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| Charlts S Pesk»‘w II. THE INNER EAR

S. Fluid dynamics of the cochlea: Formulation of a model and analysis
of the inviscid case. In this section, we shall describe a mathematical
model of the inner ear (cochlea), and we shall analyze the special case in
which there is no fluid viscosity. The viscous case will be studied in the
next section.
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FIGURE 5.1. The cochlea (redrawn after von Bekesy). Only one of the three semicircular
canals is shown and the cochlea has been drawn straightened out.
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FIGURE 5.2. Dimensions of the basilar membrane.

The anatomy of the cochlea and its relationship to the other parts of
the ear are shown in Figure 5.1. Unlike the outer and middle ears, the
cochlea is filled with (essentially) water. It is divided into two main
parts by an elastic structure called the basilar membrane which is shown
in Figure 5.2.

The waves that propagate in the cochlea are not sound waves in the
ordinary sense. Although the kinetic energy is stored in the fluid, the
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elastic energy is stored in the basilar membrane, and compression of the
fluid can be entirely neglected. In other words, we are dealing with
surface waves, like ripples on the surface of a pond. This analogy can be
made very precise, as we shall see.

Practically everything that we know about the waves that propagate
in the cochlea was discovered by Georg von Bekesy, who observed these
waves directly with a microscope using stroboscopic illumination. von
Bekesy also constructed physical models of the cochlea, and he used
these models to determine which properties of the cochlea are essential
to its function. We shall give a brief summary of von Bekesy’s dis-
coveries:

1. The response of the cochlea to a steady pure tone is a traveling
wave.

2. The amplitude of this wave is a steady function of position that
rises gradually to a unique maximum from which it decays more
rapidly.

3. When the frequency of the stimulus is changed, the amplitude
function does not change shape, but it translates to a new position. The
position of the maximum varies as the negative logarithm of the
stimulus frequency. Since the fibers of the auditory nerve are distributed
along the length of the basilar membrane, this means that sounds of
different frequencies stimulate different groups of nerve fibers.

4. The compliance per unit length of the basilar membrane varies
with position as e**, where A~! = 0.7 cm. (The definition of compliance
is volume displaced per unit pressure difference.)

5. Under a point load the basilar “membrane” actually deforms as a
plate, not as a membrane. Moreover, there is no resting tension in the
basilar membrane.

6. The fluid in the cochlea is necessary for the traveling wave. If the
fluid is removed, all parts of the basilar membrane vibrate synchro-
nously in response to an imposed pressure oscillation. This strongly
suggests that the mass of the basilar membrane is not important and
that the important mass in the cochlea is that of the fluid.

7. Although fluid is needed, the depth of the fluid is certainly not
critical. Traveling waves can be seen in a drop of fluid placed on the
basilar membrane. In physical models, the depth of fluid can be
adjusted. Increasing the depth beyond its normal value has no effect on
the traveling wave.

8. The curvature of the cochlea is also not critical, since the traveling
wave can be reproduced in straight physical models.

9. The traveling wave takes on a form, and even a direction of
propagation, that are not very sensitive to the mode of stimulation of
the cochlea. The most spectacular example of this is the paradoxical
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wave, traveling towards the source, that can be elicited by putting a
sinusoidal source at the far end of the cochlea.

In any fluid dynamical problem, it is important to know the orders of
magnitude of various physical parameters. For the human cochlea, we
have the following lengths.

Length of basilar membrane: 3.5 cm

Length-constant (A ~') of the basilar membrane: 0.7 cm

Width of the basilar membrane: 0.01-0.05 cm

Depth of each half-cochlea: 0.2-0.1 cm
The fluid has

Density (p): 1 gm/cm?

Viscosity (p): 0.02 (cm?/sec)(gm/cm?)
and the stimulating sound is characterized by

Frequency (f): 20,000-20 cycles/sec.

From the density, viscosity, and frequency, we can calculate a boundary
layer thickness which gives a rough estimate of how far viscous effects
extend into the fluid from the boundaries:

Boundary layer thickness (u/pf)'/%: 0.001-0.03 cm.

If we had used the angular frequency w = 27f, then the boundary layers
would look thinner by a factor V27 .

For reasons that will become clear as we proceed, the natural unit of
length for the cochlea is A~! = 0.7 cm, which is the distance that it
takes for the compliance (per unit length) of the basilar membrane to
change by a factor of e. In comparison with this, the basilar membrane
is long and narrow, the depth of the cochlea is moderate, and the
boundary layers are thin. In fact the boundary layers are also thin
compared to the depth. In the worst case this ratio is 1:3 but in the
middle range of frequencies it is more like 1:30.
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FIGURE 5.3. Two-dimensional model of the cochlea.

We shall now describe the two-dimensional model that will be used in
this section and the next; see Figure 5.3. The model occupies the strip
— a < y <a in the (x, y) plane; it is infinite in both the positive and
negative x-directions. The undisturbed position of the basilar membrane
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is given by y = 0, and its displacements are given by y = h(x, 1). The
walls at y = + a are rigid, and the source of vibration is applied at
x = —oo. The velocity and pressure of the fluid are denoted (u, v) and p.
We shall state the equations of the model first, and then we shall
describe the various assumptions and approximations that are implicit
in these equations.
In the fluid domain, 0 < |y| < a, we have

pdu/dt + dp /dx = pAu, (1)
pdv/dt + dp/dy = plv, )
du/dx + dv/dy = 0. (3)
At the rigid boundaries, y = * a,
u=0, 4)
v=20 (5)
and, at the basilar membrane, y = 0, we have the boundary conditions
u=0, (6)
v = dh/0t, @)
[p] = —sqe "™(h + Boh/dr). (8)
In these equations, A stands for the Laplace operator
A=29%/3x? + 3%/y? )

and [ ] stands for the jump in a quantity across y = 0, so that

[P] = P(x, 0+’ t) - p(x’ 0-, t) = 1:1%1 (p(x’ £, t) - p(x’ —¢&, t))
(10)

Thus [ p] is the load on the basilar membrane.

Equations (1)—(3) are the linearized equations of A viscous incom-
pressible fluid with viscosity u and density p. The linearization is that
the convection terms u - Vu, which arise from the displacement of fluid
particles, have been omitted. In the same spirit, we have applied the
boundary conditions of the basilar membrane to its undisturbed loca-
tion, y = 0. Thus we have assumed that the displacements of the fluid
particles (and hence of the basilar membrane) are small compared to
the distances over which the velocity of the fluid changes appreciably.

At the threshold of hearing it has been estimated that the displace-
ments of the eardrum are as small as the diameter of the nucleus of a
hydrogen atom. (Of course, such a small displacement of a single
molecule would be lost in thermal noise, but the correlated displace-
ments of ~ 10?*> molecules might be detectable.) Even if this estimate of
the displacement of the eardrum is not very accurate, and even allowing
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for amplification in the cochlea and for larger displacement with louder
sounds, there is still a long way to go before displacements of fluid
particles in the cochlea can be regarded as appreciable.

There are nonlinearities in hearing, however, and it is an open
question whether these should be attributed to the fluid mechanics or to
the nervous system. In these sections we assume that the fluid mecha-
nics are linear.

In writing the boundary conditions we have assumed that the outer
walls are fixed and that the basilar membrane moves in the vertical
direction only. The conditions on v, (5) and (7), just assert that the fluid
cannot penetrate the boundaries. These conditions hold whether or not
the fluid is viscous. The conditions on u, (4) and (6), are the no-slip
conditions that hold in the viscous case only.

Finally we come to equation (8), which models the basilar membrane
itself. The left-hand side gives the load on the basilar membrane [ p]. It
might appear that we should add to this the vertical component of the
viscous stress p[dv/dy]. Using the boundary condition (6) and the
continuity equation (3), we see that dv/dy = 0 on each side of the
basilar membrane, so the missing term is actually zero.

The right-hand side of (8) gives the response to the load on the basilar
membrane in terms of the membrane displacement h(x, ¢). The expres-
sion that appears there is based on the following assumptions:

(i) The membrane has zero mass.

(ii) There is no elastic coupling between points at dlfferent values of x
along the basilar membrane.

(iii) Each part of the membrane responds to its load like a viscoelastic
system with a stiffness proportional to e " and a time-constant 8 that
is independent of x.

The assumption that the membrane has zero mass is based on the
observation that the traveling wave disappears and the membrane
vibrates synchronously when the fluid is removed. The lack of longitudi-
nal elastic coupling in the model can be justified by considering a
narrow plate that is clamped along its edges. The exponential depen-
dence of stiffness on position comes directly from von Bekesy’s mea-
surements of compliance.

The existence of the friction term, 83k /9dt, is pure conjecture, how-
ever. In the analysis that follows, we shall see why it is essential to have
some dissipative mechanism in the model, but that role could be played
by fluid viscosity instead of membrane friction.

During the rest of this section, we shall study the case p = 0. We start
by simplifying the problem as follows:

First, look for solutions in which (u, v) = grad ¢e’, where ¢ satisfies
the antisymmetry condition ¢(x,y) + ¢(x, —y) = 0. This gives us a
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problem in which ¢ is the only unknown and the domain is the lower
half-cochlea -a < y < 0:

—Ax
2 So€ . a_¢_ _
—w'p + 2 (1 + iwf) ay-——O, y=0, (11)
A¢ =0, -a<y <0, (12)
0 _
P y = -a. (13)

If the coefficient (s,e ~**/2p)(1 + iwB) were replaced by the constant g,
this would be precisely the problem of gravity waves of small amplitude
in a channel of finite depth. In our case, the coefficient corresponding
to g depends on x because the stiffness of the basilar membrane is not
constant, and it is also complex because of the basilar membrane
friction. We can get rid of the x-dependence by applying the conformal

mapping

X = e™ cos Ny, (14)
Y = ™ sin Ay. (15)
Y
T——:
——————————————— o
s
-a
Ax

X =e cos Ay

Y = e)‘x sin Ay

FIGURE 5.4. Conformal mapping of the lower half-cochlea onto a wedge. The source S at x
= _oo ismapped at X = Y = 0.
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This mapping takes the strip —a < y < 0 into the wedge -tan(Aa) <
(Y/X) < 0, as shown in Figure 5.4. Note that the source at x = —o0 is
mapped to X = Y = 0. The reason for considering this mapping be-
comes clear when we notice that, along y = 0,

B _ 00 ax 00 Y _ o 00,
X o Tar o Ctar M (16)
This factor e introduced by the mapping will just cancel the factor
e ™ that appears in the boundary condition (11).

Finally, consider the special case Aa = /2. In this case the boundary
condition (13) becomes simply (3®/3X) = 0 along X = 0, and we can
guarantee that this condition will be satisfied if we extend ® as an even
function about X = 0. The condition Aa = m/2 makes our model
cochlea too deep by a factor of about 5, but we rely on von Bekesy’s
observation that the depth can be increased without changing the wave
motion that occurs.

Accordingly, we are led to the following problem on Y < O:

- 2 ﬂ i _a_?. = 2 =
WP + % (1 + iwpB) Y = Dwpb(X), Y =0, (17)

AD =0, Y <o, (18)

d >0, Y > —oo0, 19)

in which we have explicitly put in the source at the origin. The source
strength ®yw? has been written this way to make the units consistent in

(17). (In checking the units, recall that X and Y are dimensionless, while
® has the same units as ¢.) It will be convenient to set

wg = So\/2p. (20)
Equations (17)-(19) are exactly the equations for ripples on the
surface of a deep pond with surface friction. The ripples are generated
by an oscillating line source on the surface. This is an old problem that
was solved by Lamb, but some new phenomena will appear when we
transform the solution back to the original variables.
One can verify by direct substitution that the integral

®(X, Y) = o / ® d
' 27 J_ o —w? + 2(1 + iwp)|t|

satisfies equations (17)-(19). To check this, first note that the integrand
satisfies (18) and (19) for each £. Then substitute the integral in (17) and
recall that

e X +IElY

3 @1

8(X) = % f_Zeifx dt. (22)
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We shall pull an interesting term out of (21) and then show that the
rest of the integral is small. To do this, we begin by writing ® = @, +
®,, where

1 D, [ XY
1 B, (o e XY
S TTp mh oh X @)
and where
$o = wz/wg(l + iwB). (25)
n
"
Y
> £

FIGURE 5.5. Contours used to rewrite @, and ®,. The pole at {; yields the interesting part
of the cochlea wave.

Then we use contour integration on the paths shown in Figure 5.5. For
X > 0, the result is

1 ixesy
1 + iwf

D ‘f”( e e )e-""dn(zs)
0

+_——
1+ iwB 27 im—% i+

(X, Y) =

where the first term in (26) comes from the residue at the pole §. It
should be noticed that this term by itself satisfies Laplace’s equation
and also the boundary condition on Y = 0, X > 0, but it fails to satisfy
the condition on X = 0. Thus we can think of the integral in (26) as a
correction that is needed to satisfy the latter boundary condition. This
suggests that the solution for Aa # 7 /2 should have the same leading
term with a more complicated integral correction.
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Since we want to find the motion of the basilar membrane, we

evaluate
L]
)
Y=0 aY J|y=0

AL, ) © —nX
= Moo [ ixe-itor 4 lf e T dn) ()
1+ iwf Tho %+ 2

A 00

% Al
oY

ay

y=0

where X = ™ sincey = 0.
We shall study the two terms in (27) separately. First, let

§o = £0 — ing (28)
and consider
Xe %X = exp(Ax — i(§, — ing)e™)

= exp(Ax — mge™ )exp( — i&oe™). (29)
The amplitude in (29) has a maximum at x, given by
1= "loeM' (30)
or
Ax, =logng . (31)
This suggests that we introduce the new variable X, defined by
x=x,+ X (32)

In terms of X, we can rewrite (29) as follows

X exp(— iSoX) = n5 " exp(Ai — e )exp( —i(éo/mo)e™).  (33)

We shall now obtain a bound on the integral that appears in (27).
This bound holds when the dissipation is small in the sense that

wB <1 (34)
which implies Re({Z) > 0. Let
1 o pXe ™
1) = ¢ [T (9)
0 n° + fo
Then
1 o nXe ™ 1 :
ll(x)|<_f Ui 2dn= — = noze_h (36)
770 IS0l 7|8lX S0l

where we have used 1, = e ~>.
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Combining these results and contemplating the limit 7, — 0 with X
fixed, we have the following formula for the velocity of the basilar
membrane

—id : x
0 = _T'a(:ﬁ —i% exp{(}\j —e"‘)}exp[i(wt —5—‘; e"“)} + O(mp)

—

(37)
where £ = x — x, and Ax, = log(ng ).

v

A(x - xp)

FIGURE 5.6. The cochlea wave and its envelope. The envelope rises like exp(A(x — x,))
and decays like exp(—exp(A(x — x,))).

Equation (37) describes a wave with an amplitude that rises exponen-
tially for ¥ very negative and then decays like an exponential of an
exponential for ¥ very positive. The phase of the wave increases ex-
ponentially with x. This result is plotted in Figure 5.6. As a function of
X, the amplitude has a fixed form, independent of w, but we still have to
determine how x,, the position of the peak, depends on w.

From (25) and (28) we have, for w8 « 1,

§ = w’/wg, (38)
Mo = w’B/wh (39)
and
= Ax, =3 log(w/w) (40)
where
Wi = wj/B. (41)

Equation (40) gives the mapping from frequency to position that is
established by the fluid dynamics of the cochlea in the inviscid case.
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This relationship agrees with von Bekesy’s measurements to the extent
that the position of the peak is observed to vary as the negative
logarithm of the frequency of the sound. According to (40) the dimen-
sionless slope of this relationship ought to be 3, in different species this
slope varies from about 1-3.

We have studied the form of the traveling wave as a function of
position at fixed w. Since each fiber of the auditory nerve has a
particular value of x, it is also of interest to fix x and let w vary In this
way we can hope to find the frequency-response of the linear filter
through which a given nerve fiber listens to the incident sound.

For this purpose, we start from (37), and we ignore the term O(n,).
Also we assume that w8 < 1 Let

2

dAw? 1
A(X, w) =|D| = Z\w n_o CXp{A(X _ xp) _ e,\(x—x,)}
0

= q)o}\wz exp{)\x - Q—JB e)“'] (42)

where we have used 7y = e ™ As a function of w, this has a maximum
at w = w,(x) given by

2/3 = (02B/wd)e™ (43)

so that
A(x, w,) = (d’o)\wlf/wg)eh_z/:’ (44)

and

Alx, 0) w2 exp{z w_’B u}

A(x, w,) wpz

i)

When describing filters, it is customary to plot log A against log w.
Accordingly, we evaluate

A(x, w) w 2 (m)3
2V 6 22 E) -
log Alx, w,,) 2 log Py 3(
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which is plotted in Figure 5.7 Near w = w, we have

log M = _3(

A(x, w,)
so the tuning does not look particularly sharp near the peak. On the
other hand, the cutoff on the high frequency side is, in a certain sense,
arbitrarily sharp, since the slope on the right in Figure 5.7 is unbounded.

2
w
log FP ) (47)

A(x,w)

A 'F
(x,w_)

/ log —Z”—F;

FIGURE 5.7. Amplitude vs. frequency at fixed x. The slope on the low frequency side
approaches 2, but it approaches —co on the high frequency side.

We conclude this section with some remarks concerning the impor-
tance of dissipation to the function of the cochlea. All of our results
were obtained in the limit of low dissipation, so it might appear that we
could dispense with friction altogether and set 8 = 0. The trouble with
this can be seen immediately from the formula for x,, equation (3),
which shows that X, — 00 as B—0. In fact, if we set 8 =0, the
interesting part of the solution is

IAD 2
p= o on exp[i(wt - -w—e“)] (48)

wg
which is a wave with an amplitude and spatial frequency that both grow
without bound as x — oo.

Thus, the fact that we get a peak at all is a consequence of the friction
in the model. This does not mean that the friction has to be in the
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basilar membrane, however In the next section we shall study the
possibility that the dissipative mechanism of the cochlea is fluid viscos-
ity

6. Numerical analysis of the cochlea with fluid viscosity. When p # 0,
the method of analysis that we used in the previous section does not
apply, and we have to make a fresh start beginning with equations
(1)-(8) of the previous section. For simplicity, we shall assume that
B =0, but the corresponding equations for 8 % 0 can be found by
substituting sy(1 + iwpB) for s,.

We shall start by reducing the equations of motion to an integral
equation for the basilar membrane displacement. Then we shall describe
two numerical methods for solving this integral equation.

First, look for solutions where

h(x, t) = H(x)e™ (1

and similarly for all of the other unknowns. Next take the Fourier
transform with respect to x, so that

HE) = H(x)e € dx )

\/_

and similarly for the other unknowns. The equations that result from
these transformations are as follows. On 0 < |y| < a-

iwpU +itP = p(—£* + a*/ ) U, 3)
iwpV +dP [dy = u(—§* + d*/ )P, )
iE0 +dV/dy = 0. 5)

Ony=+a
UO=VvV=0o. (6)

Ony =0:

U =0, ™
J = iwH, 8)
[P] = -soe ™HY ©

The main complication here is in equation (9), where the explicit space
dependence of the basilar membrane stiffness occurs. Equations (3)—(8)
are a system of ordinary differential equations in y, which we can solve
explicitly, in the sense that we can express H in terms of [P] We omit
the details and just give the result:

A@E) = -K@)[P®)] (10)
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where
R -1 £ 2 GG fg - LI R
pw’a 192 291
C, = cosh a, (12)
S, = sinh £a, (13)
C, = cosh aa, (14)
S, = sinh aa, (15)

a=\E+iwp/p . (16)

When a = oo, a case that is of interest because of the observation that
the depth of the fluid can be increased without any change in the
function of the cochlea, the expression for K simplifies as follows:

A 1 1
R®) =5 ﬁ'—z(l———) (17)
pw V1 + iwp/pé?
which behaves like |£| for small |¢| and like |¢| ™" for large |¢|.
Substituting (9) in (10) we can eliminate [P] and obtain an equation
for H alone:

H= sole(e_)"‘H)‘. (18)

There are two interesting ways to rewrite (18). First we can use the
formal identity

(e™™H)(€) = H(E - N) (19)
to obtain the functional equation
A(&) = soK() H(E — N). (20)

Alternatively, we can introduce the operator notation

F = Fourier transform (F* = F™Y,

K = multiplication by K(§),

E = multiplication by e ™.

Applying F* to (18), we get

H = syF*KFEH (21)
which is an integral equation, since F*KF corresponds to convolution
with the function K = F*K.

Equation (21) has the form of an eigenproblem for the operator
F*KFE, which is not selfadjoint. The eigenvalue s, ' is given, but its
value plays no essential role. To see this, let T, be the translation
operator

(T,H)(x) = H(x — b). 22)
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Note that T, commutes with F ‘I&F, but
(T,EH)(x) = e >~ H(x — b) = eM(ET,H)(x). (23)
Applying T, to (21), we get
(T,H) = sy F*KFE(T,H). (24)

In summary, if H is a solution to (21) corresponding to s, then
H, = T,H is a solution corresponding to s, = soe*’. Since b can be any
real number, s, can be replaced by any positive number without any
essential change in the problem. In the following we set s, = 1

The problems (20) and (21) can be restated in least-squares form.
Minimize

Q =||4H|/|| A =) 4H| /| H] (5)

where
A = I — F*KFE, (26)
A = FAF* = [ — KFEF* (27)

and where || || is the L,-norm
0
|HI? = [ |HP d. (28)
— o

The two forms of Q in (25) are equal because F preserves the L,-norm.

The advantage of this formulation is that it survives discretization. In
the continuous context, the operator F*KFE has a continuous spec-
trum, so we were free to fix so = 1 In the discrete context with N
degrees of freedom, such an arbitrary choice of s, is very likely to lead
to nonexistence of the solution, since there is no longer any reason for 1
to be an eigenvalue. With the least-squares formulation, we can still try
to minimize Q For each N, we expect Q.. > 0, but we also expect to
find that Q ;. >0as N - o

Any method for discretizing (25) will lead to the problem of minimiz-
ing a Rayleigh quotient

0= w*Mw/w*w (29)

where w is a vector that represents H, M is a nonnegative Hermitian
matrix corresponding to A*A4, and * stands for Hermitian conjugation.

The minimization can be carried out by means of the inverse power
method, which is an iteration in which w”*' is found from w” by
solving

Mw™ = w"/|lw"| (30)

Let ¥, be the space of vectors that minimize Q This is the eigenspace
corresponding to the smallest eigenvalue of M Then w” converges
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towards some vector w in V¥, as n— oo unless the initial guess is
orthogonal to ¥, This exceptional case can be avoided by choosing the
components of the initial guess with a random number generator.
Moreover, once convergence has been obtained, we have

Mw = w/|w| (31)
)
Omin = W*Mw/w*w = 1/|w||. (32)
It has been proved by Wilkinson that the effectiveness of the inverse
power method is not destroyed by roundoff error when M is nearly
singular.

We shall now describe two methods of discretizing the least-squares
problem (25). The first method was used by the present author and the
second was used by Eli Isaacson.

In the first method, we introduce a mesh of N equally spaced points

on the x-axis, and a corresponding mesh on the £-axis. The mesh-widths
are chosen as

Axy = Aéy /A = 2n/N)'? (33)
and the mesh points are given by
N = jAx, (34)
&Y = kag (35)
where j, k = -N/2,..., N/2 — 1. As N is increased these meshes get

finer, but they also cover more of the x- and £-axes. For example, when
N is replaced by 4N, each mesh gets twice as fine and twice as long.

Discretization of the Fourier transform in these meshes gives the
equations

. 1\'/2 N NN
Ay(&) = (g) 2 Hp(5" Jexp( = 605" )Axy

v / N(x")exp(— i2w/ N)jk), (36)

Hy(x") %) ZHN(g Jexp(igXx ) Aty

— >,__

=A

]/2 2 HN(gkN)exp( (277/N)./k) (37)

which may be summarized
Hy = FyHy /A, (38)
v =AFRHy (39)
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where F), is the discrete Fourier transform, which is defined as

l —iQ2w ji
(FN)_/I( = N]/z e @=/ Nk (40)
Using the formula for the sum of a geometric series, one can show that
FFy =1 (41)

which proves that (38) and (39) are consistent with each other
The multiplication operators E and K that appear in (25)-(27) are
represented by diagonal matrices

E, = diag(.. e™" ), (42)
Ky =diag( . K(@&Y) ) (43)

and we use the discrete L,-norms defined by

N2 27\!/2 N
17 = ) ax = 5 (F) SlanGl - @

. n 2r\V/2 .
A = S| A a6 =N 57 ) " SIAED (49)
k N k

These expressions are normalized in such a way that they converge to
the square of the Ly-norm as N — oo. Moreover, we have ||Hy|l =
][HN” when Hy and H) are related as in (38)-(39).

Finally we need an operator “inter” that will take a mesh function on
the mesh of order N/4 and construct a corresponding function on the
mesh of order N This operator will be defined by trigonometric
interpolation to the interior mesh points with extension by zero to the
exterior mesh points. Note that inter preserves the norms we have
introduced above.

The discrete Rayleigh quotient is

_ HRARANHy

0% = o (46)

We combine the inverse power method with the process of letting
N — oo by performing one inverse power step on each mesh and then
transferring the solution to a mesh which has four times as many points
(twice as fine and twice as long). This may be written

ANAyHy = By (47)
where

By = inter(HN/4/||HN/4||). (48)
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To measure how much the solution has changed at each step, we use the
parameter @, defined by

cos? By =|HY By|*/ (H}Hy)(B}By)- (49)
Also, to measure how close we have come to solving the original
problem we use

| Hnl| = 1/ Qn(Hy). (50)

Numerical evidence that the computed H), is converging to a solution of
the continuous problem would be 8, -0 and ||Hy|| > o as N — oo.
Such results are shown in Table 1.

TaBLE 1. Numerical evidence for convergence.
N 1 Hwll Oy

64 245 132
256 473, 0.472
1024  712. 0.057

N |l Hyll By

128 489 136
512 6lS. 0.227
2048 782. 0.035

We still have to explain how the linear system (47) is solved. First, we
scale the problem in the following way. Let

Hy = DyGy (51)
and multiply by D, to obtain
DyANAND\ Gy = DyB,,. (52)

We choose Dy, as a diagonal matrix, with diagonal elements chosen in
such a way that

(DyAXANDy); = 1. (53)

It follows from the Schwartz inequality that all of the off-diagonal
elements of the scaled matrix are bounded by 1 in absolute value.

Note that this scaling procedure is only a means towards solving (47).
In particular, we are applying the inverse power method to the original
matrix A¥Ay, not to the scaled matrix DyA%A, Dy. This is important,
since the latter matrix has a different spectrum.

The choice of a method for solving the scaled problem (52) is dictated
by the following considerations. The matrix that appears in (52) is a
large, symmetric positive definite matrix. It is not a sparse matrix, but it
has in common with sparse matrices the property that it can be
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multiplied by an arbitrary vector very efficiently The reason for this is
that the required operations involve multiplication by diagonal matrices
and fast Fourier transform operations.

The conjugate gradient method for solving symmetric, positive definite
systems has the property that it uses the matrix of the system only in the
form of a subroutine that can multiply this matrix by an arbitrary
vector In our case this can be done very efficiently (without ever storing
the matrix) for the reason that was given above. Accordingly, this is the
method of choice. In practice, we use the subroutine package SYM-
MLQ, which is a more general form of the conjugate gradient method
than we require here, since it can also handle the indefinite case.

H(E)

___
S am———

FIGURE 6.1. The cochlea wave and its Fourier transform.

i
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The method that we have just described was used to compute the
response of the basilar membrane to a pure tone when fluid viscosity is
the dissipative mechanism. The basilar membrane displacement H and
its Fourier transform H are plotted in Figure 6.1. Note that the
qualitative features are the same as in the previous section where basilar
membrane friction was the dissipative mechanism.

The fact that the Fourier transform shows predominantly negative
frequencies means that the wave is propagating into the cochlea in the
direction of increasing x. This is a remarkable result when we consider
that the computational method makes no explicit reference to a source.
Thus the direction of propagation is determined by the gradient of
compliance along the basilar membrane, since this is the only feature of
the model that distinguishes increasing x from decreasing x. This is
consistent with von Bekesy’s observations on paradoxical waves that
was mentioned in the previous section.

Let us now consider a completely different method for discretizing
the least-squares problem (25). This method was introduced by Eli
Isaacson; it is an example of the Rayleigh-Ritz procedure of minimizing
over a subspace.

In Isaacson’s method, we minimize the Rayleigh quotient Q over the
subspace of L, that is spanned by the first N Hermite functions. These
are the functions that are formed by applying the Gram-Schmidt
procedure to the sequence

e */2 xe"z/z, xze"‘l/z,.... (54)
That is
$a(x) = po(x)e™*/2 (55)
where p,(x) is a polynomial of degree n chosen so that
ST oo ax={ o nIm (56)
—wo " 0, n # m.

Note that the Fourier transform of e ~*/2 is e ~¢'/2, More generally, the
Hermite functions are eigenfunctions of the Fourier transformation with
eigenvalues that are =1 or + .

The procedure is to write
N

Hy(®) = 3 abld) (57)

k=0
and then choose ¢, to minimize

12 ol Hy(8) — K Hy (& — NP dt

22 l (58)
¢ (= 1Ay dt
_ 2,’-v-o Zi-0 G My, (59)

2:}/:l-o|ck|2
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where
My = [ 60 - KO3E M) (5u(6) — ROb(E - N) dt.
(60)

Fortunately the functions &,‘ are entire functions, so the expressions
&k(s — Ai) always make sense.

Note that the formula for M, does not involve N. This is convenient,
because it means that when N is increased, we just have to compute
more matrix elements, but we do not have to recompute the old ones.
Isaacson uses Gauss-Hermite quadrature to evaluate the matrix ele-
ments M.

The minimization of (59) is carried out by the inverse power method,
as before, but the linear systems are solved by Cholesky factorization.
Again, when N is increased one can take advantage of the part of the
Cholesky factorization that has already been carried out.

Isaacson applied this method to a cochlea model with a realistic finite
depth and obtained results for a wide range of frequencies. Figure 6.2
shows his plot of the position of the peak as a function of the log of the
frequency. The linearity of this plot is remarkable.

X
P

-8.0

-10.0 1 x

-12.0 r X

-14 0 H

. i i i

50 6.0 70 8 0 log 5

FIGURE 6.2. The cochlea map (from the thesis of Eli Isaacson). x, is the position of the
peak in cm and w is the frequency in radians/sec. The parameters are 4 = 0.2 cm,
p=10gm/cm’ A= l4cm™", pu/p = 0.02 cm?/sec.
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7. The stochastic auditory code. The motion of the basilar membrane
at any point has to be coded as a train of nerve impluses before it can
be transmitted to the brain. A surprising fact about this code is that it is
not deterministic. The pattern of impulses on the fibers of the auditory
nerve was studied by Kiang, who found that the response of a given
fiber to a click was not reproducible from one presentation of the click
to the next.

After many presentations of the same stimulus, the statistical pattern
becomes clear, however It can be summarized by saying that the
probability per unit time that a nerve impulse will be generated depends
on the instantaneous displacement of the basilar membrane. There is
often a spontaneous rate of firing, and displacement of the basilar
membrane in one direction increases the rate while displacement in the
other direction decreases it. In some cases the spontaneous rate is
essentially zero, so that only displacements in one direction have any
effect.

In this section, we shall present a formal model that was proposed by
Gestri to account for this sort of coding. (A similar model was intro-
duced by Bruce Knight at the same time, but our analysis follows
Gestri’s more closely.) The model contains a stochastic threshold, and it
has the beautiful feature that many of the key properties of the model
are independent of the choice of the threshold distribution.

s(t) >0 r(t)

FIGURE 7.1. Gestri’s model for a stochastic encoding neuron. The input is a positive signal
s(¢) and the output is a sequence of nerve impulses at time #. The thresholds, T;, are

chosen at random.
Gestri’s model is shown in Figure 71 The input to the model is a

signal s(¢) which is assumed to be positive. The output is a sequence of
times ¢; at which nerve impulses are generated. It will also be convenient
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to think of the output in terms of the idealized neural response:

-]
r(t) = 20 8(t — ). (1
The random elements of the model are the thresholds 7; which are
positive, independent, random variables which all have the same proba-
bility density function f( T). The firing times ¢, are defined recursively by

the equation

f"qom=1; i=12.... Q)
ti—y
The method for choosing the random variable £, will be specified below.

The physical picture that leads to this formal model is as follows.
Somehow, basilar membrane displacement is converted into an electric
current that charges up the nerve cell membrane, which acts like a
capacitor This charging process explains the integration in (2) since
charge is the integral of current. As is well known, nerve membranes
behave in a highly nonlinear way, and they fire an impulse when a
certain threshold is reached. A possible interpretation of the random
behavior of the auditory nerve is that the threshold is fluctuating. Gestri
models this fluctuation by assuming a threshold which is chosen anew
after each nerve impulse and then held constant until the next nerve
impulse.

This model is highly idealized in several respects. In particular, it is
important to point out that real cell membranés are leaky so that the
charge is not quite the integral of the stimulus current. Bruce Knight
and Richard Stein have shown that this leakiness leads to some very
interesting effects in neurons with a fixed threshold. In particular, a
population of such neurons can be synchronized by a periodic stimulus.
Knight and Stein have also shown that randomness of the threshold
combats this tendency to synchronization. These results suggest that the
pure integrate-and-fire model is only adequate when the threshold is
sufficiently random.

The analysis of Gestri’s model is greatly simplified by introducing the
transformed time

sm=£kmm' 3)

and writing S, = S(#,) for the firing times expressed in terms of S Then
(2) becomes

S, —S_, =T

i i

i=12, 4)

Note that the statistics of S; are completely independent of the signal
s(t), which only comes in when we transform back to .
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Let p,(S) be the probability density function for S;. Then
s
p(8) = [ “oi-i(S = DAT) dT 5)

or
pi=pi1*f (6)

where * is the convolution that is defined in (5).."
We still have to choose py(S). This will be done in such a way that

> p(S) = R, independent of S. ™
i=0
This choice effectively hides the origin ¢ = 0 (S = 0) so that the process
looks as if it has been running forever. An explicit formula for p, can be
found as follows. Apply f * to both sides of (7):

f*R=§0f*p.-=§lp,-=R—po- (8)
Thus
po=R—f+R=R(1—-fs1) ©)
or
po(S) = R(l - fosf(T) dT). (10)

The constant R is not arbitrary; it can be found from the condition

fowpo(S)ds = Rfo°°(1 - fosf(T) dT) ds

Rfo‘”f(S)s ds = RE[T)] a1

1

I

where E[ ] stands for expected value. Thus R is the reciprocal of the
expected value of the threshold. It is the expected rate of nerve impulses
when s(¢) = 1.

To get an intuitive feel for the choice of p, that we have made, it is
instructive to consider the special case

AT) = 8(T ~ Ty) (12)
in which the threshold has the fixed value T, and R = 1/T,. According
to (10)

1/T, 0<S<T,

13
0, S>T, (13)

oo(S) = {

In other words, S, is uniformly distributed on the interval (0, T,). Thus
the deterministic threshold is a special case, and the model is still
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stochastic in this case because S, is a random variable. This randomness
in the Oth firing time comes about because the initial value assigned to
the integrator is a random variable.

We now consider the distributions of the firing times . Let o,(f) be
the probability density function for ¢,. Then

o,(t)dt = p,(S(t))dS, (14)

0,(1) = p,(S(1))s(1) (15)

where we have used s(f) = dS/dt, which follows from (3). If we sum
(15) over all i, we obtain

o0
o(t) = _Eooi(t) = Rs(?). (16)
This shows that the expected density of nerve impulses is proportional
to the signal s(¢). Note that this result holds for all threshold distribu-
tions!
We can express the same result in another way by regarding the
output of our system as the response function r(f) given by equation (1).
Then

o0

Er0]= 3 fo “s(t — Yo (r) dr
= _?o o,(1) = Rs(1). (17)

Thus the expected value of the output is proportional to the input.
It is often useful to regard the signal s(¢) as a sample of a stationary
stochastic process with mean

so = E[s(1)] (18)
and with autocorrelation function
(b — a) = E[(s(b) so)(s(a) — so)] (19)

The power spectrum of the signal is the Fourier transform of its
autocorrelation function.
- By .
$.(@) = [ du(r)e™ " dr (20)
— o

The name “power spectrum” comes from the formula

{60 =) ] =0 =5 [~ @ do. @D

In many applications the first expression in (21) is proportional to the
average instantaneous power and the last expression shows that
(1/2m)¢,(w) is the density of the power with respect to frequency



MATHEMATICAL ASPECTS OF PHYSIOLOGY 63

When s(¢) is a stationary stochastic process, so is r(f), and we shall see
how its statistical properties are related to those of s. From (17) we can
calculate the mean value of r and also the cross-correlation of r and s:

ro=E[r(1)] = RE[s(t)] = Rs,, (22)
(b — a) = E[(r(b) = ro)(s(a) = 5)]
RE[(s(b) = so)(s(a) = s0)]
= R, (b — a). (23)
Again, these simple results are independent of the form of the threshold
distribution.
Something much more complicated happens, though, when we try to

calculate the autocorrelation function ¢, and the output power spec-
trum ¢,,. We have

¢, (b — a) = E[("(b) = ro)(r(a) — "o)]
= E[r(b)r(a)] —r}

=E § 8(b - 1) i 8(a—1)| - rd (24)

Jj=0 i=0

To proceed further we need to introduce the joint density o;( , ) for the
firing times #, ¢ and also the corresponding density p,( , ) for the
S-values of these firing times S; and S;. These joint densities are related

by
o,(a, b) = p;(S(a), S(b))s(a)s(b) (25)

which is analogous to (15). Moreover, o,(a, b) =0 unless the signs of
(b — a) and (j — i) are the same. When b > a andj > i, we have

o;(a, b) = p/(S(a))f;_(S(b) — S(a))s(a)s(b) (26)
where we have introduced the functions f, defined by
h=1 27)
fi=r*fi_p k=23,.... (28)
It will also be useful to introduce
F= é. fi (29)

With this notation, we have, for b > a,

S S oab) = RES() - S@)s(@sb).  (30)

i=0 j=i+1
We are now ready to complete the evaluation of (24). The procedure is
to take the expectation over all choices of the thresholds 7; with s(7)
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fixed and then take the expectation over all choices of s(¢):

¢, (b —a)= E[ s 3 f ® f Z8(b — 1")8(a — 0)o, (¢, 1) di' dt”
0 0

im0 j=i+l
0
+ Zf

c")S(b - 1)8(a — o (1) dt’] -r
i=0”0

E[ § § o,(a, b) + ioo,-(a)S(b - a)] - r

im0 jmi+]
= E[ RF(S(b) - S(a))s(a)s(b) + Rs(1)8(b — a)] — r
= E[RF(S(b) — S(a))s(a)s(b)] + Rsod(b — a) — R%Z.
(31
It is convenient to split F into R + (F — R). This gives
$,(b — a) = R%,,(b — a) + Rspd(b — a)
+E[ R(F(|S(b) — S(a)|) — R)s(a)s(b)] (32)
where we have inserted the absolute value sign to make (32) valid for
b <aaswellasb > a.
An important special case is F(S) = R for all § > 0. This comes
about when f(T) = Re ™ ®7 so that the output of Gestri’s model reduces

to a modulated Poisson process. In this case the correlation function is
simply |

(1) = R%,,(7) + Rso8(7) (33)
and the power spectrum is
&’rr(w) = Rzéss(w) + RSO' (34)

Recalling the form of the cross-correlation, equation (23), we see that as
far as the correlation functions are concerned, the situation is the same
as if we had put the signal through an amplifier with gain R and then
added uncorrelated white noise with spectral density Rs,,.

In general, it seems difficult to evaluate the power spectrum corre-
sponding to (32). Just to take the expected value of the last term in (32)
requires knowledge of the joint distribution of s(a), s(b), and M OX
This means that we have to know more about s than just its correlation
function ¢,. We can, however, examine the correlation function 2
which results from setting s = s, (no signal). This gives an indication of
the noise that is introduced by the encoding neuron. We have

() = Rsod(7) + R(F(s0|7]) — R)sg
= Rso(8(r) + so( F(so|7]) — R)). (35)

SRR

G kb
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To get the power spectrum, we have to take the Fourier transform of
(35). First note that the transform of (29) is

Fw) = 3 ()t = L8 36
@ = 2 (fo) = 725 (36)
which has a simple pole at w = 0, since
)= [“RTydr =1 (37)
0
and
f@=-if “THT)dT = -i/R. (38)
()}
Using these results we can show that F(S) — R as § — oo. The function
G(r) = so(F(s0|'r|) - R) (39)
has
A flw/s0)
G(w) =2 Re ————. (40)
)= 2R T T/
We can now take the Fourier transform of (35) and obtain
- j (w/s0)
¢3()=Rs(1+2R ————) 41
v “ T fw/s0 “n

for the spectrum of the neural response in the absence of signal.
This suggests the following design problem. Choose f(T) to minimize

M = sup ¢5(w) (42)
subject to the constraints )
J:of(T) dT = 1, (43)
fo‘”rf(r) dT = 1/R, (44)
Jim flw) =o0. (45)

Equation (45) is a regularity condition. Although it appears to rule out
the interesting case in which f(T) = 8(T — T,), we shall study this as a
limiting case below From (45), we conclude that

M > Rs, (46)
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Accordingly, a threshold density f is optimal (solves the design problem)
if it satisfies

Re S <0, allw (47)

1= flw)

since such threshold densities have M = Rs,,

We shall look for optimal threshold densities among a particular class
of functions defined by
~ 1

n) w = —m—m—
S (1 + iw/nR)"
We leave it to the reader to verify that the constraints are satisfied and
that

(48)

_ Re BT T >0,
O(T) = {0’ d (49)
while
Jim f™(T) = &T - 1/R). (50)

Thus at n = 1, we have the threshold density that generates a Poisson
process of firing times. As n— oo, we approach the deterministic
threshold distribution.

We shall now determine the set of values of n for which (47) holds.
We have .

S ! , (51)
- (@) (1+ iw/nR)" — 1
fw) 1 1

2Re > = +
1 - f(w) (1+iw/nR)"—1 (1-iw/nR)" -1

_(a+ iw/nR)" + (1 — iw/nR)" — 2
|(1 + iw/nR)" — 1}
The denominator in (52) is positive unless @ = 0. The limiting value of
(52) as w—0is

~23)e/ PR pn )
R T
For w # 0, we only need to look at the sign of the numerator in (52).
We write out the numerator for the casesn = 1, 2, 3, and 4:

N, =0, (54)

N, = —2w?/n’R?, (55)

(52)

(1 —l) <0. (53

n
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N, = —6w?/n’R?, (56)
N, = —12w?/n?R? + 2w*/n*R* (57)
Clearly N,, N,, and N, are nonpositive, but N, is positive for w
sufficiently large. Thus (47) holds for n = 1, 2, 3 but not for n = 4. We

can also show that it fails for n > 4, by considering the special value of
w given by

wo/nR = tan(27/n) (58)
so that
1 + iwg/nR = e2"/" /cos(2m / n). (59)
When n > 4, 0 < cos(2w/n) < 1 This gives
. Wo \" . Wo \" 1
PUL TR . -
( nR nR (cos(2w/n))" (60)
It follows that (47) is false for n > 4. Moreover,
n 2 2
(1 + i—’%%) ~——;2—"~1 +§(2—") — 1+ ()
(1 —3@7/n)) " "
Substituting in (51), we see that
-
C) asn— 0. (62)

1-f "(wo) 27’
In summary, we have found three optimal threshold densities:

SO(T) = Re™ 7, (63)
fO(T) = 2R2RTe ™ *RT, (64)
fO(T) = 3R((3RT)? /2)e*FT. (65)

These are the only optimal solutions in the set { f™} and the departure
from optimality gets progressively worse as n — co. Undoubtedly, there
are also many optimal solutions outside the set { ™.

The interesting point is that the three optimal solutions that we have
found are as far as possible from the deterministic threshold density,
which is obtained by letting n — co0. This qualitative result goes a long
way towards explaining the stochastic character of the auditory code.
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The lecture on the stochastic auditory code relies heavily on Gestri’s
work. The beautiful fact that the expected value of the output is
proportional to the expected value of the input for all threshold distribu-
tions is demonstrated in Gestri’s paper Gestri also gives a verbal
explanation of why stochastic coding may be preferable to deterministic
coding in certain situations. The latter part of §7 is my attempt to
formalize this idea.
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