves, artificial valves, or heart muscle.

Toward the beginning of this section, it was sald that the
state of the fluid could be determined in principle at all subsequent
times if it was given at some initial time. When this is actually done

in a computer the state of the fluid at every point in space cannot be
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.. .d, as there are an infinite number of such points. Instead, only

a finite number of points are used: points arranged like intersections
of a pilece of graph paper. These are called mesh points. However, the
points of the immersed boundaries are moving about the domain, and they
cannot be required to coincide with mesh points at all times without
introducing excesgive dishortion that will interfere with the accurate
computation of the boundary forces. Consequently, it is necessary to
allow the boundary points to lie anywhere in the domain, and this raises,
at once, the following difficulties:

How to interpolate the fluid velocity field from the fluid mesh
points to the points of the immersed bounderies.

How to distribute the forces associated with these boundary
points to the nearby mesh points of the fluid.

Both of these problems are solved simultaenecusly by the intro-
duction of en analog of Dirac®s O~function, which is essentially a pulse
of zero width and area 1. Here we use instead a pulse which is 4 mesh
widths wide and has area 1. This pulse, centered on the boundary point,
determines the coupling coefficient between that boundary point and the
mesh points of the fluid. As the resolution of the fluid mesh becomes
finer and finer, our pulse approaches a Dirac O-function. The particular
shape of the pulse that we use is that of a single cycle of cosze. This
shape is optimal in the sense discussed in Section IX.

A further difficulty is the question of numericsl stability.
Briefly, the problem is that the act of introducing finite time steps,
which is essential for a computer solution, has the tendency to introduce
oscillations which grow with time and which have nothing to do with the
rhyreical solution of the problem. This can be avoided by using in each

time step a system of boundary forces which are approximately the forces
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for the end of the time step, not those known at the beginning. The
final forces are unknown at the beginning of the time step. Moreover,
they depend on the forces that are applied to the fluid during the time
step. If we want the final forces to equal the applied forces, then we
have to solve what is known mathematically as a fixed point problem for
the boundary forces. Unfortunately, in this case the problem has
roughly a thousand unknowns and an equal rumber of equations; moreover,
it is non-linear. Fortunately, the associated metrix is mostly full of
zeros, because each boundary point is connected by links to only a few
other boundary points. How to take advantage of all of these zeros
is not a trivial problem. The solution is given in Section VIII.
With these technicues established the construction of the

solution proceeds step by step as follows:
1. Solve for a set of boundary forces which will be approximately

the final forces for the current time step.
2. Distribute these forces on the fluid mesh using the §-function.
3. With these forces given, allow the fluid velocity field to move

forward in time one step under their influence and also under

the influence of the fluid forces.t
L. Interpolate the new velocity fleld to the boundary points using

again the &-function, and move the boundary one time step ahead.
This completes the time step. Return to 1.

tStep 3 is a complicated one, the detalls of which are not emphasized
in this section because the techniques were known when the present
author began this work. The numerical techniques used in the present
work for step 3 were invented by A. J. Chorin. They are discussed in
more detail, with references, in Section VI.
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IIY. HISTORY
Barly Ideas

Two crucial hypotheses have dominated the thinking of many of
the present workers in the field of heart valves. They are the hypoth-
eses c;f Leonardo da Vinei [2] and of Henderson and Johnson [3]. Both
are concerned with the question of the efficiency of valve closure,
that is with the phenomenon of zero backflow.

Lecnardo's views can only be understood when it is realized
that the circulation of the blood was not knownin his day. To him,
the function of the aortic valve was the same as it is to us: namely,
to allow blood to pass away from the heart and not to return. But
his view of the mitral valve was that blood passed it in both directions
and in this manner became heated, thinned and ready for use. Therefore,
in the case of the aortic valve he devised a mechanism that would
account for zero backflow during closure. In the case of the mitral
valve he proposed that the blood lying between the cusps at the instant
that ciosure begins is the blood that constitutes the reflux into the
strium. Tt is Leonardo®s aortic valve, Uhen, that is of interest to us;
for we lnow now that reflux into the atrium through the mitral valve
can énly be harmful and ought to be minimized in valve design.

For the sortic valve, Leonardo proposed that as the blood
flowed over the opened valve a thin layer of fluid adjacent to the valve
leaflet is retarded by frictional forces, and that thin layer of fluid
in some way generates a vortex which lies behind the wvalve leaflet and
holds the cusp away from the wall of the aorta. The tendency of the
vortex is always to close the cusp. During meximal forwerd flow, it

is prevented from doing so by the blood rushing out of the ventricle,
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but as the flow decreases, the cusps move toward each other. At the
instent of zero forward flow they are already closed and no backflow
occurs across the valve.

These ideas ought to be remarkable to fluld dyvamicists,
because they contain the essence of what is now known as boundary
layer theory, which was disoovered in 1901 by Prandtl. It is row an
accepted principle of fluid dynamics that vorticity in s fluid is
often generated by frictional forces in the thin retarded layer of
fluid adjacent to material boundaries. Leonardo says he got his
jdeas by watching fluid pour out of the end of a pipe. He noted that
the fluld from the center of the pipe went higher (if the pipe was
vertical) or further (if the pipe was horizontal) than fluid from near
the sides. The fact that Leonardo observed a thin layer of retarded
fluid in this experiment shows that the velocity profile he was
" observing was like that shown in Fig. (3-1la) rather than in (3-1b). The
profile of Fig. (3-1b) is the one we associate with an infinite pipe
or with a finite pipe at a large distance from its inlet. Since
Leonardo ebserved a profile like that shown in a, he must have used a
pipe which was short compared to the inlet length: It would have been
difficult for him to do otherwise since inlet lengths are long under
conditions that approximate human physiology. In the case of the aorta
for example, inlet iength is on the order of 2000 radii. (See Landau,
Lifshitz [4], p. 150 for a discussion of inlet length).

The ideas of Henderson and Johnson are best described by a
discussion of two simple experiments of theirs. In the first a U-shaped
section is attached to a straight tube near the middle as in Fig. (3-2).

Initially, there is flow directly through the straight tube with very
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Fig. (3-1) Velocity profile in a pipe (a)

near the entrance, and (b) far from the entrance.
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(b)
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Fig. (3-2) Initially the bulk of the flow is
through the straight tube. When this path is
suddenly cut off, fluid begins to circulate through

the U=shaped segment.
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11.

little diverted into the U. Then the straighb-through {low is stopped
suddenly by occluding the tube eibher above cr below ths U. The resulb
is that fluid begins to circulate around the circuit formed by the U and
the section of the sbtraight tube that closes it.

Tt is instructive to analyze this experiment in more detail
than Henderson and Johason did in their paper. The fluid is lmagined
t0 be jdeal (zero viscosity) and to flow in all cases parallel to the
walls of the tubes with wniform distribution of flow over the cross
sections. Let the straight tube be designated by the subscript 1 and
the U shaped segment by the subscript 23 ;i?g that their cross sectional

..areas will be Al and Azg their velocities vy and Vo and their lengths
4, end 4, . Actually, we let 41 equal the length of that portion of the
straight tube that closes the U, The positive direction of veloeity is
down in the straight tube and up in the U. The notation is. illustrated
in Fig. (3-2b).

ILsh C be a closed D-shaped curve of length £ + {9 that goes

around the loop formed by the straight tube and the U. Then let
K-

K is called the circulation around ¢. During the sudden ccclusion of

C y_- é&: Vl 4@1 -+ VE 22 (3"'1)

the straight tube at either end, K is conserved. The total flwc in the
stralight tuvbe is lel and that in the U is v:,Az. After the occlusion
these must be equal. Thus the quantities vy and Vo after the occlusion

are given by

’el Vl 'l' 212 Vz = 21 Vl ° ) (3.‘2)

A vy, = A, v, (3-3)
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Fig. (3-2b) Notation for the snalysis of

Henderson and Johnson's experiment.
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with the solution

Ay By vy°
Vl = (3_4)
Al ]Z,a + A2 £ 1

A'l z]_ Vlo
vy = (3-5)
Al f’2 + A2 'g’l
In the simplest case Al = A2, we get
£y vy °
Vi T Vg, =m——— (3-6)
2

The essential point is that the circulation X is conserved during the
occlusion and that this condition permits a determinstion of the final
velocities. A more subtle question is: how did the circulation become
established in the first place. One might expect, for example, that
the initial flow condition was like thet shown in Fig. (3-3), with

vy 8y vy L,= 0, initially.

For this initial condition, occlusion of the straight tube will
completely stop the flow everywhere at once. The reason why Henderson
and Joknson did not cobserve this kind of flow initially was that separa-
tion had occurred at the corner indicated in Fig. (3~4).

Thus, the initial circulation was created by fluid flow
separgting from the wall. The detailed analysis of this phenomenon
:Lneviﬁabl,y involves consideration of the wall region, or boundary layer,
and the frictional forces operating there. Once this point is undersatood

a relationship begins to emerge between the considerations of Henderson
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Fig. (3-3) If K= vy, +valy=0 initially,
sudden occlusion would stop the flow everywhere

at once.
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Fig. (3-4) How non-zero circulation K is
established in the experiment of Henderson and
Johnson. The flow is unable to follow the sharp

angle and separates from the wall.
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and Johnson and those of Leonardo.

The second experiment of Henderson and Jolmson is illustrated
in Fig. (3-5). A flexible rubber sleeve is fitted to the end of a glass
tube which is initially filled with water. The tube is held vertically
above an aguarium with the end of the tube and rubber sleeve below the
surfece. The fluid is held in the tube by the finger of the experi-
menter covering the top. The colum of fluld is released and falls
in the tube. When the level in the tube becomes below that

in the aquarium, fluid rushes in from the sides and collapses the

rubber sleeve. The closure is so effective that by the end of the
experiment the fluid level in the tube is at rest below the fluid level
of the agquarium. Henderson and Johnson explain this result by noting
thaet the column of fluid actually continues down into the aquarium in
the form of a jet. When the pressure head in the glass tube becomes
too low, howsver, the jet is broken. The submerged part continues to
move ahead leaving a negative pressure region behind which draws fluid
rushing in from the sides.

To Henderson and Johnson this experiment demonstrated the
importance of atrial systole to mitral valve closure. They concluded
that atrial systole establishes a jet, which, when broken, leads to

valve closure.
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Fig. (3-5) A second experiment of Henderson
and Johnsone. The column of water in the tube is
released; it falls suddenly. When the level in
the column is below that in the aquarium the

sleeve collapses and holds the level low.
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Interpretations Unification of the Foregoing Theories

We begin by noting that the experiment of Henderson and Johnson
with the U~-shaped tube can actually be made the basis for construction
of sn extremely efficient valve (see Fig. 3-~6).

When the valve is open it blocks the U~shaped chamnel so that
flow goes straight through. When a reverse pressure difference is
applied flow begins to circulate round the tube and this slams the valve
shut from the side with no backflow. This valve is hereby proposed for
use with artificial hearts, as shown in Fig. (3-7).

Next we note that Fig. (3-6) looks a lot like an aortic sinus,
the main difference being that the aortic sinus doesn't have a D-shaped
segment cut out of it but instead is filled with fluid. Consequently,
we replace this cut out segment by a vortex as shown in Fig. (3-8).

We saphasize again that the ultimate source of the vorticity
is, as stated by Leonardo, the thin layer of retarded fluid adjacent
to the valve leaflet.

The connection between Leonardo®s ideas and those of Henderson
and Johnson is now complete. It remains, however, to show how the
foregoing considerations can be applicd %o the mitral vaelve. To do
this one simply throws away the downstream straight tube and makes the
U deformable, like the ventricular wall in diastole. One has then the
configuration of Fig. (3-9).

One final remark of a mathematical nature:

In Fig. (3-6) one can draw two types of simple closed curves
lying entirely in the fluid or possibly crossing the valve. One type
encircies the cut out section, the other does not.. Thess two Lypes are

topologically distinct; they cannot be deformed into each other without
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Fig. (3-6) Plan for an efficient valve based
on the principles of Henderson and Johnson's
experiment. Open, the valve offers little
resistance to flow. Sudden application of a
reverse pressure difference during forward flow

causes circular flow which closes the valve,
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Fig. (3=7) Plan for an artificial ventricle
using the valve of Fig. (3-6) in both the inflow
and outflow positions. The ventricle is shown

in diastole.
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Fig. (3-8) A vortex feplacing the cut out
section of Fig. (3-6). The configuration is

now that of an aortic sinus.
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Fig. (3-9) The outflow path has been
replaced by a deformable wall. The configuration

is now that of half a ventricle in diastole.
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crossing walls. In Fig. (3-8) there are similarly two types ~f simple
closed curves, those that encircle the center of the vortex and those
that do not. Thus, the vortex not only plays the same role as the cut
out section physically, but also topologically. In both instances, a
potential function can be introduced to describe the flow (approximately),

but because of the topology this function must be multivalued.
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Recent Confirmation of the Early Ideas

Taylor and Wade [5,6] have observed the flow patterns directly
in mammelian hearts by tald.ﬁg cine’ films using x-ray with radiopaque dye
as a fluid marker and also using endoscopic techniques with bubbles as
a fluid marker. In a different study, the same workers actuslly
measured the fluid velocity at different points across the mitral valve
orifice. Their results are so striking and important that they will be
qucted here at length:

"The basic flow patterns observed were identical in the two
species, and of a similar nature round both mitral and tricuspid valves.
They were characterized by stability of flow with no gross turbulence
with only a slow tendency to lateral dispersion of streams. Fluid
entering the atria during ventricular systole collected as an expand-
ing bolus. The only site where swirling and dispersion was observed
was in the right atrium adjacent to the entrance of the coronary sinus.
In ventricular diastole when the atrio-ventricular valves opened stable
streams were drawn into the ventricle through the valve canal. On
reaching the valve outlet at the cusp margins these strezams diverged
to flow around the lateral and septal walls of the ventricle and then
doun the ventricular aspect of the atrio-ventricular valve cusps. At
this stage they flowed adjacent and parallel to the entering stream
and formed stable expanding vortex systems behing the cusps, which
were fed and maintained by the flow from the atrium. In late ventric-
ular diastole, and with atrial systole,the streams became transiently
less stable, with waviness appearing as flow decelerated. There was
also some lateral eswirling which was most marked at the time of
atrioventricular valve closure. Despite this terminal instability
there was no evidence of flow reversal at the time of valve closure."

"Records at different distances across the mitral valve
orifice under steady state conditions showed no significant change
in the flow velocity curve. It was not possible to record within
2 mm of the wall."

The main conclusions on the character of mitral valve flow may
be summarized:

(1) Flow is not turbulent.

(2) Vortices are formed and are stable.

(3) Boundary layers are thin .

(4) There is no backflow during closure.
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(5) The flow pattern is species independent (on the two species
observed - sheep and dogs).

Remark: The conelusion that the flow ic not turbulent is
surprising to many fluid dynamicists who point out that turbulent flow
would result if the peak flow rate through the mitral orifice were
maintained steadily in a pipe of the same diameter. However, as Taylor
and Wade point out, the character of the flow is completely diffsrent
from that of steady flow in a pipe. In particular, the velocity profile
is flat so that to a first approximation the bulk of the fluid is simply
being transported as a rigid body.

Further confirmation and extension of the early ideas comes
from the work of Bellhouse and Talbot [7] on the aortic vaive and of
Bellhouse and Bellhouse [8] on the mitral valve. These workers
constructed realistic models of the natural aortic and mitral valves and
mounted them in a transparent elastic heart~like chamber which was
activated by air pressure. They were able tc measure the flow pattern
with hot-film probes and to observe it by watching suspended psrticles
and dye.

Their main conclusions are similar to those listed above but
with many additions and refinements, some of which will be discussed
here.

In the case of the aortic valve, Bellhouse and Talbot [7]
found that during the time of forward flow, vortices filled the aortic
sinuses and "locked"™ the valve leaflets into a fixed open position,
the same position as in steady flow. The stream of fluld just adjacent
to the valve leaflet was split into two parts at the sinus ridge (as

demonstrated by watching dye): part was diverted into the simus and
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the rest flowed down the aorta. When the main flow decelerated, the
vortices pushed the valve leaflets together, so that closure was
essentially complete by the time of flow reversal. The results were
identical whether the sinuses were flexible or rigid, and the position
of the valve cusps at maximum opening was the ssme in steady flow as
in pulsatile flow. With a stenotic valve streamlines leaving the
ventricle met the aort&c wall further downstream than the sinus
rldge and there was little circulation in the sinuses,

It is emphasized by Bellhouse and Talbot that the sinus vortex
would not have time to form during a single systole if it were formed
by the viscous shearing action of the main aortic flow acrose the
initially still fluid in the aortic sinus. Instead, they claim that
there is a continuing exchange of fluid with a complex flow pattern
in and out of the sinuses. Indeed, such an exchange is demonstrated
even in steady flow by their dye experiments. The authors do not
comment on what is the nature of the flow pattern that produces this
exchange, but it is evidently not turbulent, for the valve leaflets
were not observed to flutter. '

If the sinuses are rigid and the valve leaflet at rest, then
flux into the sinus must equal flux out (Neglecting coronary flow, which
was absent in the model system). Consequently, one has to imagine a
streamline Irom the ventricle passing near the valve leaflet, looping
one or more times round the sinus, and proceding on down the aorta. But
streamlines do not cross themselves, and such a streamline would have

‘t0 cross itself if it lay in a single plane. It follows that the flow

cannot be axisymmetric, not even if the valve and asorta were axisymmetric,
i1f these phenomena are to occur. Indeed; it appears from the photographs

of the leaflets that flow enters the sinuses primarily at the three
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ar,;.es occupied by the centers of the cusps and leaves primarily at the
three commissures.

In their model mitral. valve studies, Bellhouse and Bellhouse [8]
again demonstrated vortices forming behind the valve cusps which aided
in valve closure. The strength of the vortex was found to be dependent
on the size of the ventricle, it was stronger in smaller ventricles.

As expected, then, closure of the valve occurred later in the larger
ventricle and there was more regurgitation. It should be emphasized
that the absolute size of the ventricle was not the experimental
variable here, but, rather, the ratio of stroke volume to end systolic
(i.e. residual) volume. When that ratio was 1.62 the authors found an
intense vortex and a valve that was 88% closed by the end of diastole.
When the ratio was 0.1 the vortex was week and the valve was only 28%
closed at the end of diastole.

A crucial result of {he studies that Bellhouse and Bellkouse
performed with their model mitral valve is the demonstration of a
diastolic closure movement of the anterior leaflet of the mitral valve
that occurs long before atrial systole; in fact, it begins even before
peak forward flow. Atrial systole first interrupts the progress of
closure and then accelerates it. With or without atrial systole the
closure is nearly complete by the end of diastole in small ventricles
(small in the sense discussed above). As the authors point out, however,
at low heart rates one may have a long period of slow filling during
which the valve remains open because viscous action has time to degrade
any vortices that are formed.

Tn such a situation, atrial systole can reestablish the vortex

and promote diastolic closure of the valve. Conversely, if atrial systole
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2t <usent the valve will be open at $he beginning of ventricular gystole
and regurgiation will result.

The gradual diastolic movement of the anterior leaflet toward
closure has also been demomstrated by echocardiography [9]; in fact,
it is such a characteristic feature that it identifies the mitral valve
to the cardiologist.

The conclusions of Bellhouse and Talbot, and of Bellhouse and
Bellhouse are particulariy satisfying becquse they are confirmed by a
mathematical model. The nature of that model will be indicated here,
mainly to contrast it with the present work. The starting point for
the models of both the mitral and aortic valves is to assume the geometry
of the flow pattern. That is, a vortex of a particular form is assumed
to exist in the sinus or ventricle, the valve is assumed to form the
curved surfaze of a truncated cone, and the flow in the main stream is
assumed to be in the axial direction and uniform across each cross—
section. When these geometric assumptions are made only a small number
of variables remain to completely characterize the flow. For example,
one has the vortex strength, the vertex mngle of the valve cone, the
velocities at the valve ring and valve tips. The evolution of these
variables in time is then determined by applying conditions such as
conservation of energy and momentum, and by matching the flow through
the valve with the flow in the vortex. The conservation laws lead to
a system of ordinary differential equations in which the time derivatives

- of the above parameters appear. The distribution of the flow in space,
or the flow pattern, is assumed.

A major strength (or weakness, depending on cne's point of view)

of this approach is the insensitivity of the results to the assumed flow
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pattern. In the theory used by Bellhouse and Telbot, the center of
vorticity lies in the center of the aortic sinus, while in their measure-
ments it lies jJust behind the tip of the open valve cusp.

In valve design, one wants the capability of predicting the flow-
pattern for different vaives. Consequently, a more refined mathematical
technique is called for, in which the starting point is not some assumed
geometry for the flow path, but simply the physics of the fluid. The
equations that must be used contain derivatives with respect to both
space and times they are partisl differential ecuations. The unimowns
are not single variables but functions, giving, for example, the
distribution of velocity in space instead of the velocity at a single
point. In the present work we have adupted this approach, which is
extraordinarily less efficient than that of the Bellhouse group but
which hopefully will lead to a technique applicable to a wider range
of problems and capable of answering more refined questions about the
physiology and design of valves. This much has been said only to show
how the present work is different and why the difference may be useful.
The work of the Bellhouée group, both mathematical and experimental, is

without any doubt the most important contribution to the physiology of
heart valves since Leonardo.
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‘"ow Patterns and Artificial Valves

Wieting®s apparatus:

The question may be asked: for the differcat types c¢f valves
in use, are the flow patterns significantly different? Do the differ-
ences suggest that knowledge of the flow pattern is crucial to under—
standing valve performance? These questions have been answered
affirmatively by the thesis research of David Wieting. [10]

Wieting®s techmique consisted of mounting valves in a trans-
parent test chamber, end of illuminating the chamber with a plane of
light formed by a narrow slit. Particles suspended in the transparent
fluid (a glycerol-water mixture) could be photographed. With still
photography, the exposure time was chosen in such a way that the
streaks left by the particles on the film were essemtially instante—
neous velocity vectors for the fluid at the time of the photograph.
With ciné photography it was possibie to follow the trajectories of
individual fluid particules.

Six valve types were compared by Wieting, including a natural
aortic valve obtained at autopsy. Striking differences in the flow
pattern appeared even in cases where the general shape of the paths
available for flow were quite similar: for example, both the caged
ball and the caged disc present obstacles in midstream and force the
flow to go around them. Nevertheless, when Wieting plotted the velocity
profile during systole 51 mm downstream from these valves, he found
that the ball valve velocity profile showed a strong dip in midstream
(reaching zero flow) with strang positive peaks near the sides. The
profile for the disc valve at the same location showed a strong positive

peak in midstream. From the photographs it appears that the intense
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vortices at the edges of the disc guide the flow back toward the center
more rapidly than in the case of the ball where the vortices are larger
and more diffuse. The natural vaelve showed an essentially flat profile
at 51 mm downstream. Thus Wieting demonstrated that the disc and ball,
despite a superficial similarity to each other deviated from the natural
valve in opposits ways when their dowmnstream flow patterns were compared.
This kind of result illustrates the importance of studying the flow
pattern in detail.

Wieting's conclusions on velve design will not be repeated here,
but it is worthwhile to mention the aspects of the flow pattern that he
considered important. These are the mean pressure drop across the valve,
the amount of backflow, the amount of turbulence and eddy formation,
the presence of regions of stasis, the distance around the valve that
the flow pattern was noticeably disturbed by the presence of the valve,
and the maximum shear stress. It is an open question how to rank these
factors with regard to their importance to the patient, but significant
differences did appear among the valve types. If the natural aortic
valve 1s taken as a standard, Wieting reports, it has low pressure drops,
no turbulence, no stasis, little backflow (probably none: but a certain
amount of flow is required to balloon the compliant cusps and this gives
the appearance of backflow), and a remarkably undisturbed flow pattern.

One important limitation of Wieting's technique is its inability
to measure flows which do not lie in a plane. This limitation is
inhefent in the use of slit lighting. If a particle suspended in the
fluid has a significant component of velocity perpendicular to the
plane of light, its trace on the film is not its velocity vector. In

fact; it is not even the component of welocity parallel to the plane
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of light. This point is illustrated in Fig. (3-10).

Consider a particle which has a component of velocity vy
perpendicular to the plane of the slit. If the particle is in the slit
at any time during the exposure it will appear on the film. Call the
left—hand edge of the slit z=0 and the right-hand edge x=d. Let the
exposure time be 6t « The particle appears on the film if its initial
position is anywhere in the interval (-v, 6t, d). This interval has length

d+v, 6te On the other hand, the particle crosses an edge of the slit

(and therefore gives an incorrect result) if its initial position is in
either of the intervals (-v, 61, 0) or (d-v,&t, d). The combined length of
these two intervals is 2v, 6t. Thus, the chance that a particle on the

film is giving an incorrect result is

2v, &t
e vy 9L -
d+ v, 6t (3-7)

Note that the probability is 1 when v, 8t=d. For v, 8t>dthe above
arguments break down but the probability remains 1. Thus, the require-
ment for the reliability of the method is

v, bt <<d (3-8)

Another way to state this is to let

9 - (3-9)

Where v is the velocity of the particle parallel to the slit. Then the
reliability requirementg@ becomes

g << (3-10)
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Fig. (3-10) When a particle crosses the slit
during a single exposure, it appears to have a

velocity component parallel to the slit given by
AB. But this is actually too small; the correct

velocity component parallel to the slit is CD.
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In short, the flow must be very nearly parallel to the plane of the

light if reliable observations areto be made by Wieting®s method.

Three~Dimensional Generalization of Wieting's Apparatus
To overcome the limitations described above, the present author
began this thesis research by designing an appaé?us which may be thought
of as a three-dimensional generalization of Wieting’s. The valve is
mounted in a test chamber much like Wieting®s, but the chamber is
illuminated from the ends, and all of the chamber is illuminated. Two
matually perpendiculear views of this chamber are thep photographed from
the sides simultencously by a single ciné camera., This ic made possible
by the arrangement of mirrors shown in cross-—section in Fig. (3-11),
which bring the two views side by side on a single piecc of film. The
resulting image on the film has the configuration shown in Fig. (3-12).
Each particle suspended in the fluid appears as a pair of white
dots. The members of the pair have the same z~coordinate, and this is
how they are identified as belonging to the same physical particle. If
two physical particles have exactly the same z-coordinate four points
of light appear on the film at that z-coordinate and ambiguity results
as to how to identify them into pairs. However, the ambiguity might
be removesble by looking at the next frame in time or the previous
frame where the particles may well have had different z-coordinates.
The analysis is easiest when the density of particles is low. In any
case, each pair of image points that share a z-coordinate determines
the x;, ¥y, and z coordinates of one particle suspended in the fluid. »ﬁy
following such coordinates from frame to frame one builds up a list of

trajectories of fluid particles. Of course, such a list only gives
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Fig. (3-11) Optical system that brings two
perpendicular views of the test chaember side by
side on a single piece of film. The Z axis is

perpendicular to the plane of this figure.
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Fig. (3-12) Images of suspended particles
produced by the optical system of Fig. (3-11).
Each particle appears as two dots which have a

Z-~coordinate in common.
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information about the flow pattern at those points of space and time
where a suspended particle happened to be. The resolution can be made
arbitrarily fine, however, by looking at the flow over many cycles. In
fact, if the flow has some statistical character, the distribution of
velocity at each point x, y, 2, t can be measured.

This apparatus has actually been constructed from the author®s
plans and successful high quality ciné films of an eccentric monocusp
valve have been taken at 64 frames/sec. To avoid parallax effects, a
telephoto lens was used, enabling the ciné camera to be further away
from the test chamber.

Remark: One might make the mistake of thinking that the enlargement
due to the telephoto exactly cancels the greater distance so that
nothing is gained, but this is not the case. To see what is involved
here, consider Fig. (3-13). With the notation indicated in Fig. (3-13),

‘'we have:
b - D . (3-11)
R £
So that
D' . f .
= = (3-12)
Similarly
e = 1 (3-13)
€ R
But
£ = D (3-14)
D R
So that
o - ¢ 2 & b (2 (3-15)
R2 R
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Fig. (3-13) Notation for the analysis of parallax
effects. Points B and C lie behind each other and their
images ought to be at the same point on the film. 1In

fact, the images are separated by distance €'.
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Thus, if £/R is held constant the images of two points which are side
by side in space remain a constant distance apart on the film. But two
points which are behind each other have images on the film which
approach cach other as R 1s increased, even though f/R remains constant.
Thus long focal length lenses at large distances give the same size
image with less parallax, a fact well known to photographers.

The successful reconstruction of the flow pattern from such a
film requires a fairly sophisticated data reduction technique which we
have not yet developed. There are two difficulties: first, to physically
read the frames of film into a computer memory in some form, and then to
write a program that would reduce the frames of film to particle
trajectories and reconstruct the flow pattern by differentiating these
particle trajectories. Appaé?us for performing the first task is avail-
able in at least one ccnqmtef center [11], and programs to perform the
latter could certainly be written, but this represents a msjor piecs
of work which is hereby bequeathed to anyone interested.

In summary, we have successfully developed the means of
measuring three—dimensional flow patterns around heart valves in vitro,
but we have not yet developed the means of putting the data in a useable
form. This technique is a direct descendent of Wieting®s, the only
thing new being the optics, which is important because it makes three
dimensional measurements possible. This technique should not be thought

of as a main result of the present thesis, but, rather, as a promising
but unfinished by-product.
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Pressure~Flow Relations for Heart Valves

This section reviews a different body of work on heart wvalves.
This work is characterized by the prominent place given to twe variables:
the pressure difference across the velve snd the net flow (volume per
unit time) through the opening guarded by the valve. There is no doubt
that these variables are important to the patient. The integral of the
flow over a heart beat gives the stroke volume of the heart; which,
multiplied by heart rate, gives the cardiac output. Pressure disturb-
ances due to valve malfunction may causechronic changes in the heart
and lungs. Such congideraticns lead to a simple criterion for evaluat-
ing heart valves. Worse valves require more pressure difference to
drive the same flow.

The typical experiment for evaluating a valve in this way is
to insert a pressure catheter on each side of the valve and to measure
the flow through the valve ring with an electromagnetic flow meter.
Such measurements have been made by Spencer and Greiss [12] for the
aortic valve, and for the mitral valve by Nolan, et al [13] and by
Yellin, et al [14,15]. All of these workers recorded instantaneous
pressures and flows. Their results demonstrated at once the importance
of fluid inertia, since peak flow occurred after peak pressure differ-
ence and forward flow continued for & time even against an adverse
pressure difference.

It is an important point, that the inertia demonstrated in
these experiments is that of the fluid and not that of the valve
itself. 1In the case of the natural valve this is obvious, the leaflets
being too thin to have any significant mass with respect to blood. In

the case of artificial valves, Frater, et al [1] have ruled out the
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mass of the occluder as a significant factor by systematically varying
the mass and observing substantially unchanged pressure and flow records.
In practice, the occluders of artificial valves are made neutrally
buoyant .

On the other hand, inertia is not the only factor that limits
forward flow. If it were, one would expect that under conditions of

zero pressure difference the flow would remain constant. The observation

29.

is that the flow decreases when the pressure difference is zero. This indi-

cates that a dissipative process is at work. Yellin [16] has studied the
nature of this dissipation in vitro by driving a sinusoidal flow through
a stenosis (& narrowing in a pipe) and noting that the observed pressure
difference could be resolved into two components as shown in Fig. (3-14).

Thus Yellin found that the flow Q across a stenosis was related

to the pressure dropAP by an equation of the form

dQ

AP = K, Q| +k, e (3-16)

It is reasonable to assume that this equation also describes
the pressure-flow relations for a valve, when the valve is open.

From the equation it is easy to predict analytically the form
of Q when AP=0, For the mitral valve this condition holds at low heart
rates in mid-diastole, after rapid filling, but before atrial systole.
The solution is

1
1+ (t/T)

Q= Qy (3-17)

Where Qo is the initial flow. To check this, and tc evaluate T,
substitute (3=17) in (3-16) withAP=0 and Q>0 to obtain
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Fig. (3-14) Schematic of the pressure drop
AP obtained by Yellin when he forced a sinusoidal
flow Q through a stenosis. The resolution of AP
into a dissipative term AP; and an inertial term

AP, is shown.
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- (3-18)
Ka Qo (1 +1t/T)? T

1

~ K. Q.2 —
0 K Qo (1 +t/T)

It follows that

K,

Q. T (3-19)
(@]

Ky
The interpretation of T is the time required for the flow to

decay to # its initial value. This time depends on Qo because of the
non--linearity. To check the theory plot 1/Q sgainst time. The result
should be a straight line. In practice it may be difficult to be

sure that AP = 0 over a sufficiently long interval of time.

Equation (3-16) can also be applied to times when AP # O but an
analytic solution is not so easy to obtain. In that case a simple analog
computer becomes helpful, see below. The main features of the forward
flow predicted by this equation and observed in practice are as follows.

For a competent valve the main forward flow begins at the
same time as the pressure difference becomes positive, but for an
incompetent valve which has backflow throughout the time when the valve
ought to be closed, the onset of forward flow is delayed. In all cases
peak pressure difference comes before peak flow, amd zero pressure
difference comes before zero flow.

Pressure=flow studies are also useful in determining the amount
of backflow associated with any given valve. Spurts of backflow are
usually recorded around the time of valve closure by the flow meter,
but these must be interpreted with care. 1In the case of most artifical
valves such backflow is real; it represents the non-zero volume of
fluld vwhich must flow back to close the valve. This volume is reasonably

constant as the heart rate varies. But the stroke volume decreases at
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high heart rates. Consequently the backflow asscciated with the closure
of an artificial valve is relatively more important at high hesrt rates.
Thie point is illustrated in Fig. (3-15). In the case of natural valves
the closure is almost complete by the end of forward flow, and the
observed spurt of backward flow represents mostly the volume displaced
by the closed leaflets as they balloon backward under the pressure load
that holds them closed. In principle one can distinguish these two
types of backflow from the pressure and flow records. The reason for
this is that backflow due to the ballooning of a compleint valve will
be returned in the forward direction as the adverse pressure

difference dies away. This will result in a shoulder of forward flow
that occurs before the pressure has become favorasble for forward flow.
True backflow will not produce this result. The point is illustrated
in Fig. (3-16).

In practice %t may be difficult to make such distinctions,
because the flows involved are small.

Neverthelege the distinetion can be made by observing the
occluder or leaflet motion on a ciné,film carefully timed with the
pressure and flow records. This has been done by Yellin, Frater, ot
al. [14,15,17]

In summary, pressure~flow dynamics for the natural mitral
valve can be understood in terms of the concepts of inertia, dissipa-
tion and compliance. In the case of artificial valves one has to

conslder also the true backflow associated with closure.

Analog simulation of pressure-flow dynamics.

That the concepbs of inertlia, dissipation and compliance are
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Fig. (3-15) The backflow associated with
closure for an eccentric monocusp valve in the
mitral position is relatively independent of heart
rate. However, since the forward flow depends on
heart rate, the backflow expressed as a % of
forward flow is strongly rate dependent. (Data

courtesy of E. Yellin)
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Fig. (3-16) Schematic to indicate the
difference in the flow records that one would
expect between true backflow and the backflow
associated with valve compliance. In the latter
case the fluid is returned in the forward

direction before the opening of the valve.
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sufficient to account for the observed pressure~flow dynamics at the
natural mitral valve has been confirmed by the present author, who
constructed a simple analog circuit incorporating these principles.
The aim of the circuit is to predict the flow at the mitral valve ring
given the waveform of the pressure difference betwsen atrium and
ventricle.

In constructing this circuit the principle equation of motion

is taken to be

dQ
K, Q lQ, + Ko 3 (3-20)

AP

where

[}

APT AP + APV

AP = Pressure difference between atrium and ventricle

AP, = Pressure exerted by the tensed valve leaflets on the fluid
(APy = 0 when the valve is open)

The term AP is assumed proportiocnal to the volume of fluid
stored in the tensed valve leaflets. That is

t
BB, = K, | (-Qap (3-21)

where t* is the time when the flow becomes negative. Ecuation (3-21)
holds only as long asARy remains positive. When APy returns to zero
again the valve opens and APV=0until the next zero crossing of the flow.
Therefore, the time t qf valve opening is given by the condition

:| Qdt' = 0 (3-22)

This means that the valve is assumed competent, since there is no net

backflow while it is closed. On the other hand, there will be backflow

at the beginning of tie interval (t*, t), followed by forward flow at
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the end. Both of these flows are small.

An equivalent circuit for these equations is shown in Fig.
(3~17a). In Fig. (3-17b) a modification is shown which is mcre realistic
in that it takes into account the visco-elastic (rather than purely
elastic) nﬁture of the papiliary muscle supports of the valve.

While the circuits of Fig. (3-17) ere simple, they have three
drawbacks as actual devices: the need for aJV%- element, the difficulty
of finding inductors large enough for real time operation, and the fact
that the output Q appears as a current rather than a veltasge. These
are overcome by the operaticnal amplifier network of Fig. (3-18), which
corresponds to the more realistic circuit (3-17b). The first operational
amplifier is used as an integrator to compute -~Q from the forces tending
to change Q. The second is used simply to invert ~Q so that both -Q and
Q will be available. The third represents the valve which can store
fluid only when it is closed but not open. The imner feedback loop
computes the dissipation, while the outer allows the tensed valve leaflet
to push on the flow.

The signal AP can be either a simulated waveform, or the actual
pressure difference recorded from an animal experiment. To date only
simulated waveforms have been used, but the qualitative features of
mitral flow have been reproduced. One such qualitative feature is a
low amplitude damped oscillation which appears in both the flow trace
and in AP, following valve closure which, we feel, is related to the
first heart sound.

In Fig. (3~19) pressure-flow records from the animal and from
the analog are compared.
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Fig. (3-17) Electrical analog of a mitral
valve. AP is the pressure difference acrcss the
valve, 8P, is the pressure exerted on the fluid by
the tensed valve leaflets. AP = AP, + AP.

Q is the flow. The 7\ > element is defined by the
current-voltage characteristic V = k|I|I. The
losses in it represent losses due to eddy formation.
The inductor represents fluid inertia and the
capacitor represents valve compliance. (b) differs
from (a) by the inclusion of viscous effects in the

valve supports.
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Fig. (3-18) Operational amplifier

realization of Fig. (3-17b).
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Fig. (3-19) Waveforms produced by (a) the analog
circuit of Fig. (3~18) and (b) an animal experiment.
In the analog we supply the waveform AP whicﬁ is
meant to correspond to the difference between the
atrial and ventricular pressures. In (a) AP,
(plotted to a different scale than A P ) represents
the pressure exerted by the tensed valve leaflets

on the fluid. This quantity was not accessible in

+hg animal experiment.
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Numerical Integration of the Navier-Stokes Equations For Incompressible

Fluwid Flow

This is an enormous subject, which cannct be reviewed completely
here. Only those items in the literature that have a direct relation to
the present work will be considered. Some of the items discussed here
are included because of their mathematical relation with the present
work, while others are included because, despite the lack of a mathe-
matical connection the authors were interested in heart valves.

At the outset it should be stated that incompressible fluid
flow presents a distinctly different mathematical problem to the
numerical analyst than compressible flow. The reason for this is that
with compressible flow there is an upper limit to the speed at which
interactions can propgéate, the sound speed c. Hence if the time step
taken is 5t , the state of the fluid at the beginning of the time step
influences that at the end only within a sphere of radius cét. That
is, all interactions are local. For an incompressible fluid the sound
speed is infinite and this local character is lost.

One of the early successful approaches to the numerical solution
of the Navier-Stokes equations for incompressible flow is the Marker and
Cell (MAC) technique of Harlow and Welch [18]. In this technique marker
particles representing points of the fluid move along a rectangular
computational grid. At each time-step a pressure field is computed on
the grid that is just sufficient to prevent compression of the particles.

Subsequently, A. J. Chorin [19,20] developed a method of
solution in which the marker particles are not used and all of the
fluid quantities are calculated on the computational grid. In Chorin's

scheme each time step is divided into two main phases. In the first
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phase all the fluid forces other than the pressure are allowed to act on
the fluid. Because the pressure term is missing, compression of the
fluid may occur. The rate of compression can be measured from the
velocity field directly, so that marker particles are not needed. 1In
the second phase a new pressure field is calculated which is just
sufficlent to cancel in one time step the rate of compression produced
by the other forces in the first phase. This pressure field is applied
and the time step is complete. An important advantage of Chorin's
method is that convergence of the numerical scheme can be rigorously
proved assuming only that the differential equations have a sufficiently
smooth solution [20].

J. A. Viecelli has generalized the MAC technique in such a way
that the method may be applied to problems involving arbi%%ny external
boundaries [21]. The basis of his scheme is that when marker particles
attempt to cross the boundary, a pressure distribution is applied along
the boundary which is just sufficient to drive the particles back. In
a more recemt paper [22], Viecelii applied the same idea to problems
involving moving boundaries whose motion was kmown in advance, In fact,
he presented a calculation involving a collapsing heart-shaped bag of
fluid; that is, a simulation of ventricular systole. The assumption
that the motion of the boundary is lmown precludes the application of
this technique {0 heart valves, however. One of the main points of the
present work is to solve for the motion of the valve leaflet and thereby
to gain greater undersianding of the mechanisms that determine that
motlon. |

The relation of the present work (The mathematical technique

will appear in [23]) to those discussed above is the following. First,
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we have used Chorin®s scheme for solving the equations of motion of the
fluid, but we have added an extra term that represents the influence of
the immersed boundaries (like the heart valve leaflet) on the fluid.
Second, we have represented such boundaries by marker particles like
those of the MAC technique, so that these boundaries move with the fluid.
However, these boundary markers are the only markers that we have used.
(It is certainly possible in our technique to introduce marker particles
into the flnid for display purposes, but they are not needed for the
calculation.) Third, we have calculated the force exerted by these
marker particles om the fluid from the configuration of the boundary

in space. In other words we treat the boundary as an elastic structure,
whose configuration determines its state of stress. Like Viecelli,
then, we represent the boundary in terms of the physical forces that it
exerts on the fluid. Unlike Viecelli, we calculate these forces from
the configuration of the boundary and not from the extent to which
consinl'

fluid motion is violating a boundary-ﬂam@}sw». Because of this diifer-

ence we can solve problems in which the boundary motion is not known in

advance. Moreover, because we use forces instead of pressures we are

not limited to the case in which the force is normal to the boundary.
This is important, since the tangential drag exerted by the valve leaflet
on the flow is, at least in the hypothesis of Leonardo da Vinci, the
scurce of the vorticity that helps elose the valve. We could not study
this hypothesis without the inclusion of tangential forces. Finally

we remark that the despendence of the forces on the boundary configuration
together with the fact that this configuration is not kmown in advance
constitutes the major mathematical difficulty overcome by the present

work. One cannot simply move the boundary, find the new forces, apply
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them to the fluid, move the boundery again and so on ad infinitum.
Instead one mast solve for the motion and the forces simultaneously.
This 1s the subject of Section VIII.

Incompressible flow calculations always involve the solution
of Poisson's equation?®®=f in one way or another. Until recently
this has been the most time consuming part of such computations. Very
fast stable direct methods are now available for solving such problems
on rectangular domains. For an excellent review of the practical
aspects of this subject with comparisons of the computer times and
accuracy of various methods see Hockney [24]. In the present work all
material boundaries are treated as immersed in fluid, and the overall
domain is rectangular. Moreover, the immersed boundaries do not act
as constraints but are simply the parts of the fluid where special
forces are applied. Consequently, these methods are applicable and
have been recently incorporated in the program with good effect. The
particular method used is due to 0. Widlund who has reviewed the
mathematical aspects of numerical methods for Poisson-like equations
[25].

To the author's knowledge there hag been no previous calcula-

tion of the motion of a flexible leaflet of a natural heart valve,

37.

which takes as its starting point the full partial differential equations

of fluid motidén.” However, different numerical techniques for these
equations have been applied to various representations of artificial
valves. Two workers in this field are Tin Ken Hung [26] and
Greenfield, et al [27].
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. THE COMPARATIVE FLUID DYNAMICS OF MAMMALTIAN HEARTS T

Mammalian hearts are approximately scale models of each other
[28]. That is, their geometries are roughly the seme, except for scale,
and it is reasonable to assume that the motions of their walls are
about the same except for scale. The purpose of this section is to see
what can be learned about the character of the flow patterms in different
mammalian hearts from such considerations.

If the hearts are geometrically similar, all of their geometric
aspects are functions of some typical length L, such as the length of
the ventricular cavity. All lengths are proportional to L, all areas
to Lzv and all volumes to L3. Weights are also proportional to L3, if
the density is constant, which is a reasonable assumption. In Fig. (4~1)
we plot heart weight vs. length of the ventricular cavity on a log-log
scale, for various mammals. The data are taken from [28]. If the
hearts are geometrically similar with constant density, the result
should be a straight line with slope 3, and this is confirmed.

To set the scale of time for the motion we introduce the
parameter T, the period of a heartbeat, which is the reciprocal of
heart rate. In Fig. (4~2) we plot heart rate vs. heart weight on a
log-log scale. The slope is approximstely —1/3, which indicates that
Lo T. This result has several interesting consequences, any one of

which may be thought of as the "reason" why L o T.

a. Velocity has dimensions of L/T. Therefore, the velocity

1 This section grew out of a discussion with T. MacMahon of
Harvard. One of his interests is the consideration of corresponding
gsystems in different animals as scale models of each other. MacMahon
pointed out one of the main results, that blood pressure is independent
of the size of the cardiovascular system, and he said that this could
be understood in terms of wall stress in the heart and blood vessels.
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Fig. (4-1) Log heart weight vs. log length
of left ventricular cavity in various mammals.
Data from [28]. If the hearts are geometrically
similar and of the same density, we anticipate

a slope of 3. This is confirmed.
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Fig. (4=2) Log heaft rate vs. log heart
weight for various mammals. The slope is roughly
~1/3 which indicates that length is approximately
proportional to the period of the heart beat.

The data are from [ 29].
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of blood at corresponding points in the hearts of different mammals
should be independent of heart size. (Strictly speaking this holds
only outside the boundary layer, see below.)

b. Pressure has dimensions of pl?/Tz, where p is the
density. Therefore, pressures at corresponding pointe will also be
independent of heart size, as the density of blood is the same in all
cases, Similarly, stress in the wall has the same dimensions as
pressure and will also be independent of heart size.

c. Cardiac Output = Stroke Volume x Heart Rate o L°/T o I°

Thus cardiac output should depend on L2 or on area. Now the
ratio of heart weight to body weight shows no significant trend with
heart size [28]. This suggests that area in the heart and body surface
area also have a ratio which is independent of heart size. On the
average, then, cardiac output is proportional to bedy surface area, an

index of metabolic rate,

It is useful at this point to introduce the dimensionless

quantity
L2
R = YT (4-1)
where Y is the kinematic viscosity Y = n/p. Since L @ T and ¥

is constant, R o L.

To see the importance of R, one can non~dimensionalize the

Navier-Stokes equations (see Section V) by introducing variables

'=x/L t'=t/T o u'=u/(L/T) pt BT (4-2)
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L3

the resulting eguations are

1
b_l_]. + (EI ’V)y—' - —Vp' + 1 VEE'

ot R
(4-3)

Where the v indicates derivatives with respect to x*, y', 2%.

With given dimensionless boundary conditions, there is a
dimensionless solution of this problem for each R, and each such
solution generates a whole family of physical solutions formed from
the dimensionless solution by fixing L and T in such a way that
R = L2 / y T. All the physical solutions corresponding to a given
R are the same except for scale.

Mammalian hearts, however, do not share the same R (as shown
above, for memmalian hearts R o L) and therefore their flow patterns
are not strictly similar. The cqualitative nature of the differences
will be discussed below.

To study the physical meaning of R consider the following
instructive example:

An infinite plane wall suddenly begins moving parallel to itself
with velocity U, at t=0. Let u (z,t) be the velocity of the fluid
parallel to the motion of the plane at the distance z from the plane.

For this case the Navier~Stokes equaticns reduce to

du ¥%u
; d7z?
(4-4)
u(0,t) = U,
u(z,0) = 0
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This is equivalent to a one-dimensional heat conduction problem. It

has a solution

8/ {2 .
2 1/2I o-11/2)% 4x) (4-5)
"7 g

= U, 1 —
u o -

where

8 = (22/3)1:)1/2

The important point is that u depends on z and t only through
the combination z°/ 9yt .

A plot of u vs. O is given in Fig. (4=3).

Thus, the shape of the velocity profile is the same for all t,
only the scale changes with time. The influence of the moving wall is
small for large © and it is reasonable to pick some particular value
of 9 say 6 =1, and call this the depth of penetration of the influence
of the moving wall. That is, at time t, z = (¥t)'/2 gives the thickness
of the layer of fluld that has been significantly affected by the
shearing actiogh:g‘fn".ng wall. This layer is called the boundary layer.
(The choice 0=1 is clearly arbitrary, as the influence of the wall
extends to infinity. At 0=1, u/Ug = 0.48).

" In the case of the heart, if T is the period of a heartbeat, we
may say that the maximum thickness of the boundary layer is given by =z

where z° = Y T. But we already have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. (4=3) Velocity profile near a plane
wall which began moving with velocity U 0
parallel to itself at t = O. The distance
from the wall is z. The shape of the velocity
profile is independent of time, but the scale

changes according to (vt)l/z‘
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L2 = Yy TR

so0 that ( z/L)= R"l/z. Thus, the relative depth of penetration of the

influence of the shearing action of the walls is determined by R. At
distances large compared to z , the flow pattern is not appreciably
influenced by the shearing action of the walls and for such interior
points we anticipate approximate similarity of the flow patterns for
different mammalian hearts.

Since R o L, (z/L) «a L-1/2

and small mammals have
relatively thick boundary layers. From Fig. (4~2) it is clear that
the range of heart weights is nearly 6 log units from the dormouse
to the elephant. Therefore, the range of heart lengths is nearly 2
log units and the relative thiclmess of the boundary layer spans a
range of 1 log unit or 10:l.

To the extent that these different hearts appear to be
designed according to the same plan, this suggests that the thickness

of the boundary layer is not a crucial design parameter.
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V. EQUATIONS OF MOTION
Description

There are two equivalent ways to describe the motion of a
fluid. The first (Lagranglan) is to label the individual particles
of fluid in some way, for example, by their position in space at
t = 0, and then to give the motion of all of thése particles. The
second method (Eulerian) is to state a velocity field u (x, t) which
gives at time t the velocity of the fluid particle which happens to
lie at the point x in space.

The acceleration of a fluid particle in the Lagrangian descrip-
tion is simply ,:;;, while in the Fulerian description it is a more

complicated expression. To find it, note that

ou ou du du
du =-= bx +-= dy +-——=0z +—— bt (5-1)
Tdx oy 0z ot
and hence
Su du &x du b du Oz du
B Y S __}_’_ + = 4+ = (5-2)
ot ox Ot dy ot vz Ot ot

The foregoing holds for arbitrary increments §x, &y, 5z, bt.

One can then specialize to the case where the increments are those of

a fluid particle. That is

§x by bz _
il < 7 uy o=, (5-3)
&5t &t 61t

The notation for the derivative with respect to time computed

D
following a fluid perticle is Dt « Thus
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Du dou du ou . du

—— —— [ A

Dt ox 7 Dy T bz ot

(u.v) u + 04
- T (5-4)
.Because the description of the acceleration is so much simpler
in the Lagrangian notation, one might think that the Lagrangian
representation would be the preferred description for computational‘
purposes. In fact, however, the reverse is true. To understand why,
it is necessary to recall that in the Lagrangian representation fluid
particles are labeled according to their positions at t = O. However,
as time evolves particles which were initislly close together may
become far apart. A rectangular mesh in the fluid becomes progres—
sively distorted if it is allowed to move with the fluid, and spatial
derivatives become more and more difficult to calculate. For this
reason, the Lagrangian dsscription is not often used. There are
exceptions: suppose the fluid motion is periodic in the sense that
the individual particles of fluid return after time T to their initiel
positions. Then the progressive distortion described above does not
occur and a Lagrangian calculation becomes practical. Sach is the
case for a wave sloshing back and forth in a trough, and a Lagrangilan
calculation has been done for this problem [30]. It is not the case
for the heart, where despite the periodicity of the motion of the
walls, the trajectories of the particles of blood are certainly not
closed. Indeed, the particles enter the ventricles through one set
of valves and leave by another. On the other hand, the Eulerian

velocity field for blood in the heart is periodic with the period of
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a heartbeat. That is, at each fixed point in space the velocity vector
returns after one heartbeat to the value it had at the beginning of
that heartbeat, despite the fact that at the end of the heartbeat it

is a different particle of blood which occupies the fixed point in
space than at the beginning. By contrast, 1f we consider a point on

a valve leaflet or on the heart wall it is in fact the same material
point that returns to the same point in space after a heartbeat. More-
over in the case of valves or heart wall it is important to know where
the material points are in space at any instant, since these data enter
into the computation of the forces exerted by the wall or valve on the
fluid. In the fluid itself it is of no importance which material
particle is where; all that matters is the spatial distribution of

the motion. For these reasons it is appropriate to describe the motion
of the fluid in Eulerian form and the motion of heart apparatus in
Lagrangian form,.

Incompressibility is described as follows: over any closed
surface, at any instant of time, the total flux out of the surface is
zero. That is

”(E'ﬁ)da = 0 (5-5)
S
Where n is the outward unit vector normal to the closed surface S

with area element da. Applying this condition to a small cube one

can conclude that

V-_Ll =0 (5-6)
where
du du du
v u = LS 4 + — (5-T)
- ox oy vz
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This condition plays a central role in determining the character
of the motion. The following considerations are important in under-
standing that role.

Let w be any vector field. Then it is possible to decompose

w as follows:

|
1

=u+Vvey
where -

V.u=o (5-8)

One need only let ¢ be a solution of Poisson's eguation

Ve =v.w (5-9)
and then set
u=w- Vo (5-10)
so that
v.u=v.w -v?p=o0 - (5-11)

as desired.

The decomposition (5-8) is unique if the scalar ¢ is uniquely
determined by (5-9). To 5n8ure this we must apply some boundary
condition, for example, that u, w, © are periodic in space with
period 1 in each coordinate direction.

When some boundary conditions have been supplied such that
(5~8) uniquely determines u, then one may write

u = Pw (5-12)
where P is a linear operator, which, we may say, extracts the
divergence-free part of w.

Two evident properties of § are:

(5-13)
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The significance of this operator to the present work is as
follows. Let a system of force density, F, act in the fluid. Then
the quantity that actually influences the fluid motion is

PF = F - Vo (5-14)

where

v2p=v-F (5-15)
Now F may be non-zero in only a small region, but ¥ is non-zero .
throughout the fluid (other than at exceptional points). This expresses
the fact that in an incempressibie fluid even localized forces are felt

throughout , instantaneously.
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Navier-Stokes Eguations

The equations of motion of a viscous incompressible fluid are

o
|
|
I
he]
|
+
=
g
[
#

-¥p + nv® u +F

(5-16)

In these equations p is the density of the fluid and n is the
viscosity. The scalar p is the pressure, and u is the velocity
vector. F is the density of external force applied to the fluid, that
is, the external force per unit volume. By external force we mean any
force acting on the fluid which does not arise in the fluid itself.

In particular the heart wall and valves exert external forces on the
fluid. The first equation in the pair (5-16) expresses Newton®s law
that mass times acceleration equals force. In (5-16) however, each

term of Newton's law is divided by volume so that on the left hand side
we have the density of mass times acceleration, while on the right hand
side we have the densities of the various forces that may act on a fluid.
These force densities are the pressure gradient, -Vp, the force density
due to thermal diffusion of momentum ™V°u, and the external force
density F. The second equation in the pair (5-16) expresses the fact
that the fluid is incompressible; it acts as a constraint on the motion.
It will appeer in the following that this constraint is enforced by the

pressure field pn.

Equations (5-16) can be rewritten in the following way.
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ou
p — +Vp = -plu- V)E—F'nvag + F
Dt
(5-17)
ou
v-(p—)= 0
ot
Comparison of (5-17) with (5-8) shows that we may write
pb__ll_ = P(-p(u-Vu +nV2u + F) (5 -18)
ot - -7

Note that the pressure p in (5-17) corresponds to the scalar ¢ in
7(5-8) which is introduced to remove the divergence of w.  Physically,
any tendency toward a change in density of the fluid is cancelled out
by the pressurs gradient. That is how the fluid maintains its property
of incompressibility. Equation (5-18) is the starting point for the

construction of a numerical scheme, as discussed in Section VI.

Representation of the heart apparatus

By the heart apparatus we mean all the non-fluid parts of the
heart, including the muscular walls, the valve leaflets, and any parts
of artificial valves that may be present. Since these material structures
bound the fluid we shall refer to them collectively as the boundary B.

In this work the heart apparatus or boundary will be regarded

as a specialized region of the fluid in which extra forces, the"boundary
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forces" are applied to the fluid. We do not assume any additional mass
in these regions. That 1s, we regard the heart apparatus as neutrally
buoyant .

As indicated above, the heart apparatus will be described in
Lagrangian form. That is, the material points of the apparatus will be
labeled, and the labels retained by the material points as they move
about in space. Ordinarily, in a Legrangian representation, the labels
are the coordinates of the points at some fixed %ime, say ¢t = O. One
has then, a system of coordinates embedded in the material. Here we
use a different procedure, based on the selection of a dense sequence
of sample points of B. An important advaniage of our procedure is that
the notation is the same whether the "boundary” B consists of a surface,
a volume, or a curve in space.

Choose an infinite sequence of material points Py €B such
that the set {P,} is dense in B. Let x; be the location in space
of the material point P, at some instant. Then the set { x k] com-
pletely determines the configuration of B, since { Py} is dense in
B and the deformations of B are comtinuous.

Now a region R of the fluid feels a force f(R) due to the
boundary B. We assume that this force depends on the configuration of
the boundary and hence on the sequence {_75 k}'

The function £(R) can also be expressed as a limit in which
the representation of the boundary is gradually made finer and finer.
To do this we introduce the following definitions: Let {P, - - Py]}
be the N-point representation of the boundary and let { x, - x N} be
the N-point configuration. Then we can construct functions

fr (N, _)51--~§N) k=1, 2 -, N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50.



51.

such that

£im
f (R) = Sf (N, X1°**X pf)
- N->w ~k = 2N (5-19)
kSN
XkeR

The interpretation of f, (N, x,--- xp) is that it is the
force exerted on the fluid by point Pk in the N-point representation.
Accordingly, f) contributes to f(R) only if x,; eR.

Specifying the functions ik (N, xq - .’EN) is one way to
state the physical properties of the heart apparatus. Since parts
of this apparatus are active (the muscle) the functions may also
depend on the time explicitly, or on some set of internal parameters
which change with time. Actually, for the numerical scheme one does
not need the whole family of functions f) (N, x, - x) but only
those functions for a particular N, large but finite. It is easier
to describe the construction of the functions for a particular physi-
cal structure of interest once N has been fixed; consequently, we
defer this discussion until Section VII, where it is shown that an
especially simple class of functions f Kk vis general enough to be used
in the representation of flexible valve leaflets, rigid valve

occluders and cardiac muscle.
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We now transform the right-hand side of (5~19) as follows: ¥

1 xpeR

_N»w> S (N x - x )
0 _gkéR

(e

) N~>°°> T (N, %, - ’EN)‘IJ{E)Q(. - xp) dx

£im
= . N——)m
R k

N
D Ee (N e x D Bx - xg) dx
1 (5-20)

FAt the point where the O&-function is introduced in this
development, the operations become purely formal. The subsequent
interchange of integration with the limit is similarly to be regarded
as a formal operation. The force density E'(g) derived in this way,
Eq. (5-22), is singular and its use to calculate the force on a region
R requires a reversal of the steps used to derive Fg. (5-22). 1In the
numerical scheme we never actually pass to the limit N =« in any
case.
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But we also have

f(R) = J I(x)dx (5-21)
- R— =

where T is the force-density due to the boundary.

Since the foregoing hold for all regions R

N
; Zim \
F =
_(E) N->°°>.f_k (N, _}51"'.).{_N)6 (.)f-ﬁk)
k=t (5-22)
Since the fluid is viscous, the equation of motion of the point x, of the

boundary is

El_é_k_ = ulxy) = r u(x) & (x - _)Sk) dx
dt fluid (5-23)

To summarize: the physical properties of the heart apparatus
are described by the functions f) (N, x, ---Xp)and the connection
between the apparatus and the fluid is described by equations (5-22)
and (5-23). Note the appearance of the functions 8 (x - x, ) in
each of these equations. The § function is important when fluid
quantities are transformed into boundary quantities and vice versa.

In the numerical scheme we have to construct a function which plays

a similar role; see Section IX.

Boundary conditions

In the previous section it was shown how the heart apparatus
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can be represented in terms of the forces which it exerts onthe
fludd.

We now take the additional step of regarding the apparatus as
completely immersed in fluid, so that all of its parts have fluld on
both sides. In fact, this assumption is correct for the valve leaflet,
and it will not make much difference to the internal flow pattern if
we put fluid outside the heart, provided that the external chamber
is not so constricted as to impede the normal motion of the walls.

When the heart apperatus has been immersed in fluid and repre-
gsented in terms of its force field F it disappears as a boundary in
the mathematical sense. While we still have the condition %% = u(x)
at points of the heart apparatus, this is no longer a constraint on
the velocity field u, as it would be if x(t) were known in advance.
Instead, it is an equation of mution for x.

It remains, however, to choose some external boundary conditions.
That is, the heart apparatus will be immersed in fluid; but this fluid
must be of finite extent so that a numerical computation is possible.
The shape of this enlarged domain and the conditions at its edges are
completely at our disposal, and are chosen for mathematical convenience.

The simplest shape to choose is rectangular, with the boundaries
of the domain parallel to the coordinate planes. The problem of
imposing special conditions at these boundaries can be avoided by
making the domain periodic in each space direction. That is, if the
domain is 0%, v, z< L. we regard the plane x = L as equivalent
to the plane x = 0, as though the x axis were bent around in itself
into a circle of length L. The same thing is done in each of the

other coordinate directions. The result is impossible to visualize
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in three dimensions though the process we have just described could
be done to a three dimensional manifold in some higher dimensional
space. In fact, it could be done while retaining the Euclidisn
geometry of the manifold just as a plane rectangle can be bent into
a cylinder without stretching and hence without changing the intrinsic
geometry of the surface. In a computer we can do without the higher
dimensional space. Let the discrete points of the x-axis be i = 1,
2, °;', N. Then we regard the point N as adjacent to the point 1,
so that arithmetic on points of the domain is done in a cyclic
fashion with N + 1 = 1, for example. The advantage of using a
periodic domain is that it makes all points of the domain equivalent
in the same sense that all points of a circle are equivalent.

An alternate description of a heart immersed in a periodic
domain is derived as follows: consider an infinite cubic lattice
of hearts beating in unison in an infinite fluid. To describe the
state of such an array, one need only say what is going on in one

cube of the lattice, and this cube is our periodic domain.

Summary

We have a periodic domain D on which the fluid velocity field
u and the force density F(x) is defined. Contained in D is the
immersed boundary B, represented by the dense subset of points { P}
with coordinates {3gk}. The physical properties of B are described
by the functions f) (N, x; -- 'qu) each of which represents the
force applied to the fluid by point k in the N-point representation

of B. The equations to be solved are:
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P2 = P(-plu-T)u + nVPu + F)
C)Xk _ ‘J
— = ulxy) =Julx)d(x - x,) dx
ot - fluid
N
P (x) - 4im > £, (N . )8 (x - %)
== Noow/ LW, X" Xy/0X - X
k=1
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VI. NUMERICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS FCOR A VISCOUS
INCOMPRESSIBLE FLUID
Most of the methods described in this section have been taken
directly from the work of A. J. Chorin [19, 20] and incorporated into
our numerical scheme. In subsequent sections (VII, VIII, IX) the
contributions ¢f the present author will be discussed. One way to
describe the division of labor is to say that Chorin®s methods can be
used once the external force field F is known, while the present work
is concerned primarily with the method of calculating F from the
state of the heart apparatus.
Consider the non-dimensional equation
ou
— = P(-(uVu+vPu+ F ) (6-1)
ot
where  is the projection operator defined in Section V, and F is
the external force which we take as given, for the purposes of this
section. The equation is to be solved on a 1 x 1 periodic domain.

The construction of the numerical scheme proceeds as follows:

Cover the domain with an N x N rectangular mesh. Let h = 1/N

so that h is the mesh width, and let the subscripts ij denote the
peint x = ih, y = jh.

Discrete Time Steps

Let time proceed in discrete steps of length & and let the
superscript N denote the time ¢ = nét.
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Thus

n R .
u,j = _L_l_(lh, ]h) nét) (6"2)

Discrete Operators Corresponding to U -V - V?

n n
Introduce the spatial operators QX , Q y defined by

n 1 n 1 .
Qx ®ij = 3r Ui, ij @i, j - ©i-1, ) - g @ikt ®i-1 T 294)
(6-3)
! T 1
2 - — - . —_ — P -4 TR - 2o ;
(Quod i gn iy @i T i1 7 e e v

The discrete operator (Q?{ + Q;) corresponds to the

differential operator u" . v - ¥v?2

Discrete Projection Operator P
Introduce the discrete analog P of the operator £ as follows.

Let
(Godi = (= (oie1 | - @i D — (o ) ) )
10)5 o (PitL, Pi-1, jb oh ®i, j+1 - @i, j-1 (6-4
(Du)s; = —

i o M, 541, 5 ~ %1401, 9 F o Mo T Ve, i-1) (6-5)

The operators G and D correspond to grad and div. Then we can

define a discrete operator P by the equations

P}y =W - G (6-6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A%

vhere ® is a scalar chosen in such a way that D (Pw) - 0. To

accomplish this we must have

DGeo = Dw (6-7)
From (6-4) and (6~5)
! 4 4
a2 @irg i T P2, i TPy e Ty oy T 49g)  (6-8)

so that (6~7) is a discrete Poisson equation for .

Difference Equations

With the foregoing operators defined, consider the following

system of equations

(1 + 6tQ) = o o+ et U (6-9)
(1 + étQ;)‘ = uk (6-10)
En+1 = P owkx (6-11)

By direct substitution we have
(1+6tQD (I + 81QY) u** = u? + 6t F 7 (6-12)

or neglecting terms in (8t)? and rearranging

wer - = oot [ - Q) + Q) wk ] (6-13)

Applying P to both sides yields
P s e P - (@ + Q) e b ) (6-14)
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".at the last equation is consistent with (6-1) follows from the
n

correspondence of P with , and of —(QX+Q$) with —En,v + V2

and from the fact that u##-u"  as 6t-0.

Solution of the Local Difference Equations on a Periodic Domajn

Each of the equations (6~9) and (6-~10) has differences in

only one space direction, and each of them can be reduced to the form

_Ak Xk—l + Bk Xk - Ck Xk+1 - Dk (6-15)
where

n

A 6_1~ . Uy, o1

26t

Rk = —F— + 1 (6'16)
ui; 8

¢, - % - uk ot

£ h® 2h

and where the second subscript, which plasys the role of a parameter,
has been dropped. The notation ull;l indicates either uln’ ki in
equation (6-9) or ug, ik in equation (6-10). |

The following inequalities are important:

B> A€ (6-17)
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which holds for all u, and

Ay > 0
(6-18)
-k > 0
The latter pair can hold simultaneously only if
h

un| < 2 (6-19)
k

'13 see what goes wrong when the last condition is violated, consgider
a uniform flow in an infinite fluid with velocity U in the x direc—
tion and imagine that a local force disturbance (external forcej is
applied at the point x =k o for all y. In that case the equations

to be solved are

SAXy gy BX — (X T P (6-20)
with

bt

B = 1 2 —};é-

5t Ut
A = — —_—

h? 2h

Us

c - & _ Ut

h? 2h

The homogeneous equation has solutions of the form

- ok (6-21)
Xk = e !

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62.

where
(04
-Ae + B — Ce = 0 (6-22)

The function Ae @ + Ce® has the value A+C < Bat o= 0,

If A>0and C>0 it rises toward + <« for large 'al independent
of the sign of «. Therefore (6~22) always has positive and negative
roots which we designate o+ and o_, see Fig. (6~la).

Therefore, one can eenstruct a solution of the form

. +afk(k—ko)

Xk = c,

o- k > ko
where a, = (6-23)
Qo k < kO

The constant ¢ is chosen to satisfy (6~20) at k = k,. Thus X,
decays away i‘ro;n k, on both sides as desired. On the other hand,
it Uh > 2 we have C < 0 and the function Ae™® + Ce” is
monotonic as shown in Fig. (6~1b). Therefore, only the root o _
remains and it is not possible to construct a decaying solution to
the left of k = k. If the inequalities (6~17) and (6-18) hold
the matrix of (6~15) is said to be well conditioned.

We are interested in the solution of (6~15) on a periodic
domain consisting of N points. The equations hold as written even
at the end points if modulo N arithmetic is understood in the sub-
scripts. Thus, when k= N, k+1=1; when k =1, k -1=N.

The difficulty in solving such a system of equations comes
from the cyclical nature of the coupling of the unknowns. The matrix

of the system has the form indicated in Fig. (6-2). It is tridiagonal
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Fig. (6-1) The equation B = Ae™® + Cc%
has two solutions of opposite sign in (a) but

only one solution in (b).
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T Ao
i ! C>0
i l O<Uh<?2
a. a4
(a)
-a a A>0
Ae ¢ +Ce c<0
B 2 <Uh<ee

N IS
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Fig. (6-=2) Structure of the local difference
equations. The matrix is tri-diagonal except for

two corner elements.
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except for two corner elements.

Deletion of the first equation (1st row of the matrix) and the
first unknown (1lst column) results in an uncoupling of the cyclical
structure and in a matrix which is strictly tridiagomal.

We take advantage of these facts as follows. Suppose we revert
to ordinary subscript arithmetic, introducé an auxilgiary point at
k = N+ 1, and solve the following problems, each of which has a
strictly tridiagonal matrix.

(1) (1) (1)

ALK FBX o - CpXpyy =0 | (6-24)
(0) (0) . L0 -
—Aka_l + Bka - (’ka—l = Dk (6-23)
k=2,3, N
(1) _ (1) =
Xl - XN+1 - 1
(o) _ . (0)
= BRS TS
Each of these problems has an easy method of solution which
is given in Richtm:‘yer and Morton [32]. Now let
- (1) (0) 6-26
X, = M X ( )
and note that Xj is a solution of (6=15) for k=2, 3. - - - N.

It remains to determine A ; this is done by requiring th-t (6~15) be
satisfied for k = 1. The result is

(0) (0)
D1 +A1XN + C1X2

AooE (6-27)
1, . (1)
ALKy B - C X

which completes the solution. This method of reducing the periodic

case to the tridiagonal case was discovered independently by the
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author; it is actually equivalent to previously existing
techniques known as modification methods [33]. 1In this case we

have rank one modification because one unknown is deleted,

Solution of the Discrete Poisson Equation

The system of equations under consideration has the form

+ + oot . -4, = d,. 6-28
Ciyo i Pieg i Pigre T %2 T g ij (6-28)

where djj 1is givep and the domain is periodic in each direction
with period N. ~ L-'
The structure of these equations is important. There are
actually four separate non-interacting subdomains called "chains®.
In equations (6-28) there is no coupling between points unless the
‘parity (even or odd) of their x coordinates and also the parity of

their ¥ coordinates agree. Thus the four chains are the sets:

{(i,)) : i even, jeven]
{{i,J) : i even, jodd}
{(i,)) : 1 0dd, jeven}

{(i,)) : i odd, j odd}

The importance of the separateness of these chains appears
when one considers what happens when a local force is applied to
the fluid, like the local forces applied along a boundary. To

&

see what can go wrong here, imagine that a force field F = (& ; 0)

110’

is applied to the fluid. Then the right hand side of the discrete

Poisson equation is
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P - 1/2h i=i -1
- -1/2h i= io + 1
0 otherwise (6-29)

Suppose, for example that io is even. Then ¢ is zero on all the

points with even values of i and G¢ is zero on all the points with

odd values of i.  Thus F influences only half the points of the

domain, nameiy those with an x coordinate which has the same parity

as i,. To prevent our boundaries from acting in this way it is

essential that we distribute all of the boundary forces equally

among all four chains. This is an important motivating consider-

ation in the choice of a 8§ —=function analog as discussed in Section IX.
By summing over any chain and making use of the periodic

nature of the domain one can easily show that equations (6-28) have

no solution unless

>_tdij "0 (6-30)

This condition is guaranteed by the fact that djj is the discrete
divergence of some vector field on a periodic domain.

We turn now to the question of how to solve the discrete
Poisson equation. Two general types of methods are available:
iterative and direct. The advantage of the direct methods is that
they solve the equations extremely accurately; the only error is
due to the round-off error in the computer. At one time, the best
iterative methods had the advantage that one could get the accuracy

required in practice with less expenditure of computer time,
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especially when the Poiséon equation had to be solved many times with
solutions that were only slightly different each time. Recently,

direct methods have been improved to the point where they take only

as much computer time as a few sweeps of the iterative methods.
This subject is reviewed by Hockney [24] who discusses both types
of methods and gives comparisons of the computer times. In the
present work we are now using a direct method due to 0. Widlund,
G. Golub and O. Hald [25]. The programming was done by C. Leiva
and D. Fischer.
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VII. REPRESENTATION OF VALVE AND MUSCLE: THE LINK FORMALISM

In this work all physical structures are represented by the
forces they exert on the fluid, and these force: are determined by
the configuration of the structures in space. 1In addition, in the
case of muscle certain internal parameters (length of the contractile
elements) enter into the calculation of the forces.

Each of the structures of interest is represented by a
collection of points which move with the fluid and exert forces
locally on the fluid. If the coordinates of the points are denoted
by Xy, then we call the set of numbers {3{_ k] the spatial config-
uration of the valve, or muscle. This configuration determines the

forces f  applied by point k to the fluid according to the follow-

k
ing rules which we call the link formalism. It will be seen below

that this formalism is sufficiently general to describe natural
valves, artificial valves, and heart muscle.

All of the forces are assumed to act along straight lines
which connect specified pairs of points. These lines, called links,
are designated by the index 4, with k, (4), k, () being the
subscripts of the points connected by the link £ . We adopt the
convention k; (£) < ky (£) . The lists k; (£). kg (£) determine
the topology of the immersed structure: these lists are fixed for
all time as the motion evolves. Each link is under tension, and the

tension depends on the length of the link.
Let
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Yo7 Xko(0) 7 Xk, (2) (7-1)
rg= lryl (7-2)
dy=rglry (7-3)
Ty(ry) = Tension in link ¢ (7-4)

1 k= k]_(z)

ezk = -1 k= kp(?)
0 otherwise (7-5)

Then

Tk =Zeméz Ty (rg) (7-6)

1]

For example, the links may act like linear springs in which case

Tylr,) = S, (rprg) (7-7)
where Sy = Stiffness of link £
ry = Resting length of link £

We now show that a variety of structures of physiologic interest

can be represented in terms of the formalism outlined above.

Natural Valve Leaflet

In the two-dimensional representation of the flow field, the
natural valve leaflet appears as a flexible line resisting extension

btut not bending. Thus, we need a chain of links in which the tension

is given by

3 .0 SN & ]
T (I‘ ) - S(I‘z—r ) r£ g ¢
A { 0 r
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as Shom in Fig- (7"‘1)0!

Rigid Occluders for Artificial Valves

The links must resist compression as well as extension and
be connected in such a way that the overall structure resists

bending, as indicated in Fig. (7-2).

Muscle

The Hill model [34], applied to heart muscle by Sonnenblick
[35], can be accommodated by the link formalism. Briefly the model
asserts that muscle can be represented as a passive elastic element
connected in parallel with a series combination of another elastic
element and a contractile element. To represent this we use a pair
of links like those used in the representation of the natural valve
leaflet (above). The link representing the passive element has
fixed properties, while in the active link the quantity r© repre=—
sents the length of the contractile element. Thus r® has a time

variation described by the Hill hyperbola:

(v +v T +T)) = K,
dro = -v
dt (7-9)

and Voo To and Ko are given functions of time whose time course
determines the kinetics of active state in cardiac muscle. The
constant volume feature of musqular contraction is automatically
assured if the muscle is represented as having finite thickness,

since the points that represent the muscle move in an incompressible
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rig. (7-1) Representation of a flexible

elastic structure like a natural valve leaflet.
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Fig. (7-2) Representation of a disc

type occluder for an artificial valve.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fluid.

The properties of the active link are summarized in Fig. (7-3).

The length dependence ¢f cardiac muscle (Starling's law) can
be brought into the picture by replacing T in (7-9) by the tension
per cross-bridge and assuming that the number of cross-bridges is
a definite function of the length of the link.

The foregoing description has been given to show that detailed
muscle physiology can be accommodated by the link formalism. However,
in the present work, where the msin interest is in the flow pattefn,
simplified rnuscles have been used. That is, we have used only the
active link, and we have prescribed the time course of contraction

and relaxation of the contractile element.
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Fig. (7-3) Representation of muscle in
terms of the link formalism. The parallel
elastic element has to be added as an extra

passive link.
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VIITI. NUMERICAL STABILITY

As stated in Section VII there is a definite set of forces
{f k} associated with each configuration {x k} of the valve. The
simplest procedure, then, is to calculate the forces at each time step
from the initial valve configuration for that time step. Unfortunately,
such a procedure will lead to numerical instability unless the time
step taken is exceedingly small compared to the time constants of
interest of the problem. This situation is familiar in numerical
analysis. For example, the numerical methods for the one dimensional
wave equation (vibrating string) exhibit the same phencmena [32].

The usual difficulty is that when the time step taken is too
large and when the initial forces for the time step are applied for
the whole duration of the time step, they push the system past
equilibrium and set up an oscillation which grows with successive
time steps. This oscillation has nothing to do with the actual
behavior of the physical system under study; it is simply an unde-
sirable consequence of taking time steps which are too large.
Unfortunately one cannot always avoid this difficulty by making the
time step small enough; first, because it may take too much computer
time, and second, because taking a large number of time steps leads
to the accumulation of round-off errors.

The standard way out of this difficulty is to use the forces
calculated from the final data for a time step, not from the initial
data. Of course this involves solving an equation, since the final
data are not known and depend on the forces applied. Such a
procedure, called an implicit scheme, has the effect of damping

out those frequencies which are larger than (6t)™" where bt is
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the time step. Thus 61 can be chosen with the frequenc1es of
interest in mind, without worrying about the highest frequency that
can occur.

In fact, it moy be adequate to use not the final data, but
some approximate expression for the final data. The important point
is that the expression must take account of the inflnence of the
forces on the final data. It need not represent that influence
exactly but it must take adequate account of it, at least in a
qualitative way. In fact, a moderate overestimate of the influence
of the forces on the final data is desirable.

Motivated by these considerations we pose the following problem.

Let E{: be the configuration of the valve at the beginning of the nth

th

' pbe the velocity at the beginning of the n-

time step and let u,
time step interpolated to the point x .

The notationjk (... zkﬂ"') will be used to denote the func-
tional dependence of the valve forces on the valve configuration.
(Equations (7-1) through (7-7) give the explicit form of these functions.)

Let

0o e
Xk =xk+6t u{ 1 : (8-1)

Then we define certain forces f,*  as the solution of the following

system:

X
m o
i

£ et (k) (6-3)
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Where B is a parameter © 1.  Substituting we find that

% o a9 1. (8-4)
B G D + (07 g B I )

Now if we let the symbol f* stand for the whole list of components
of f,* we have

£ = M (%) (8-5)

where M (f*) stands for the right hand side of (8-4).

Thus we have a non-linear multidimensional fixed point problem.
If the number of points in the boundary is N , the number of ccmpo-
nents of { is 2N , one component for each space direction at each
point.

Such problems can be solved by Newton's method [36], which will
be outlined here. Let f™ be a particular value of f and expand M(f)
about f™ . To first order in (f-f™) we have

~

M(f) £ M (™M) + A™ (f - my (8-5a)

where A™Mis a matrix which depends on the vector f™ It is the Jacobian

matrix of the transformation M. That is, if we write M out in

components
Mp Gy ) p.q =1, » 2N
then
A = p (. .« e f . . ) (8‘6)
of 4
P4 q

Using this family of matrices A" (one for each choice of £ )

we construct the iteration

fm+] - fm + (] — Am)~1 (M“.m)__ l'm) (8-7)
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To see why this iteration is effective, congider the special case
when A™M=A, independent of f™, that is, when M is linear. In

that case we have exactly

M(E) = MUE™) + A(F-£7) (8-2)
In particular
peo= M) = M(E™) + AP - (8-9)

It follows that

ME™) - = (1-A)(E-17) (8-10)

and

L = (1o ) TH(I-AN(EE LT = 0 (8-11)

independent. of f™ . Thus, for the special case of M linear the method
converges to the solution in one step. For a discussion of the conver-
gence in a non~trivial case see [36].

The implementation of Newton®s method can be far from trivial

" when the number of dimensions is large. For example, we have applied

this method to cases in which 2NZ10®. For such cases A contains
106 elements. Its inversion by standard matrix inversion techniques
would require more than 109 operations. These numbers are unaccept-
ably large. The k3r to the solution is the realization thet most
of the elements of A sre zero. In fact the number of non-zero ele-—
ments is of order 2N. Ths problem is to find a method of inversion
for which the number of non-zero elements involved remains of order
2N throughout the process.

First we consider the structure of the matrix (I-A). The

construction of the elements of A proceeds as follows. Let
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£y = Uy Tk2) (8-12)

Xy = (Xpps Xg2) (8-13)

and similarly for other vectors.

1t follows from equations (7-1) through (7-6) that

df \ ' 1 or g
—‘@- = >,.. eﬂka,@pTﬁ (ryp) —6;(_121 1
bxk'p‘ 2 p
+>_ em{% Tﬂ(r‘g) (8-14)

2 bxk'p'

The derivatives on the right are evaluated as follows:

br‘f’
2!‘2 = -_ 2e£k| (XkZ('e’)’ pl —_ Xkl(»e/),pl )
bxkipl
dory Xk, (2), p' T Xk, (£), p'
= — QZk| = — el,k' a£p|
bxk|p| ry (8-15)
oayp 1 rgp Oy
- — — (x ~x - —2 2
k., (2), k, (£),
bxk'p' ry bxk'p' 2 P 1 P (r‘)@)2 bxk'p'
1 r
Lp
= - 6pp' ("ezkl) + N e£k| azpu
rg (rz)
1
= - — & -1¢
I (a)ep a0t bpp,) (8-1¢)
Ty
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Combining these results we have

' T glry)
bfkp =§ €k €Lk’ {(af,pazpu - épp') SR
ka!pl §A I‘z

- agpdgp! Tg'(r‘z)} (8-17)

If we write (8-2) out in components, we find

© 2 _9 pex (8-18)
W o= oy + (&t 3£
*kp ~ Tkp (o1 64h“[ kp
and hence
oxE
K'p’ =y Oy & 4
of Kk Tp'p (8-19)
k”p”
where
(8-20)

9
v = (68)° ga= B

Combining (8-17) and (8-19) we compute the derivative

bfk]; _ - bfkp bX*klp|
bf’li"p” k;p' in‘{|p| bf’ﬁknpn

T (r"z)

\ 1"
= 2 gyt [(a¥ a¥ - opp’) T
Y ; gk €Lk { 4p  Ap r /)

e 5k , sk .’!
'azp azp'T‘(r E) (k—‘)l\’
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These are the elements of the matrix A evaluated at f* (recall that
A depends on { ). The meaning of the * on the right hand side of
(8-21) is in each case that the variable in question is to be eval-
uated at the configuration _351; determined from -fk by equation
(8=2). The form of A is the same for any other f , with the variables
evaluated at the appropriate configuxationgk connected with f K by
an equation of the same form as (8-2).

The matrix A has some important properties:

(i) The matrix is sparse. That is, most of its elements are

zero., To see this, note that the product e is non-zero only

2k oK'
if the link 4 touches both point k and point k' . Thus if k # k"
and there is no link joining k and k' , then € €K' " 0 for

all £ . It follows that

ofk
——;p =0 for k # k" (8-22)
bfk" " .
P
unless there is a link joining k and k' Let w, be the maximum

number of points joined by links to any given point. Then the number
of non-zero elements of A is at most LN (wo + 1), where N is the
number of points. In the factor (wo + 1), the 1 comes from the
influence of a point on itself. The factor 4 comes from the / possible
values of pp'' =1, 2. Since the total number of elements in the
matrix is l;l\!2 , we have a great reduction if w, << N, which is
always the case.

Remark: The graph of a matrix is a useful concept when the matrix is -

sparse., The graph consists of a collection of nodes, cne representing
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each variable. A line segment is drawn connecting nodes i and j only
if the element aij is non-zero. If the matrix is symmetrical aij“ aji
there is no need to assign a direction to the line segment. Now
suppose we remove the variables p, p" by agreeing that we will only
put one node for each point k, and that we shall draw a line segment

joining k to k" if any of the 4 elements

bfkp

DXy

is non-zero. The graph that we construct in this way is actually a
picture of the heart valve leaflet, or whatever other immersed struc—
ture we are representing, since each line segment in the graph is in
fact a link (except for the self-loops representing the diagonal terms
in the matrix).

From the foregoing considerations it is clear that the matrix
A is not only sparse, but its topology is fixed since its graph is
invariant as the valve lecaflet moves about.

(ii) The matrix is symmetrical:

Ofkp - bfk”p - bfkupn
bf‘l;.”p” bfﬂi{p" bf:i{p (8-23)
(ii1)
\ ofk :
>‘- _;_})_ =0 )
k” bf‘kllpl! (8-24)

This property is evident since the form of (8-21) is

\
./ ey eZk”bﬁ 1 )
TR /jg & PP (8-25)
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Hence

R—

= ; e,. b " >
Kk of 0 Lk X App /

ykn eﬂk”

i:\illp”

From the definition of e, n , equation (7-5), it is clear that
>'1” ezk“ =0+ 1 -1=20 (8—26)
- K

which completes the proof.

(iv) An immediate corollary of (iii) is the following:
} L)' S (8-217)

and by symmet:'y the same statement holds for the sum over kp. Thus

each row or column of A has sum zero.

(v) The eigenvalues of A are negative (or zero) or the link

configuration is unstable.

Recall that the elements of A are simply vy times the elements

of °f kp/bxk. where Yy>0 . Then if A has a positive eigenvalue

pI

A 4 the matrix bfkp/bxk,p, has a positive eigenvalue \/v , and

hence there, exists a perturbation éxk.p. such that

of

of, = ; —kp
p - k'p' bxkrpt

Thus, the perturbation produces forces which tend to increase

6Xk|p| = (7\/'Y) 6Xk p (8—28)

the perturbation. We shall assume that this case does not arise and
that the eigenvalues of A are always negative.

Remark: If Tﬂ(r)?_ 0 and T'z(r)_z 0, then it can be
shown directly from the form of (8-21) that the eigenvalues of A
are all non-positive. That is, a link structure under tension is

always stable provided that stretching the links can only increase

the tension.
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On the other hand, a link structure under compression may not be stable.
For example a straight line of rigid links will tend te buckle under
compression. (A toy train which is not on tracks can be pulled along
smoothly but not pushed). However, with sufficient care it is possible
to guarantee stability even when negative tension is allowed. For
example, I would conjecture that in a plane, a network of triangles
in which those triangles that share a vertex also share a side is
always stable to small enough perturbations if T'(r)>0  for all
links whether the links are under tension or compression.
(vi) If the link configuration is stable, the matrix (I-A)

is positive definite. Let A be an eigenvalue of {I-A). Then there
is a non-zero [ such that

(I-A) = A f (8-29)
then

Af = (1-0f (8-30)
and ( 1-1» ) is an eigenvalue of A. Then, from (v), if the link
configuration is stable

1-A<0
A> 1 (8-31)

Thus, all eigenvalues of (I-A) are positive and (I-A) is positive
definite.

Because the matrix (I-A) is symmetric and positive definite the
Cholesky algorithm can be used to factor (I-A) and hence to compute
(1-a)7t, [36]

We have adapted the Cholesky algorithm to the present problem
in such a way that the number of non-zero elements remains small

throughout the computation. To explain this method it is necessary
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first to state the algorithm. The statement we shall use is taken
from [36].

Let B with elements bij be a positive—definite symmetric matrix.
We seek a matrix L with elements £ij such that L is lower triangular
(zij= 0 j>i) and 11 = B. The elements f'ij are defined recursively

as follows:

r j-]_
1 >
5= | 45 (bij -4 2ik 2510 12
y k=1
0 i< (8-32)
\

(when j = 1 the sum is assumed to be zero)
Note that for i = j this implies
j-1
\
4

2.2 = (b ,
k=1

g2 8-33
ii i jk ) (8-33)

so that a square root has to be evaluated to compute f’/jj. The
positive definiteness of B guarantees that the argument of this
square root is never negative.

To see that (8-32) gives the desired elements %ij let i2 |

and consider
n j j-1

{:

]
k=1 k=1

Clearly, for i< j the same calculation gives

(LL) = bji = bij (8-35)

ij
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We now examine the question of how non-zero elements are
generated during the course of the algorithm. The aim is to find a
set of positions in the matrix, such that if all of the non-zero
elements of B fall into this set, than all of the non-zero elements
of L also fall into this set at every stage of the slgorithm. We
note that non-zero elements are generated by pairs of previously

existing non-zero elements in the same column. That is, A non-zero

patr(zik, zik) i E:-;i > k generates a possible non-zero element
at (i, j). The situation is indicated in Fig. (8-1).

Now let

S; = {(i,k): 0%i-k<w}

H

S, = {(i,k): iZk and iZn-m} (8-36)
where n is the number of rows in the matrix and w and m are small
integers. The two sets are indicated in Fig. (8-2). They overlap

in the lower right hand cormer of the matrix.

Now, if all the non-zero elements are initially in S, U 5,
they remain confined to SliJ 82 throughout the algorithm. The proof
is simple. Consider any pair of non-zero elements with both members
of the pair in the same colum. Such a pair either has or has not
its lower element in 52. If it has, the nobn-zeroc element it generates
is in SZ’ If it haé’not, then both elements of the pair are in Sl'
and hence the non-zero element generated is in Sl' These statements
follow from the fact that the element generated is in the same row
as the lower element of the pair, and to the right of the colum
containing the pair.

The algorithm used, then, is a Cholesky algorithm with all the
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Fig. (8-1) In the Cholesky algorithm, a
non-zero pair of elements in column k at rows
j and i, j £ i, generate a possible non zero

element in row i column j.
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Fig. (6-2) Location of the non-zero elements
of the matrix. If the non-zero elements are
initially confined to the indicated regions

they remain confined there throughout the

algorithm.
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elements of the matrix which lie in neither S1 nor 52 ignored. The
amount of storage required is n{m+w) and the number of operations
for computing the factors is roughly n(m+w)? multiplications,
with an equal number of additions, plus n square roots. The crucial
fact is that both the storage and the time go linearly with n.

Tt remains to show that link structures of interest can be put
in such a form that the matrices associated with them will look like
the matrix of Fig. (8-2).

Given a link structure, the problem is to choose a numbering
of the points, such that points are linked only to neighboring peints

or to one of a few special points which are numbered last. For

example, in Fig. (8-3), which represents a mitral valve situated
between atrium and ventricle, three points A, B, C are singled out
to be numbered last, and the remaining points are numbered successively.
The resulting metrix has the structure of Fig. (8-2) with n = 2 x 48 = 96,
m=2x3=6, w=2x (1+1) = 4.

An important point is that we can refine the representation and

include more points (increase n) without changing m and w. Thus, as

the representation is refined, the amount of computation varies only
linearly with the fineness of the mesh. (This only holds for one-

dimensional boundaries in a two-dimensional problem).
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Fig. (8-3) Numbering for a heart-like link
structure. Three special points A, B, C are
singled out to be numbered last. Every other
point is linked @ eit-herz%ne of these or to a

point whose number is very close to its own

(+1, in this case).
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A=47
B=48
C=49
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IX. THE CONNECTION BETWEEN VALVE AND FLUID
The points x, which represent the heart valve leaflet interact
with the fluid in two ways.
(i) Each of these points is moved by the fluid at the local
fluid velocity. Thus we have
X ulx ) - f uix) b (x-x)ax (9-1)
dt '

fluid

(i1) Each of these points exerts a force f; on the fluid
locally. This force depends, of course, on the number
of points used to represent the valve. Let this number
be N. Then as N > = the f are of order 1/N. With
this understanding we can assert that the force density

in the fluid is gilven by

o= £im O 5
Foe e ) h8(x-x0 (9-2)
k=1

In the construction of the numerical scheme it is necessary to

replace these equations by discrete equations of the form

n+1 n B n n
= + 2 -
X X, + 8t) h ups Dy () ) (9-3)
. i
n ' n -
By = ) I D;i (%) (9-4)
k

where the function Di;] (3<_k) corresponds in some sense to & (x - x )
with x = (ih, jh).

As explained in Section II, the points X, of the valve need
not coincide with mesh~points ij but may lie anywhere in the fluid.
Consequently, the function Dij (x) plays the following double role:

(1) 1Interpolation of the fluid velocity from the fluid mesh
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to points of the valve.

(ii) Spreading the valve forces from the points of the valve
to the mesh-points of the fluid.

We specify the function D, j (x) as follows:

Let x = (xh, yh) so that the mesh-points are given by integer

values of x and y. (h is the mesh~width). Then let

1 .
D.(x) = — ®(x-i)ep(y-3j) (9-5)
ij — h2
where
. 1
1 cos® ™. ={ 1+ cos or ) [r]f 2
2 4 4 9 ]
o(r) = (9-6)
0 ‘r|> 2

as shown in Fig. (9-1).
The function ® (r) has the following properties:
(1) o is continuous and once continuously differentiable (the
2nd derivative is discontinuous at r = +2). It is also

an even function.

(2)
‘ o(r)dr = 1 and o(r) =0 for [r|Z 2 (9-7)
(3)
. ¢ )
) olr-1) = Y el(r-k) = (9-8)
k even k odd
and therefore ,
} o (r-k) 1 (9-9)
<
(4)
VR ( k) 5
Pt - o (9-10)
/ 8

k
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Fig. (9-1) A 8- function analog for the

numerical scheme.
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jindependent of r, and therefore, from the Schwa:gz inequality

Y olr-k) @ls-k) = ) o (r-k) (9-11)
k k

tor all r and s.

The importance of these properties is discussed below:

Because of (1) the coefficients D, 3 (x) that link any particular
mesh—point with any particular valve point vary continuously as the
valve point moves.

The importance of (2) is that it connects D, 3 with the

§ ~function. To see this, let

fo(z) }ﬁcp(le-) (9-12)
Then
f,(z) = 0 for [z]Z 2h (9-13)
and
f_:fh(z)dz - %,onm(%—)dz - & _[_mm%)d(é)h - 1 (9-14)
Thus fh(z_) is a b -sequence. That is
f}fg h{‘mfh(z)g(z)dz = g(0) allg (9-15)

~C0

Property (3) guarantees that D, 3 is a sensible interpolation

formula in that if u is constant in the neighborhood 61‘ X, Wwe

J
expect the interpolation of ;5 to x K to recover this constant value.
Actually, this much is guaranteed by
), elr-k) = 1 (9-16)
k
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The reason for imposing the stronger condition that the sums
over k even and k odd should separately be 1/2 has to do with the
separate "chains*" that are involved in the solution of Poisson's
equation. (see Section VI) It should be recalled that the force
applied to the fluid at one.point influences distant points instan-
taneously only through the pressure field, which is computed by the
solution of Poisson's equation. Moreover, in the difference equations
used here, Poisson's equation breaks up into 4 separate systems, one
over each of the chains defined in Section VI. The property (3), then
guarantees that the total linkage of a valve point with one c¢hain is
the same as its total linkage with any other chain.

Property (4) is derived from consideration of the influence of
the force due to a valve point on the motion of that same valve point.
One would like that influence to be independent of the relationship
of that valve point to the mesh. That is, one would like it to be
the same whether the valve point coincides with a mesh point or lies
at any position between mesh points.

Consider a time step for which the fluid velocity is initially
zero. A force_{k is applied to the fluid at the valve point X,

We want to find the displacement produced by this force at some other
point x 5 after one time step. (Assume there are no forces other

than the single force applied at XK If there were others, we could
use superposition, since the cquations for one time step exre linear.)

We have

F. = D, (x )f (9-17)
—ij ij —k -k

Now the force Eij produces, after one time step, a velocity

field u__ which depends linearly on F... Thus there must be some
=Pq =i
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2 x 2 matrix G associated with every pair of points (pq, ij) of the

domain such that

.
= ) G(pg,ij) op (9-18)

i ' _
Moreover, because of the periodic nature of the domain and because

u
—Pg

all of our difference equations have constant coefficients (we are
considering here the case p_n = 0), G depends only on (p-i, g~3).
Thus we write

- > G (p-i, q—j)Dijqk)_fk (9-19)

ij

u
—Pq
Finally, if we interpolate Ep q to the point x P we have
AN G(p-i, g-) D, (x, ) 1 f (9-20)
E(Z{‘,@) [> h > qu(z{‘ﬂ,) (p q-l ij 2k “k
pq ij
Where X , is another point of the valve. (If k = 4 it is the same
point.) The expression in square brackets is a 2 x 2 matrix which

depends on x ,, Xy since it is derived from G we designate it by

G. Thus
C = 2 \;. M -1 -1 -
G(x,, x) = h ) qu(gz)Cdp 1,q.n1)iﬁgk) (9-21)
Paij

Now, if we rewrite Dj_j in terms of ¢ with X, ° (Xz h, Y, h)  and

Xy = (xk h. vy h) we get

P = 1 3 . .
Glx,, x,) = -};2—> ©lx,-p)oly,-q) Glp-i, g-j) Plxy -1 oly, -i) (9-22)
Pq ij
One can rewrite the sums in terms of i, §j where
81 = p ~ 1
(9-23)
6j = a -]
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~ 1 BN . . o .
(‘y(ﬁz, Ek) - > [ G616 (): cp(x£~61—1) ol 1))
5i, bi
81 =1 _: _ 4
: ('?;@(.‘/z 67 -1 wly, )] (9-24)
J

Now consider a fixed term in the sum over ©i,0j and ask the
question how does this term vary as x , and xj) vary. Because of
property (4) we can assert that this term is maximal when

x -6i = x
2 k

Yo =01 7 vy

and moreover this maximal value is

CATE G(8i, &)
The important point is that the constant which multiplies G(&1i, 5j)

is constant, independent of x provided only that their

/e; Xk, y‘e’, YI{I
differences obey Eqs. (9-25).

Actually, one would like to impose an even stronger condition

than (4), namely (4'):

\ (%, ~k)oplxy -~k) = olx - X5 ) (9-26)

k

a condition which is motivated by the & —~function identity

[se}
I

bk - x) Bl - x)dx =00 - %) (9-27)

If (4%) held, one could simplify (9=24) to read
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C,(zg_z, x) —:—\ (.3(61,6;])cp(sz—xk—61)co(y£ D) (9-28)

h? /
8i, 8]

so that ¢ would depend only on the difference X g ~ Xy Unfortunately
(4*) cannot hold if ® = O outside a finite region, so that it is an
impractical constraint to apply (if every point of the valve inter-
acts with every point of the fluid through Di 3 the computations
become astronomical!) What we have done in formulating condition (4)
is to extract an important consequence of (4*), namely the fact that
T ® (x - i) is independent of x and to use that as our condition
?h)-

It is interesting to note that the proverties (1) - (4) almost
determine the function ® . To see this consider 0 = r = 1. Then
@ (r - i) is non-zero at only the four values i= -1, O, 1, 2 because
of the part of (2) which asserts that® (r) = 0 for |r| 2 2. ‘The

values of ® that cnter into the sums in (3) and (4) are

o(r-2) = ©(2-r)
o(r-1) = 0 -r)
e (r)

@ (r+1)

where we have used the, fact that ¢ is even. Because of (2)

1
p(2-r) = E*qa(r) (9-29)

1
ow(14+r) = -,Z—cp(]—r') (9-30)
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Using these equations, (4) becomes
1 3

L ]7 o(r) 12+ [olr) 12 + [ 5 -ol-r) 17 +[ol-r) F7 = 5 (9-31)

Actually, the constant 3/8 is not arbitrary. It can be found
by putting r = 1 and noting that continuity requires that ¢ (2) = 0.
From conditions (2) we find ¢ (1) = % and ¢ (0) = 1/2 Substituting
these in (9—31) with r = 1 we find that the constant must be 3/8.
Thus

3
Loople) + 2T p(r) )+ 2 - o(l-r) + 2[0l-r) )7 = 3 (9-32)

Rearranging:

[ 4p(r) -1 7% + [ 4p(l-v) -1 1% = 1 (9-33)

It follows that

4¢p(r) - 1 = cos 8(r) (9-34)
4p(l-r) -1 = sin 8(r) (9-35)
where
8(1-r) - T () (9-36)
2

If (9-36) does not hold, (9-34) and (9~35) are inconsistent. As
m
shown above, ¢ (0) = 1/2 so that 8 (0) = 0. From (9-36), 6 (1/2) = T
< <
Actually, any 8 (r) can be chosen on 0 —r —=1/2which
satisfies these conditions, but the simplest choice is clearly

8 (r) = szr which leads to the function ¢ that we have used through-

od’c this section.
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Ko SUMMARY OI THE NUMERICAL METHOD

The setting for the calculation is a 1 x 1 periodic domain
covered by a mesh which is rectangular with mesh iidth h. Tmmersed
in the domain is a link structure representing the heart apparatus.
Tts points, labeled by the index k , need not coincide with points
of the rectangular mesh. The configuration! of the heart apparatus
is written {x,} and a system of forces {fy (-~ Xk --- )}
corresponds to each possible configuration.

At the beginning of the an'h time step the given data are the
velocity field 3_12 3 and the configuration _y:kn of the heart apparatus.
The process of finding gin’sl and grqr?l is summarized here. (The notation
is defined in the foregoing sections.)

1. Using Newton®s method, solve the non-linear system of

equations
2 - N, o, NN 9 2
X ox ot u (_}gk) + G B.f_‘_k (bt) (10-1)
~fk :_fk(-'-ggf{:,--- ) (10-2)

2. Apply the forces f 12 to the fluid by computing

Ty > Dy () £ (10-3)

TTo accommodate active boundaries the concept of configuration is
generalized, so that its specification requires more than just data
about the position of the heart apparatus in space.
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3. Solve successively the following systems of equations

(I +6tQF)  ws = e+ BiF (10-4)
(1 + &1 QS ) E:::;:: = E,:z (10-5)
A p s (10-6)

L. Move the heart apparatus according to the formula

¥+l - ymy 61;2 h? D_ii(x{‘) u?_;'l (10-17)
o~k —i;

This completes the time step. Return to 1.
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COMPUTER LEXPARIMENTS ON THE PHYSIOLOGY OF THE NATURAL MITRAL VAIVE
In this section we apply our techniques to the physiology of

the natural mitral valve. The mitral valve was chosen for several
reasons: first, because it has been the object of intense study
(using other methods) by a group of workers headed by Frater and Yellin
with whom the present author has had close contact throughout this
researéh, and also because the mitral valve with its bicuspid anatomy
seems most likely to lend itself to an adequate two dimensional repre-
gentation. A further advantage of the mitral valve is that during
diastole when the valve is open, the atrium and ventricle together
form almost a closed system, the qualification being the inflow from
the pulmonary veins to the atrium. Because these inlets are multiple
(4 in man) and small, it is not likely that their presence will
significantly disturb the flow pattern at the valve. On the other
hand, the pulmonary venous inflow during diastole certainly does
increase the volume available for filling the ventricle. One can
account for this volume effect by postulating a larger than normal
atrium at the beginning of diastole, instead of continuous inflow
throughout. 1In this way, we can study the mitral valve in a setting
which is closed and consists of simply an atrial and a ventricular
chamber. The atrium empties into the ventricle through the valve;
the ventricle contracts and the valve closes. Although we have to
stop the calculation at this point, since our ventricle has no outflow
tract, we have nevertheless covered that part of the cardiac cycle
that is of interest from the point of view of the normal dynamic
physiology of the mitral valve. A stress analysis of the mitral valve

during systole would also be of interest, but that is primarily a
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statics problem in which the role of the fluid is simply to provide the
pressure load that holds the valve closed.

In the computer experiments reported here we have taxken no
account of the prominent asymmetry between the sizes of the mitral
leaflets. The methods certainly can accommodate such an asymmetry
but it was simplest to start without it. In this work, we shall
report on the physiology that the mitral valve would have if its
leaflets were of equal size, while a significant question for future
work will be how much difference it makes that the leaflets are not
in fact equal. This manner of proceeding illustrates what some will
see as a weakness and others will see as a strength of this technique:
the user is free to design the heart and valve he wishes to study.
How close that heart and valve will come to reality depends on the
user's knowledge of the anatomy and physiology of real hearts, and
on how close to reality he wants the simulated heart to come. One
may impose differences between the actual heart and the heart under
study to see how much difference they make. Such an approach is
analogous to the production of experimental lesions, but in the
computer there is far greater flexibility and control over the
"lesions” that one can produce. For example, one could "cut" one of
the chordae tendineae at a precise time in the cardiac cycle and
observe the effect.

Simplifications were also made when it was considered how to
represent the atrial and ventricular wall. Wall thickness was not
taken into account and each wall was represented as an initially
circular arc composed of links of the type discussed in Section VII.

The tension in these links tends to keep the arcs circular at
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equilibrium, though the circular shape is distorted by the flow and
sometimes by the papillary muscle tension. The geometry is thus
incorrect: a more accurate ventricular shape covld be maintained by
having muscular links which go across the ventricle from one side to
the other. Such links would be the best that one could do in two
dimensions toward representing the circular muscle of the ventricular
wall; they have not been included here. The physiology of the
muscular links was also simplified, even more than in the Hill model
[34] which is itself a simplification for cardiac muscle. Our muscle
can be described in the language of the Hill model by stating that we
have ignored the parallel elasticity and that we have made the length
of the contractile element a given function of time. (In the Hill
model the rate of shortening of the contractile element depends on the
load). The rationale for all of these liberties that we have taken
with the walls is that we are primarily interested in the physiology
of the valve and its flow pattern. The walls that we have designed
are perfectly adequate to get the fluid moving which is also what
the walls of the heart do. The present method could incorporate a
more accurate representation of the muscle physiology and wall geometry.
One of the most difficult and important questions we have to
face is how to rerresent the anatomy of the valve, chordae, and
papillary muscles. A description of this anatomy will be given here
to motivate the subsequent paragraph in which our simplified repre-
sentation of this apparatus will be described. When the ventricle is
viewed from the base of the heart through the open mitral valve (see
Netter [[41], p. 11) the papillary muscles and chordae are seen to lie

roughly below the commissures on either side. Each papillary muscle
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_+ thus situated between the leaflets, and each gives chordae to both
leaflets in the region near the commissure. Now let a plane be
constructed perpendicular to the plane of the valve ring and bisecting
both the anterior and the posterior leaflets. This plane intersects
each leaflet along a curve which adequately describes the configuration
of that leaflet; the plane also intersects the apex of the heart and
the outflow tract from the ventricle to the aorta. If a‘single plane
must be chosen for studying the flow pattern around the mitral valve,
this is the plane of choice. However, this plane passes between the
two papillary muscles; it contains neither papillery muscle nor chordae.
If the projections of the papillary muscles onto this plane are taken
they lie superimposed on one another and they appear to originate from
the apex of the heart (actually from a point in the fluid just above
the apex). The projections of the chordae on this plane appear to
insert at the tip of each valve leaflet, and also further back along
the ventricular surface of the leaflet.

These remarks Jjustify, insofar as it can be justified, our
gimple two dimensional representation of the papillary muscles and
their elegant webs of chordae tendineae: A single link from the apex
of the ventricle to the tip of each valve leaflet is used. The links
are part muscle and part chordae. The part representing the chordae
is passive (fixed resting length) while the muscular part is assumed
to have the same kinetics as the rest of the ventricular muscle,
contracting and relaxing simultaneously with the rest of the ventricle.
An important experimental variable is how much of the distance between
valve tip and wentricular apex should be assigned to the muscles and

how much to the chordae, as this determines whether the chordae go
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slack during diastole or remain under tension.

The dynamics of our typical experiment are completely determined
when the functions of time are given for the lengths of the contractile
elements of the atrial and ventricular muscle. A convenient reference
time to call t = O is the instant when the atrial and ventricular
pressures are in equilibrium at the beginning of diastole.

To start the experiment smoothly, we set the initial conditions
in such a way that at ¢t = 0 the tensions in the atrial and ventricular
walls will be in the same ratio as their radii. By Laplace's law,
this guarantees equality of the pressures. The tensions in the valve,
chordae, and papillary muscles are all zero at this initial instant.
The fluid is at rest.

It would also be possible to begin the experiment at a slightly
earlier time, during the isovolumetric relaxation of the ventricle,
before ventricular pressure has fallen as low as atrial pressure.
Beginning at this earlier time would allow study of the unloading of
the valve that cccurs just prior to diastole. By comparing this
earlier starting point with the equilibrium starting point, it would
be possible to study the consequences of this unloading to subsequent
valve dynamics.

Figure(11-1) presents individual frames of a cine film of the
valve, heart, and fluid motions. The film was produced directly by
the computer. Hach frame shows the instantaneous configuration of
valve, atrium and ventricle, and also the instantaneous fluid velocity
vectors. 1In this computer experiment the calculation starts at t = 0
with the distance from valve tip to ventricular apex apportioned as
follows: 20% papillary muscles, €0% chordae tendineae. (The ratio

changes during diastole as the papillary muscles relax). With this
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proportion the relaxation of the papillary muscle is not sufficient
to make the cords entirely slack. An index of the tension is the very
slight indentation that ocenrs at the apex of the ventricle.

Some points of interest about the flow pattern will be discussed
here. See also the legends of Fig. (11-1) and the discussion of valve
physiology in Section XIT.

During valve opening, the requirement that 1luid move outward
to open the valve appears to prevent initially the formation of a
well defined jet. When the valve is fully open a jet appears with a
typical vena contracta iiear the valve ring. However, the valve leaf-
lets do not appear to follow the contraction of the jet. In the real
mammalian heart it is possible that the continuity of the tissue
around the valve ring forces the valve to follow this contraction.

We could simulate such an effect with a link joining the two valve
leaflets near the valve ring, but we have not yet done so. Though a
jet is apparent near the valve ring it diffuses outward at the edges
of the cusps (as described by Taylor and Wade - see Section I11). It
does not appear to strike the ventricular apex until later in diastole.
Wwhen the valve leaflets have stopped their outward motion, vortex
formation begins. The vortex is formed at the tip of the valve
leaflet, rather than behind the cusp, and in our studies its center
never moves far from this site of formation, though subsequent closure
movements of the leaflet leave the vortex in a position somewhat behind
the cusp. If the valve were in a pipe rather than in a ventricle, the
vortex would be swept off downstream. Here it remains essentially in
place vwhile its streamlines move the valve in the direction of closure.

Significant diastolic movements toward closure are produced by this
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Fig. (11-1) Computer generated diastolic
flew pattern for our representation of the
mitral valve. The frames (a) — (p) were selected

from 640 time steps generated by the computer.
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(a) The initial configuration of the simulated atrium, ventricle, and
mitral valve. The chordae, not shown, connect the valve tips to the

ventricular apex. They are under tension throughout diastole in this

computer experiment.
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(b) As the ventricle relaxes the valve opens.
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(e) The vortex moves to the tip of the cusp. The valve is now

fully open.
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(£) A strong, well-defined vortex appears.
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(g) The vortex grows in size, and the valve leaflets begin to move

together under the influence of it:c str.nmlines.
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(h) A smooth fiow pattern is established in which flow from the

atrium merges with a diffuse vortex centered at the valve tip.
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(i) As the inflow from the atrium is reduced the vortex becomes

much more prominent and the valve leaflets move rapidly toward closure.
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(J) Inflow from the atrium becomes even smaller and the vortices

dominate the flow pattern. The broken jet lies between the two

vortices.
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(k) The onset of atrial systole connects the jet with the atrium again.

The rcmains of the vortices can barely be seen.
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(1) Atrial systole pushes the valve open slightly. The tension
the chordae is now evident in the indentation at the ventricular

apeXe
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(m) Vortices form again at the valve tips, as they did during rapid
filling prior to atrial systole. The valve is moved toward closure

and the jet begins to break.
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(n) The jet is broken, vortices dominate the flow pattern, and the

valve is swept toward closure.
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(o) 1In this frame the vortices lie somewhat behind the line of the
valve leaflets, while previously they were at the valve tips. The
change is due to the motion of the leaflets. The vortex remains

essentially at its site of formation.
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(p) Ventricular systole completes the closure by generating streamlines
from ventricle to atrium. These intersect the cusps and carry them closed.
There is a stagnation point between the valve leaflets near the tips.
Fluid on the ventricular side of the stagnation point is still moving into
the ventricle, while fluid on the atrial side is being squeezed out into
the atrium. The flow meter records this as a spurt of backflow, but no

fluid is actually escaping between the valve cusps.
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mechanism only when the inflow slows down. At this time the vortex
appears to expand tremendously in size and its gtreamlines uniformly
intercept the valve and carry it toward closure. Vortex formation
also influences the shape of the jet of fluid entering the ventricle.
With the formation of vortices the jet becomes longer; it passes
between the two vortices like a piece of metal being pressed out
between two rollers. As the flow decelerates fewer and fewer of the
streamlines of the jet connect with the atrium and more of them
circulate around the vortices and help close the valve. This supports
the contention made in Section III that the “broken jet*” theory is
essentially equivalent to the vortex theory. With atrial systole

the phenomena described above repeat themselves. The valve is opened
again to some extent, more vortices are formed, and further closure
movements occur immediately before ventricular systole. Finally,
with the onset of ventricular systole, the [irst streamlines from
wventricle to atrium appear. These streamlines assist in the final
closure of the valve.

We have also run a computer experiment in which the chordae
were slack during diastole. In that experiment the leaflets were
opened wide and remained open wide until the onset of ventricular
systole. There was little vortex formation, apparently because the
leaflets were thrown out of the main stream and the necessary inter-
action between the leaflets and the main stream was missing.

The absence of vortex formation when the valve is thrown out
of the main stream and the site of vortex formation as the tip of the
valve leaflet both emphasize the role of the leaflet itself in vortex

formation, as well as the importance of the chordae in restraining
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the leaflet so thal it interacts with the main stream. These results
are contrary to those of the Bellhouse group, as will be discussed

in Section XII,
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XITI. CONCLUSIONS

The Physiology of Mitral Valve Closure

In this section we introduce a classification of the stream-
line types which may be associated with the closure of the mitral
valve. We discuss the time sequence of the appearance of these
streamline types during a single diastole, and we evaluate the
influence of the different streamlines on vaive performance. We
begin with a definition of the term "streamline" and a discussion
of the significance of streamlines in a fluid bounded by méving
walls.

A streamline is a curve in space associated with the
instantaneous velocity field of a fluid. The association is that
the streamline is parallel at each of its points to the local
}luid velocity vector. If a streamline crosses an immersed bound-
ary, this implies that the boundary has a non-zero component of
velocity normal to itself. If no streamlines cross an immersed
boundary, then the boundary is either at rest or moving parallel
to itself everywhere. In particular, the filling of the ventricle
requires streamlines that intersect the ventricuwlar wall, and the
opening and closing of heart valves require streamlines that cross
the valve leaflets. In neither case is it‘implied that fluid is
penetrating the boundary, but simply that the boundary itself is
in motiocn.

With these considerations in mind we introduce the classi-
fication of streamlines which is listed here and illustrated in
Fig. (12-1):

A. Streamline from atrium to ventricle which passes hetween

the valve leaflets.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. (12-1) Four streamline types that may
be associated with valve closure. A and D

influence ventricular volume without moving the
valve. B and C close the valve, but C reduces

ventricular volume while B does not.
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B. Circulating streamline which crosses the valve, moves
the valve in the direction of closure, and completes
its circuit within the ventricle.-

C. Streamline from ventricle to atrium which intersects the
valve and moves it toward closure.

D. Streamline from ventricle to atrium which passes between

the valve leaflets.

Algiven instantaneous flow pattern can be characterized
qualitativelylby stating which of these streamline types is most
prominent or quantitatively by giﬁing the total amount of flow
associated with each of the streamline types. Let these flows be
called FA’ FB’ Fc, FD. Then a flow meter mounted at the valve ring
measures F, — F, — Fp. From a cine record of cusp motion it is
possible to estimate the rate at which volume is displaced by the
cusps. This is FB + FC. Clearly the two measurements are not
enough to determine the four flows separately. This illustrates the
point that knowledge of the flow pattern permits a more detailed
characterization of valve dynamics than can be obtained from combined
flow meter measurements and cine records of cusp motion. On the
other hand, once the flow pattern is known quantitatively, the results
of these measurements can be predicted.

In terms of this streariine classification it is possible to
discuss the evolution in time of the flow pattern during a single
diastole. When the valve is maximally open, all of the streamlines
are of type A, passing between the valve leaflets from atrium to
ventricle, As vorticity is added to the fluid, circulating type B

streamlines appear and may begin to close the valve early in
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diastole. | When an adverse pressure difference does appear,
for example at the onset of ventricular systole, it slows down fluid
which is moving toward the ventricle and speeds up fluid which is
moving toward the atrium. Fluid at rest is set in motion in the
direction of the atrium. Consequently the fluid behind the valve
cusps begins to move inthe direction. of the atrium, while the fluid
in midstream continues to flow toward the ventricle though at a
decreasing rate. Thus the introduction of an adverse pressure
difference causes type C streamlines to appear and type A strsam—
lines to disappsar. These changes take time, however, because of
the inertia of the fluid. The adverse pressure difference has no
direct effect on the circulating type B streamlines (curl grad
p = 0). Consequently at this phase the valve is moved toward
closure under the combined influence of the B and C streamlines.
If the valve is not yet closed by the time the midstream fluid
has been stopped, then that fluid is turned arcund by the adverse
pressure difference and type D regurgitant streamlines are formed.
In summary, the natural order of appearance in time of the stream-—
line types, is A, B, C, D. The functional significance of this
will be shown below.

We now discuss the role of each of the streamline types in
valve performance. Type A streamlines are the most desirable in

the sense that they fill the ventricie. But it is not possible

T Two complicationsin discussing the type B streamlines are
the following: First, not all circulating streamlines need intersect
the valve. Second, one can have vorticity in the fluid without having
closed streamlines, though one cannot have closed streamlines without
vorticity (in a simply connected region). Thus vorticity is a

necessary but not a sufficient condition for the existence of type
B streamlines.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105,

to have a valve with only type A streamlines, since these streamlines
do not move the valve and thus cannot bring about closure. TIype B

streamlines are unigue in that they close the valve without reducing

the ventricular volume. Type C streamlines also close the valve.

They reduce the ventricular volume if the border of the ventricle is
taken to be the plane of the valve ring, but there is an upper limit
to the amount of volume which can be lost in this way. This limit
is the volume of fluid which lies between the cusps at the time when
type C streamlines are first formed. At worst this is the volume of
fluid between the cusps at maximal opening, but it can be smaller if
a significant amount of closure was produced by the type B stream-
lines before the appearance of type C. Type D streamlines also
reduce the ventricular volume but they do not participate in the
closure of the valve. Thus there is no similar upper limit to the
amount of volume which can be lost by the ventricle via type D
streamlines. In fact when regurgitation continues throughout
ventricular systole, as for example when the valve leaflets are
immobilized by calcification, the regurgitant streamlines are of
type D.

The following table summarizes the functional significance

of the streamline types:

EFFECT ON EFFECT ON
VENTRICULAR VALVE
VOLUME CLOSURE
A + 0
B 0 A +
c - +
D - 0
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Thus, the rank order of desirability of the streamline types
is A, By C, D with the understanding that it is not possible to design
a valve with only type A streamlines. In princinle it would be best
to produce all of the closure with type B streamlines, but this is not
quite achieved even by healthy natural valves, for one always sees in
the flow meter record at least a small spurt of backflow associated
with closure. Our computer results indicate that this is associated
with streamlines of type C, and that type D streamlines are definitely
pathological. Such pathological streamlines do appear, however, if
the valve is wide open at the onset of ventricular systole, fui “n
that case they are formed before the C streamlines have time to
complete the closure.

The natural order of appearance in time of the streamline
types coincides with their rank order of desirability. The functional
significance of this is that with a properly performing valve the
early streamline types will have time to fill the ventricle and
accomplish most of the closure before the appearance of the later and
less desirable streamlines.

This description of the streamlines, their evolution in time,
and their functional significance is in part a synthesis of the
ideas of other workers as outlined in the historical section of this
thesis, Section iII. For example, the importance of the circulating
streamlines is prominent in the work of Leonardo and the Bellhouse
group, while the role of inertia has been emphasized by Yellin and
Frater. The experiments of Henderson and Johnson are especially
interesting in this regard since they illustrate the conversion of
one streamline type into another. The jet of Henderson and Johnson

consists of type A streamlines. wuhen this jet is disconnected from
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the atrium ("broken") the fluid in the ventricular part of the jet
continues to move forward but the streamlines change to type B. They
circulate “hrough the ventricular part of the broken jet and they
close the valve from the sides.

Our classification of the streamline types is especially
useful because it is also applicable to flow patterns around artifi-
cial valves. The four representative streamlines are shown in Fig.
(12-2) for a caged disc valve. It is important to have a mode of
descriptioh that applies t0 both natural and prosthetic valves so
that the flcw pattern of the former can be used as a standard. We
have not yet performed the computer calculations, but we anticipate
that most prosthetic valves will be closed primarily by the type C
streamlines. This would explain the relatively fixed backflow that
is associated with the closure of most artificial valves. The
prosthetic valve designer should seek to achieve the persistence
of type A and the production of type B streamlines. We have offered
a solutioﬁ to this problem in Figs. (3-6) and (3-7) in which an
artificial valve motivated by the experimenits of Henderson and Johnson
is introduced. Our computer methods are useful both because they
lead to the formulation of such goals, and because they provide a
means of determining how well a particular valve design actually
achieves the goazls that have been laid down.

We have shown how instantaneous flow patterns can be charac—
terized in terms of a streamline classification. A more difficult
problem is to isclate certain features of velve design and explain
how these features contribute to the formation of the different

streamline types. One such feature has already emerged from our work:
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Fig. (12-2) The same streamline types as

in Fig. (12-1) for an artificial vaive.
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the diastolic role of th: chordae tendineae in restraining the open
valve, Such a role is éxplicitly denied by Bellhouse [8] who has
mounted his model valve in such a way that its inextensible chordae
are definiteiy slack during diastole In the model, Bellhouse finds
that vortlices form and diastolic movements occur without the inter~
vention of the chordas. On the other hand, Wieting [37] has mounted
a human mitral valve in a pulse duplicator system and supported the
papillary_muscles on springs in such a way that the papillary muscle
tension can be controlled . The method is not capable of controlling
systolic and diastolic tension separately, but it is apparant from
the records that they vary together. Wieting noted the sppearance
of a voitex behind the anterior leaflet in his experiments whern the
papillary muscie tension was optimal, and the absence of this vortex
when the tension was 10% optimal. Rushmer [38] has noted that in the
shrunken heart ci' the thoracot@mized animal the chordae are slack
and the valve opens widely, while in the closed chest animal the
opening is much narrower presumably because the chordae are under
tension during diastole.

In our work, in the absence of diastolic tension on the chordae,
the valve is fiung open wide early in diastole, so mu?h so that it
fails to interact strongly with the incoming fluid. As a result
vortices fail to form; diastolic movement toward closure does not
occur, atrial systole only opens the valve more widely, and the valve
is closed with a large loss in ventricular volume by ventricular
systole. When diastolic tension is provided by the chordae we find
that dictinct vortices are shed from the valve leaflets, that type B
streamlines are formed with consequent early and significant diastolic

closure movements, that atrial systole partially reopens the valve
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wut that this is followed at once by more vortex formation and more
closure, and that only a few type C streamlines are needed to completc
the closure when ventiricu.ar systole occurs. In short we are able
to produce in the computer the same general pattern of flow and cusp
motion as obtained by Bellhouse, but only in the presence of diastolic
tension on the chordae. Such tension was definitely absent in the
Bellhouse studies. Our results are entirel& consistent with those
of Wieting and Rushmer, cited above.

Clearly there is a need for further work in this area. First,
it does not appear to be known from a direct measurement whether
the chordae are under tension during diastole in vivo. Even if
they are it does not prove that such tension is necessary for vortex
formation. The role of the upstream snd downstream chambers also
needs to be corsidered. In the Bellhouse model the atrium is a rigid
tube of the sume diameter as the valve ring, while the ventricle is
distensible. 1In Wieting's work both atrium and ventricle are rigid,
but their diameters are larger then that of the valve ring. Rushmer's
chamber was the heart itself, but his observations were necessarily
indirect for that very reason. Inthe present work both the atrium
and ventricle are distensible and larger than the valve ring.
Finally, if one accepts the idea that resiraints on the valve are
important, it becomes important to ask if the three dimensional shape
of the valve itself is a significant restraint on its opening inde-
pendent of any role of the chordae.

If our results concerning the diastolic role of the chordae
are accepted, they illustrate beautifully the kind of dynamic inter-

action between valve and fluid that our mathematical method was
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designed to elucidate. If the chordae are under tension the valve
always has an equilibrium position under their influence, but when
it is flung open beyond this cquilibrium it presces against the
incoming stream and shears it to form vortices that participate in
its return toward equilibrium. It is not meaningful to say that
the diastolic closure movements are caused only by the chordae
pulling the valve closed or only by the fluid flow pattern moving
it in that direction. In fact, the forces set up the flow pattern

which moves the valve toward closure.

Future Applications

The methods of this thesis can be used to investigate natural
valve physiology or prosthetic velve performance. The following
studies are examples of those which can be performed with these
methods in their current state of development.

Mitral valve physiology:

1, The influence of valve and ventricular asymmetry. The anterior
leaflet is larger than the posterior, and the space behind the
anterior leaflet, the ventricular outflow tract, is larger than
the space behind the posterior leaflet.

2. The contraction of the mitral valve ring. Such a contraction
occurs at the time of atrial systole and piresumably has an
influence on the form of the jet. We could easily include this
effect by making the single link that supports the valve ring

have the same properties as the atrial muscle.
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! rosthetic valve design:

1. A survey of two dimensicnal representations of differcut mitral
valva types to compare their flow patterns with each other and
with the natural valve.

2. For a particular valve type, systematic variation in the para-
meters of valve design. For example, the eccentric monocusp
valve is a design which ndimics in some respects tne anterior
leaflet of the natural mitral valve. The rigid cusp is capablie
of tilting cpen out of the way of the main stream. In addition

. the cusp is free to translete away from the valve ring until it
hits a stop. The normal opening motion is & translation until
the stop is reached followed by the tilting motion. The two
parameters of interest for this valve are the limits on these
two motions: the distance of the stop from the valve ring and
the maximum angle of opening. To investigate the role of these
parameters one can vary them in the computer and observe the
influence on the flow pattern, on the‘amount of pressure drop
across the valve, and on the nature and amount of backflow
associated with closure. In addition it will be important to
vary the size and shape of the ventricular chamber, for the optimum
choice of the design parameters will probably depend on these
factors. Two especially interesting quéstions about this valve
have emerged from the experimental work. These questions can
probably be answered by our technique. First, Frater [36] noted
that the pressure drop across the valve was consistently different
depending on whether the valve was placed in the position normally
occupied by the anterior or the posterior cusp of the natural

valve. One would like t0 understand the reason for this difference.
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Second, from the measurements shown in Fig. (3~15) it can be
deduced that the volume of backflow associated with the closure
of this valve is slightly less than the volume displaced by the
cusp during its closwre movement. This implies either that type
A streamlines are continuing while C streamlines close the valve,
or that type B streamlines also participate in closure, or both.
Tn ¢ither case such an effect is desirable, but one would like

to understand it.

Further Development of the Methods

Experience with this technique suggests a number of areas in
which research of & primarily mathematical nature could be expected
to extend the range and power of this work.

First, the physiologist needs an efficient language for
specifying to the computer tne physical and geometric properties
of the heart apparatus he wishes to study. One would like to be
able to describe a heart type or valve type to the computer as a
funetion of some small number of easily varied parameters whose
influence one wisnes to study. Then the computer shoula be =ble to
generate a link structure corresponding to each choice of the
parameters.

Second, it would be desirable to remove the restriction on
the Reynolds number that is implicit in the present methods. A
technique recently developed by A. J. Chorin [40] accumplishes
this by taking explicit account of vortices and vortex shedding.
Since vortices also appear to be an important aspect of valve
physiology it will be especially interesting to apply this new
method to heart valve problems.
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Third, the methods of Section VIII, Numerical Stebility, are
heuristic in motivation. They were arrived at by consideration of
analogies with simpler (linear) problems, and they are justified by
the fact that they yield smooth results where simpler methods breale
down. A mathematical theory of numerical stability is needed for
problems involving configuration dependent poundary forces when the

boundary moves about in space.

Concluding remarks

The flow pattern of blood in the heart has a structure which,
in a way, is an integral part of the heart anatomy. Re-created during
each heart beat by the simplest physical laws, ‘he flow pattern is
also a product of natural selection. As a physical entity the flow
pattern has equations of motion; as a biological entity it has a
function. This function appears to be intimately connected with the
performance of heart valves.

The evolution of the fiow pattern was not accomplished by mak-—
ing changes in the equations of motion. Instead, the physiology and
geometry of the heart apparatus evolved, and consequent changes in
the flow pattern appeared. In this work we have tried to follow
the oxample of Nature by providing a mathematical tool waich can
predict the flow pattern of the blood given any design for the heart
and valves. We then perform a kind of urmatural selection process
by modifying our design according to what we see in the flow pattern
and how it compares with what we expect or want to see. It is up
to the experimenter to determine what the facts actually are. The

present technique is aimed at understanding their significance.
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