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We explore theoretically the aerodynamics of a recently fabricated jellyfish-like
flying machine (Ristroph & Childress, J. R. Soc. Interface, vol. 11 (92), 2014,
20130992). This experimental device achieves flight and hovering by opening and
closing opposing sets of wings. It displays orientational or postural flight stability
without additional control surfaces or feedback control. Our model ‘machine’ consists
of two mirror-symmetric massless flapping wings connected to a volumeless body
with mass and moment of inertia. A vortex sheet shedding and wake model is used
for the flow simulation. Use of the fast multipole method allows us to simulate for
long times and resolve complex wakes. We use our model to explore the design
parameters that maintain body hovering and ascent, and investigate the performance
of steady ascent states. We find that ascent speed and efficiency increase as the wings
are brought closer, due to a mirror-image ‘ground-effect’ between the wings. Steady
ascent is approached exponentially in time, which suggests a linear relationship
between the aerodynamic force and ascent speed. We investigate the orientational
stability of hovering and ascent states by examining the flyer’s free response to
perturbation from a transitory external torque. Our results show that bottom-heavy
flyers (centre of mass below the geometric centre) are capable of recovering from
large tilts, whereas the orientation of the top-heavy flyers diverges. These results
are consistent with the experimental observations in Ristroph & Childress (J. R.
Soc. Interface, vol. 11 (92), 2014, 20130992), and shed light upon future designs of
flapping-wing micro aerial vehicles that use jet-based mechanisms.

Key words: flow–structure interactions, propulsion, swimming/flying

1. Introduction

In the effort to design micro aerial vehicles (MAVs), biologically inspired
flapping-wing ornithopters, as an alternative to helicopters, have shown great potential

† Email address for correspondence: ff559@nyu.edu
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FIGURE 1. (Colour online) (a) The jellyfish-like flying robot fabricated by Ristroph
& Childress (2014). A motor pulls in and pushes out four lightweight flapping wings.
(b) Free stable ascent of the bottom-heavy prototype machine recorded by a high-speed
camera, showing snapshots every four wing beats. (c) Two-dimensional mathematical
model. Two rigid plates, each of length 2L, are driven to flap with prescribed
mirror-symmetric sinusoidal pitching motions of amplitude θa. The wings’ base opening
angle is θ0. The hinges of the two wings are separated by a distance d. The distance from
the centre of mass X to the wing hinges is denoted by h (centre-of-mass location). Θ is
the flyer’s tilt angle to the vertical direction. Panels (a) and (b) courtesy of Ristroph &
Childress (2014).

in achieving manoeuvrability and stability (Gerdes, Gupta & Wilkerson 2012; Lentink
2013). Recently, a manoeuvrable and stable flapping-wing machine, using a stroke
reminiscent of the swimming motions of a jellyfish, was fabricated at the NYU
Applied Math Lab by Ristroph & Childress (2014). This ‘flying jellyfish’ consists of
four lightweight flapping wings that are driven inward and outward reciprocally by
a motor (figure 1a,b). The total mass of the machine is 2.1 g, with the 1.1 g motor
taking up more than 50 % of the total mass. Three manoeuvring flying modes were
presented in their work – hovering, ascent and forward flight. Different manoeuvring
modes were achieved through adjusting the motor voltage and linkage lengths,
which changed the flapping frequency and the flapping amplitude, respectively. Of
the two prototype machines, having the motor located either at the top and the
bottom, respectively, only the bottom-heavy flyer showed stability in the upright
orientation. This flyer recovered from large tilts by relying only on the aerodynamics
of its flapping wings, and its self-righting hovering flight can last for hundreds of
wing beats. This intrinsic aerodynamic stability has distinguished the jellyfish-like
ornithopter from other state-of-the-art miniature ornithopter designs aiming to imitate
the flapping motion of actual flyers in nature, such as flies, bees and hummingbirds
(e.g. van Breugel, Regan & Lipson 2008; Ma et al. 2013). Such flapping motions
have been shown to be aerodynamically unstable in the last decade by controlled
experiments, aerodynamic models and computational fluid simulations (Sun & Xiong
2005; Faruque & Humbert 2010; Ristroph et al. 2013). Both natural flyers and
bio-mimetic aerial robots require additional stabilizing mechanisms, for instance
feedback controllers and stabilizing surfaces, to maintain an upright orientation
during flight. As even smaller robots are built, it will become even more challenging
to implement these control and stability schemes. For this reason, the rather simple
jellyfish-like flyer shows promise in yielding a manoeuvrable and stable MAV.
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The flying motion of the jellyfish-like machine resembles the shape changes of
jet-propelled aquatic creatures such as the jellyfish, squid and octopus. To obtain
locomotion, the jellyfish contracts and expands its bell to accelerate the fluid within
the body. The vortex shedding and vortex ring formation during this process have
been visualized and analysed by Dabiri et al. (2005). Some recent experimental and
theoretical studies have focused on jellyfish kinematics and performance (McHenry
& Jed 2003; Peng & Alben 2012), and a common interest between experimentalists
and theorists is to seek an efficient contraction–expansion movement of jellyfish
propulsion (Dabiri, Colin & Costello 2006; Alben, Miller & Peng 2013; Hoover
& Miller 2015). The first attempt to implement an opening–closing motion in an
aerial flyer design appeared in Childress, Vandenberghe & Zhang (2006), where
a flexible lightweight flapper opens and closes its body passively in a vertically
oscillating background airflow. Hovering flight of the flapper was found, with its
lift generation due to the vortex shedding of a shape-changing body (Spagnolie &
Shelley 2009). In subsequent efforts of Liu et al. (2012) and Weathers et al. (2010),
a rigid hollow pyramid-shaped flyer was also found able to hover passively in an
oscillating background flow, and displayed an intrinsic hovering stability depending
on the centre-of-mass location. Huang, Nitsche & Kanso (2015) studied this hovering
dynamics numerically, mapping out regions of stability and instability, using a vortex
sheet model for body and wake. In a subsequent study, again using a vortex sheet
model, Huang, Nitsche & Kanso (2016) studied the effects of varying the background
flow and pyramid shape on the dynamics.

The Reynolds number of these passive aerial flyers, as well as the active aerial
jellyfish-like machine, is Re ∼ 104–105. High Reynolds number fluid flows are often
associated with unsteady and complex vortex dynamics, which makes the study of
aerial flyers challenging. Moreover, for aquatic jellyfish their body density is nearly
identical to that of water (Lucas et al. 2011), so weight support and upright stability
are not important hydrodynamic issues. This is not so for an aerial flyer, and for the
air jellyfish, maintaining an upright orientation throughout the flight becomes a distinct
design issue.

The main point of this paper is to use computational simulations to examine the
aerodynamics and stability of a simplified jellyfish-like flying machine. We consider
a two-dimensional (2-D) mathematical model (figure 1c) comprised of two massless
flapping wings with prescribed mirror-symmetric pitching motions, and a volumeless
centre-of-mass body that mimics the motor mass of the actual device by Ristroph &
Childress (2014). While we examine the flows and dynamics in the context of an
idealized model of a specific device, jet-based locomotion is quite common in nature,
e.g. jellyfish, scallops and squid. As far as we know, there is no theoretical work on
stability of this locomotion, which is a concern for any body that is more dense than
the fluid, for example, hard-shelled scallops (Shumway & Parsons 2011).

For high Reynolds number flows, the computational method is challenging due to
the complex vortex wake dynamics (Saffman 1993). For accuracy, most methods for
fluid–structure interaction problems, such as the immersed boundary method (Peskin
2002), demand a fine computational grid near the object boundary so as to resolve
the thin boundary layers, as well as fine grids to resolve the nearly singular vorticity
field. In our study, we instead use an inviscid 2-D vortex sheet model which captures
the vorticity distribution along the body and the free vortex dynamics, as well as
the unsteady vorticity shedding from the wing tips. This boundary integral model
is numerically solved through a regularized vortex sheet method. The method was
first developed for the dynamics of a free vortex sheet (Krasny 1986), and was
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later widely applied to fluid–structure interaction problems at high Re, such as flow
exiting a tube (Nitsche & Krasny 1994), falling plates (Jones 2003; Jones & Shelley
2005) and flexible filaments as models for flapping flags (Alben & Shelley 2008;
Alben 2009). In our work, we follow a numerical scheme similar to that described in
Alben (2009) for simulations of a flexible flapping filament. This boundary integral
formulation is efficient and robust. However, when simulating hovering flight, the
shed vortex sheets can stay close to the body and the wake can become complex
and turbulent. In the work of Huang et al. (2015, 2016), the circulation of shed
vortices are dissipated following a given delay time after shedding. This is done to
emulate the effect of viscosity. Presumably, this technique also reduces the numerical
effort, which scales quadratically with the number of shed vortices. Here we do not
dissipate shed vortices in our simulations but do use a fast multipole method (FMM)
for the rapid accurate evaluation of vortex interactions. In some instances we simplify
far-field wake structures to speed simulations.

The paper is organized as follows. In § 2, we describe the mathematical model of
the jellyfish-like flying machine, hereafter called the flyer, and its coupling to the
vortex sheet model. Details are given in appendix A. In § 3, we describe briefly the
numerical algorithms, with details shown in appendix B. Our particular instantiation
of FMM is discussed in the appendix C. Our simulation results are presented in § 4.
There the dynamics of hovering flight is first discussed, followed by an investigation
of orientational stability during hovering as the body centre-of-mass location is
varied. Next, we consider ascending flight, which is achieved for sufficiently large
flapping amplitude or flapping frequency. We find the flyer approaches a steady ascent
state exponentially in time, indicating a linear force–velocity relationship during flight.
Ascent performance is examined as flapping amplitude and wing separation are varied.
We find that both the ascent speed and efficiency increase as the wing separation is
reduced. Lastly, we study the flyer’s upright orientational stability during ascent. We
find that bottom-heavy flyers always recover from a large tilt, whereas the orientation
of top-heavy flyers diverges slowly. In § 5, we summarize the main results and
compare with experiments and previous theoretical work, and discuss how these
results might help with the future engineering design of a miniature aircraft.

2. Modelling
2.1. Machine model

Inspired by the device by Ristroph & Childress (2014), our 2-D flyer model consists
of two separated rigid wings of negligible thickness and mass (see figure 1c). The
wings are connected to a ‘body’ assumed to have zero volume (and thus experiences
no fluid forces) but a concentrated mass mb and an imposed moment of inertia ib. The
connection from body to wing is virtual as the fluid is allowed to move freely around
and between the wings. Wing length is 2L, the separation distance between the two
wings’ hinge points is d, and the vertical displacement of the body (centre-of-mass
location) relative to leading edges is h.

For the real 3-D flyer, opposing wings flap mirror-symmetrically while adjacent
wings flap with different phases. For simplicity, in our 2-D model we assume the two
wings flap with a mirror-symmetric sinusoidal pitching motion in time. Denoting the
flapping frequency as f and the angular flapping amplitude as θa, the pitching angle
of the left (θ1) and right (θ2) wings are expressed as

θ1,2(t)=±[θ0 + θa cos(2πft)], (2.1)

where θ0 is the base opening angle (figure 1c).
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The flyer is immersed in a 2-D inviscid fluid in the xy-plane where the total
aerodynamic force is calculated by integrating the pressure pk over a closed contour
around each wing and where we use the subscript k= 1, 2 to denote the left and the
right wings, respectively. Each pressure integral can be separated into three pieces.
(i) An integral of the pressure jump [pk] along the wing body. (ii) An integral
over an infinitesimal circle, denoted by rle

k , around the wing’s leading edge. This
yields the leading-edge suction (Saffman 1993). And (iii), an integral around an
infinitesimal circle, denoted by rtr

k , at the wing’s trailing edge. In our model, we
allow continuous vortex shedding at trailing edges, while keeping a flow singularity
at the leading edges. We do not model leading-edge shedding as in our simulations
the body motion is typically along the body axis, yielding small angles of attack,
which is associated with weak leading-edge separation. Further, our wing is driven by
root flapping, rather than heaving, which leads to relatively little leading-edge motion
across the oncoming flow. The integral of pk around the trailing edge is zero due to
the imposition of the unsteady Kutta condition. Similarly, the total torque induced
by the aerodynamic force is calculated by integrating the torque distribution over a
closed contour of the wing, with the trailing-edge integral contribution being zero.
Hence, the flyer’s dynamics is governed by linear and angular momentum balance
equations

mbẌ=
∑
k=1,2

(∫ L

−L
[pk]n̂k ds+

∫
rle

k

pkn̂k ds

)
−mbgŷ, (2.2)

ibΘ̈ =
∑
k=1,2

(∫ L

−L
(xk(s)−X)⊥ · [pk]n̂k ds+

∫
rle

k

(xk(−L)−X)⊥ · pkn̂k ds

)
, (2.3)

where X denotes of the position of the flyer’s centre of mass, Θ is the flyer’s tilt
angle to the vertical direction, −gŷ is the gravitational acceleration which is in the
negative vertical direction, (x, y)⊥= (−y, x), and n̂k is the unit normal vector (pointing
rightward) to each wing surface. The position of the wing is expressed as

xk(s)= xk(0)+ sŝk, −L 6 s 6 L, (2.4)

where ŝk is the unit tangential vector. Here s is a ‘signed’ arclength parameter,
denoting the signed distance along the wing from a point to the centre of the wing
(corresponding to s=0). Note that s=−L corresponds to the leading edge of the wing
(upper end of the wing in figure 1c). In this model, viscous effects are accounted
for only through the shedding of vortex sheets. Viscous drag or skin friction is not
included, but the model does account for the pressure drag that tends to resist the
motion of a body.

The surrounding fluid flow is described by the incompressible 2-D Euler equations:

ρf
Du
Dt
=−∇p− ρf gŷ, ∇ · u= 0. (2.5)

Here u is the fluid velocity, p is the pressure and ρf is the fluid density. The no-
penetration kinematic boundary condition is imposed at each wing

(u±(xk(s))− ẋk(s)) · n̂k = 0, k= 1, 2, (2.6)

where u± denotes the velocity at two sides of the wing. Note that the fluid slips along
the wing surface and does not induce a skin friction.
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We non-dimensionalize the system using the wing half-length L, the flapping period
T = f−1, the velocity U = Lf and the fluid density ρf . The dimensionless governing
equations are then

MẌ=
∑
k=1,2

(∫ 1

−1
[pk]n̂k ds+

∫
rle

k

pkn̂k ds

)
−MFr−2ŷ, (2.7)

IΘ̈ =
∑
k=1,2

(∫ 1

−1
(xk(s)−X)⊥ · [pk]n̂k ds+

∫
rle

k

(xk(−1)−X)⊥ · pkn̂k ds

)
, (2.8)

Du
Dt
=−∇p− Fr−2ŷ, ∇ · u= 0. (2.9)

The system is governed by three dimensionless parameters: the flyer-to-fluid mass ratio
M=mb/(ρf L2), the moment of inertia ratio I= ib/(ρf L4) and the Froude number Fr=
U/
√

gL. In this study, we set M= 5, I = 10 and Fr−2= 0.5, which are typical values
for a physical flyer of wing length 2L = 10 cm and flapping frequency f = 20 Hz
(Ristroph & Childress 2014).

2.2. Vortex sheet model
We use a vortex sheet model to capture the vortex wake shed from the wings. In two
dimensions, a vortex sheet is a 1-D boundary across which the fluid normal velocity
is continuous but the tangential velocity is discontinuous (Rosenhead 1931; Saffman
1993). The jump in tangential velocity is the fluid circulation density γ̂ (s, t) (s is
arclength), which is also called the true vortex sheet strength (Shelley 1992). In our
model flyer, each rigid wing is a bound vortex sheet across which the fluid normal
velocity is continuous and equal to the wing’s normal velocity (as specified by (2.6)).
From each wing’s trailing edge, a free vortex sheet is continuously shed into the fluid
(Nitsche & Krasny 1994). The shedding rate is determined by the unsteady Kutta
condition (Jones 2003), which provides the direction of shedding and the amount
of circulation transmitted from the bound vortex sheet to the free vortex sheet. The
free vortex sheet convects with the flow in the following sense: if the free sheet
velocity is specified as that given by the average of the fluid velocities above and
below the sheet, with α denoting this frame’s (adimensional) parametrization, then the
(unnormalized) vortex sheet strength γ = γ̂ sα is conserved in that frame. Differentially
we have γ dα = γ̂ ds where γ dα is the amount of circulation in that small stretch of
the free sheet.

The 2-D vortex sheet method dates to early airfoil theory, agrees well with
experiments (Nitsche & Krasny 1994) and has been used and improved (Nitsche
& Krasny 1994; Jones 2003; Pullin & Wang 2004; Alben 2009) for different
fluid–structure interaction problems at high Reynolds number. The bound vortex
sheet models the presence of the two boundary layers on either side of the wing. In
the limit of infinite Reynolds number and zero wing thickness (i.e. the case studied
here), these two thin boundary layers each approach zero thickness and merge on the
wing as a single bound vortex sheet. The free vortex sheets model the shed shear
layers which then form downstream eddies. In this conception of the limit of zero
viscosity, the shed vorticity concentrates onto a thin layer modelled by a 1-D vortex
sheet and does not dissipate. In this paper, we follow closely a vortex sheet model
described by Alben (2009, 2010). The vortex sheet formulation details are presented
in appendix A.
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2.3. Measuring energy and propulsive efficiency
Energy cost and power efficiency are quantities of physical interest in the study of
locomotion, especially for swimming and flying (Wu 1961; Anderson et al. 1998). To
maintain a flapping motion, an external force equal and opposite to the fluid pressure
force across the wing must be applied. Over an infinitesimal segment of the wing of
length ds, this external force is [pk](s, t)n̂k(t) ds and is normal to the wing, where n̂k(t)
(A 9) is the normal vector to the wing using complex variables. The instantaneous
input power that is required to maintain the motion is equal to the rate of work done
by the external force, that is, the wing velocity component in the force direction times
the force itself, using complex variables,

Pin(t)=−
∑
k=1,2

∫ 1

−1
Re
([pk](s, t)n̂k(t)∂tζ k(s, t)

)
ds. (2.10)

Here ∂tζk(s, t) (A 6–A 7) is the complex velocity at point s on the wing. For a flyer
that reaches a constant stroke-averaged ascent velocity (ascent steady state, see § 4.2),
we calculate the instantaneous output power that equals the rate of work done by the
aerodynamic force F(t) on the flyer ascending at speed v(t) :

Pout(t)= v(t)F(t)= v
∑
k=1,2

(
π

8
ν2

k (−1, t) cos θk +
∫ 1

−1
[pk] ds sin θk

)
. (2.11)

Note that νk(s, t)= γ̂k(s, t)
√

1− s2 has a finite value at s=−1 since there is an inverse
square root singularity at the leading edge in the vortex sheet strength γ̂k (Golberg
2013). The first term, π/8ν2

k (−1, t) cos θk, in the parentheses on the right-hand side
of (2.11) is the component of a leading-edge suction force in the locomotion direction
(i.e. y-direction), which is a finite flow pressure integral around the wing leading edge
or hinge (Saffman 1993). The period-averaged Froude efficiency of the locomotion
(Lighthill 1960) is defined as

η= 〈Pout〉
〈Pin〉 =

〈vF〉
〈Pin〉 , (2.12)

where 〈·〉 = ∫ t+1
t (·) dt′ denotes the average over a flapping stroke.

3. Numerical method
The simulation method for the flyer follows closely that developed by Alben &

Shelley (2008) for studying a flexible flapping filament in a 2-D inviscid fluid (see
also Alben 2009). We assume the flyer is initially at rest. The flyer centre of mass
is located at the origin X0 = 0, and the flyer is upright with Θ0 = 0. The initial
translational velocity and angular velocity are also assumed to be zero, i.e. Ẋ0 = 0
and Θ̇0= 0 (although our algorithm allows a prescribed motion of the flyer). At time
t0= 0, the vortex wake is not yet generated, so that the free vortex sheet Cf

k attached
to the kth wing is of zero length containing only one point of the wing trailing edge,
i.e. sk

max|t=0 = 1. The initial vortex sheet strength γ̂k(s, 0) = 0, as no vorticity field
is prescribed in the system. Once the initial conditions are defined, the updating for
each time step can be described in two essential steps: first we update the free vortex
sheets’ location ζf ,k and strength γ̂f ,k using an explicit time-stepping method; secondly
we update the bound vortex sheet strength γ̂b,k, the flyer’s body variables X and Θ (to
determine the wings’ location, see (A 6)–(A 9)), as well as the wing circulation Γk (to
determine the vortex shedding), through an implicit Broyden solver (Broyden 1965).
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0
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0–5 5

FIGURE 2. Instantaneous flow velocity field (black arrows) and the wake structure of
a hovering flyer with θa = 0.144, h = 1, θ0 = π/8, d = 1 and M = 5, I = 10, R = 0.5.
Positive vortices are coloured in red and negative in blue. For display purposes, the
points on the free vortex sheets are coarse grained and plotted as points. Snapshots are
at t= 2, 4, 6.5, 7, 7.5, 8. The flyer’s initial position is shown in grey as a frame reference.
When the background flow is on (t6 3), the flyer sheds dipoles sideways. In the hovering
state (t > 3), the flow forms a downward jet inside the body during the power stroke and
an upward jet during the recovery stroke. Note that the ‘soup’ of vortices always stays
around the wings.

Here we have used a partially implicit time-stepping scheme. Implicit time stepping
is typically used to treat the stiffness induced by high-order spatial derivatives in the
dynamics (Alben 2009). Here, we use an implicit scheme as it actually simplifies the
treatment of the second-order time derivatives of body position (through (2.7)–(2.8)),
which appear also in the pressure jump (A 16) and integral transforms (A 2)–(A 3).
Details of the numerical schemes can be found in appendix B.

The structure of the free vortex sheets of a hovering flyer is turbulent and complex
(see figure 2). To reasonably resolve this structure, we adaptively insert and delete
vortices on the free sheets at each time step, such that the distance between adjacent
nodes is less than the local smoothing parameter δ, and the distance between every
other point is greater than 0.2δ. The position and the strength of any new vortex is
extrapolated using the vortices that were generated previously.

Apparently, the number of degrees of freedom of the free vortex sheets (i.e. the
number of vortex sheet segment endpoints) increases linearly in time, since at each
time step each wing introduces a new vortex into the trailing wake. However, the
actual growth is much faster due to the adaptive refinement of the vortex sheets. For
a hovering simulation, after six periods of flapping the number of vortices in the free
sheets reaches 104 (using 1t = 0.01), and after nine periods has reached 106. Direct
integral summation of the regularized kernel (B 16) is quadratic, which is expensive
when the number of vortices becomes large. To ameliorate this cost, in the hovering
simulations we use an adaptive kernel-independent fast multipole method (FMM),
details of which are shown in appendix C.

4. Simulation results
4.1. Hovering

Our main goal here is to explore theoretically the aerodynamics and stability of
hovering flight for a jellyfish-like flyer. The experimental air-jellyfish machine
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(Ristroph & Childress 2014) achieves hovering flight by opening and closing four
flapping wings, in a way reminiscent of the swimming motions of a jellyfish.
Moreover, the experimental flyer exhibits an intrinsic self-righting stability when
its centre of mass is low on the body. This device recovers from excursions to
large tilt angles by relying only on its interaction with the surrounding fluid. In this
section, we study hovering flight for our theoretical flyer, and its orientational or
postural stability (with respect to the tilt angle Θ). We begin by seeking a left–right
symmetric hovering base state (Θ(t)= 0), upon which we then study the stability in
tilt angle Θ when the flyer undergoes an angular perturbation.

For a hovering flyer initially in a quiescent background flow, i.e. U(t) = 0, the
vortices generated during the first several periods stay close to the wing’s trailing
edges. Such initial complex flows at the wing tips make the wing–vortices interaction
nearly singular, thus making difficult the accurate evaluation of the boundary integrals.
Since our interest is mainly in the dynamics at a ‘steady’ hovering state, for
convenience an initial background flow, U(t) = −max(3 − t, 0), is imposed in the
negative y-direction. This linearly decreasing uniform flow washes the start-up vortices
downstream, and vanishes after three flapping periods.

4.1.1. Seeking a hovering state
In a left–right symmetric hovering state, the average vertical force generated by the

wings balances the weight of the flyer. (For simplicity, we use the term ‘lift’ for the
period-averaged vertical hydrodynamic force, although this could also be thought of
as the thrust produced by the flapping wings. The force generated can be tuned by
varying the wing motions, i.e. the flapping amplitude and frequency (Vandenberghe,
Zhang & Childress 2004; Vandenberghe, Childress & Zhang 2006)). For our jellyfish-
like flyer, when the wing separation d and the base opening angle θ0 are fixed, the
lift produced can then be varied by tuning the flapping amplitude θa while keeping
the flapping frequency unchanged. To find a hovering state, we vary the flapping
amplitude θa and keep other parameters fixed at d=1, θ0=π/8,h=1. We find that the
flyer maintains a symmetric hovering flight when θa ' 0.14∼ 0.15(≈ 8.3◦). We select
θ̂a= 0.144 as the condition closest to pure hovering. When θa> θ̂a, the lift exceeds the
weight so that the flyer rises (ascending flight). For θa< θ̂a, the flapping wings are not
able to generate enough force to balance the weight and the flyer sinks (descending
flight). The speed of ascent and descent depends on the value of |θa − θ̂a|.

For hovering with θa = θ̂a = 0.144, figure 2 and corresponding movie 1 available
at https://doi.org/10.1017/jfm.2017.150 show the instantaneous shed vorticity as well
as the flow velocity field. While the initial background flow is on, each wing sheds
a dipole in one opening–closing stroke (see figure 2 panel for t = 2). The dipoles
convect downwards thereafter with the flow. As the initial flow diminishes and then
vanishes, the flyer hovers, and the previous shed dipoles stop convecting and remain
close to the flyer (see panel t= 4). As new vortices are produced continuously from
the wing trailing edges, the previously generated vortices merge with the new ones.
After about five flapping periods, a complex wake forms below the flyer, being
reinforced by absorbing newly generated vortices after each flapping stroke (see
figure 2, t ∈ [6.5, 8]). As the flyer hovers, the wake lingers around the flyer and
it is difficult to resolve numerically. The number of vortices grows superlinearly
in time making the computation extremely expensive. In our work, the hovering
simulations are performed for 10 flapping strokes, after which the number of vortices
has exceeded 106 and updating one time step takes more than an hour even using
FMM.
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Wings closing Wings re-opening

Power stroke Recovery stroke
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FIGURE 3. (a) Schematics of the power stroke and the recovery stroke of a free hovering
flyer. During the power stroke the wings close, the outer rotational flow is reinforced, and
a strong downward jet forms inside the body. During the recovery stroke the wings reopen,
the outer wake gets pushed sideways and an upward jet forms inside the flyer body. (b)
The lift (L) weight (G = 2.5) difference normalized by the flyer’s weight. In the power
stroke (P) the lift is slightly greater than the weight, while in the recovery stroke (R) the
lift is slight smaller than the weight. Note that a phase shift exists between the lift and
the wing motion.

The hovering flight is depicted schematically in figure 3(a). In the hovering state,
each flapping period consists of a power stroke and a recovery stroke. During the
power stroke, the wings close inward and positive (negative) vortices are shed outward
from the right (left) wing’s tip. These vortices merge with the existing outer wake to
form a strong rotational flow around the flyer (see figure 2, t = 6.5, 7.5). This flow
moves inside the flyer’s body, through its open top, creating a strong downstream jet
that carries momentum downward. The flyer thus gains upward force and the lift so
produced is slightly greater than the weight, as shown in figure 3(b). Note that there
is a phase shift between the lift and the wing motion. During the recovery stroke,
the wings reopen symmetrically (figure 2, t = 7, 8), and the right (left) wing sheds
negative (positive) vortices inward while pushing the outer wake further sideways. The
inner wake forms a strong upward jet inside the flyer, carrying positive momentum,
so that the flyer has a downward momentum while the lift is slightly smaller than
the weight (figure 3b). Therefore, over one cycle of opening and closing the wings,
the flyer accelerates and decelerates during the power and recovery stroke. However,
the average lift over each beating period generated by the flapping wings balances the
weight so that the flyer hovers.

There are other hovering mechanisms related closely to that used by our
jellyfish-like flyer. One is the ‘clap-and-fling’ mechanism used by small insects,
and studied numerically in two dimensions by Miller & Peskin (2005). In 2-D
‘clap-and-fling’, mirror-symmetric wings translate sideways as well as rotate about
their leading edges. The fluid dynamics is complicated as during translation vortices
are shed from both the leading and trailing edges. For the jellyfish-like flyer, there is
no wing translation but only cyclic rotations about their leading edges. This allows
us to ignore the leading-edge shedding and to separate the (inwards) power and
(outwards) recovery strokes. Another related mechanism is found in experiments and
simulations of geometrically anisotropic bodies that hover in vertically oscillating
flows (Childress et al. 2006; Spagnolie & Shelley 2009; Weathers et al. 2010; Huang
et al. 2015, 2016). In the experiments of Weathers et al. (2010) an untethered pyramid
with an open bottom (made of paper and wire) was shown to hover when suspended
in an oscillating background flow. This hovering could be ascribed to the differences
in drag for air passing downwards or upwards along the body. Simulations of these
experiments by Huang et al. (2015, 2016) show that this drag anisotropy manifests
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FIGURE 4. The flyer’s response to a torque impulse E = ε exp(−(t− Tc)2/2τ 2
r ), with

τr = 0.05, ε = 20, at Tc = 3.5. Flyers with centres of mass h= 1, 0,−0.5,−1,−1.5,−2
are examined. (a) The schematics for different centre-of-mass locations; (b) combined
aerodynamic torque and external torque impulse, compared with the imposed torque (black
dotted line); (c) tilt angle dynamics; (d) flyer’s centre-of-mass trajectory. An inset shows
the flyer of h=−0.5 and its trajectory after the perturbation.

itself through shed near-dipolar wakes that have some visual similarity to those we
observe being generated through the power and recovery strokes. However, unlike
the pyramidal hoverer there is no background flow from which to extract energy to
generate lift and instead the body must actively change its shape.

4.1.2. Stability of hovering
We study the flyer’s tilt stability in the hovering state by examining the free

response of the flyer to an external torque impulse applied during hovering flight.
This approach of applying a torque impulse to active flappers has been used previously
in experimental studies of the autostabilization of fruit flies (Ristroph et al. 2010).
For hovering flight (θa = 0.144) with t > 3 (when the initial background flow has
vanished), we impose a torque perturbation as follows. In the angular momentum
equation, (2.8), a Gaussian perturbation term is added,

IΘ̈ =
∑
k=1,2

∫
Cb

k

(xk −X)⊥ · [pk]n̂k ds+ Tp(t). (4.1)

The perturbation
Tp(t)= ε exp(−(t− tc)

2/2τ 2
c ) (4.2)

is a Gaussian impulse form centred at tc= 3.5. The impulse has an amplitude ε = 20
and a width τc = 0.05, and lasts only approximately 0.3 of a flapping period. As the
Gaussian torque impulse is imposed, a total external angular momentum of

√
2πετc

is added to the flyer. We examine the free response of flyers with the centre of mass
located at different positions in the body, i.e. h= 1, 0,−0.5,−1,−1.5,−2, as shown
in the schematic of figure 4(a).
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As the external torque is applied to the flyer, the fluid generates a strong
aerodynamic resistive torque. Figure 4(b) shows that the net torque on the flyer,
a combination of the imposed torque and the aerodynamic torque, is less than the
torque imposed. This indicates that part of the external angular momentum added
into the system has dissipated in the fluid, so that the impulse is damped and the
flyer is prevented from tilting to a large angle. After the impulse, 40 % of the added
torque has dissipated into the fluid for the bottom-heavy flyer with h=−2, and 75 %
for the top-heavy flyer with h= 1. It seems that the top-heavy flyers tend to generate
more resistance to the impulse. This is not surprising as the top-heavy flyers have
longer torque arms (the distance between the centre of mass and the flyer’s geometric
centre), so that a small sideways force can be amplified to a large resistive torque.

After the torque impulse is applied, when t ∈ [4, 6], the flyer tilts and translates
sideways; see figure 4(c,d). The tilt angle of the top-heavy flyers increases more
slowly than the bottom-heavy flyers, since more of the external torque is absorbed by
the fluid. The translational motion is presumably due to the sideways component of
the aerodynamic force generated along the flyer’s axis, which is in the same direction
as the flyer’s orientation Θ . Although the sideways motion is weak – the flyers
typically migrate only half the wing length in approximately seven periods – the
translational motion again causes a sideways wing drag that in turn rotates the flyer.

At time t≈ 6.5, when the tilt angle of bottom-heavy flyers with h=−1.5 and −2
has reached ∼ 20◦, the flyer starts to recover (see figure 4c and movie 2). Such self-
righting behaviour of bottom-heavy flyers is intrinsic, as it does not arise from any
external stabilizing mechanisms and relies only on the aerodynamics on the flyer. The
recovery is due to the complex, coupled rotational and translational motions of the
flyer. For bottom-heavy flyers (h=−1.5,−2), the flyer’s geometric centre (the point
the aerodynamic force acts) is above the centre of mass (the point at which gravity
acts). In this case, the torque induced by the sideways drag acts as a restoring torque,
and we believe this causes the flyer to turn. However, at times t> 9 when the bottom-
heavy flyers (h = −1.5 and −2) have reached a large tilt in the other direction, the
self-righting behaviour does not occur, and the flyer eventually flips over into the wake
(see figure 5 and movie 2). The wake structure shows that when t> 9 the flyer’s right
wing is sucked by the rotational flow outside the body and the counter-rotational flow
inside the body. A strong torque caused by the flow asymmetry thus prevents the flyer
from recovering. As the flyer tilts largely to the right, the flyer also drops vertically, as
the trajectory shows in figure 4(d). It is because the vertical component of the flyer’s
axial force decreases as the tilt angle increases, leading to insufficient vertical force
to balance the flyer’s weight.

The top-heavy flyers, say with h= 1 and 0, are unstable but very weakly so, and
the tilt angle Θ increases slowly as the flyer translates sideways. For example, within
10 periods of the simulation, the tilt angle of the top-heavy flyers reaches only ∼10◦.
We think the main reason that the top-heavy flyers rotate so slowly is because a large
portion of the added torque is absorbed by the flow (figure 4b). This leads to less
perturbed flow structures and more symmetric aerodynamic force on both wings (see
figure 5 for h= 1 and movie 3).

In summary, bottom-heavy flyers return to the upright position for short times,
a behaviour called static stability in the airplane flight dynamics literature (Stengel
2015). However, these flyers overshoot the upright position, suggesting that the body
rotations may diverge in time, in which case the flyer is said to be dynamically
unstable. Top-heavy flyers, on the other hand, display a slowly diverging orientation
angle, which is consistent with static and dynamic instability. For all flyers, we note
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FIGURE 5. Responses of (a) a top-heavy flyer h= 1 and (b) a bottom-heavy flyer h=−2
to an external torque perturbation. Positive vortices are coloured in red and negative
in blue. Points on the free vortex sheets are coarse-grained and displayed using points.
Snapshots are at time t = 4, 6, 8, 10. The flyer’s initial position is presented in grey.
After the impulse, the top-heavy flyer tilts slightly and then the angle keeps increasing
slowly, while the bottom-heavy flyer tilts to a large angle, comes back upright and then
overshoots.

that our simulations cannot assess the long-time stability because of the limitations
in the simulation run time. For intermediate centre-of-mass locations, the flyers may
in fact be dynamically stable, but a longer running simulation would be required to
evaluate this.

4.2. The ascending state

If the flapping amplitude is increased such that θa > θ̂a, the flyer’s lift exceeds its
weight, and it ascends upward (movie 4). As the flyer ascends, the body leaves a clear
wake structure behind it, as shown in figure 6(a). During accelerating ascent flight, the
flyer sheds one vortex quadrupole in every flapping stroke. The quadrupole consists of
two left–right ‘near-dipoles’. A near-dipole is a weakly asymmetric dipole in which
the two constituent vortices are of different intensity. Due to their unbalanced strength,
an isolated near-dipole rotates in addition to translating, leading to a curved trajectory
(Saffman 1993). In our case, the strength of vortices in the near-dipole is calculated
as the circulation of vortex sheet pieces of the same sign. As displayed in figure 6(a),
we denote by Γupper the circulation of the vortex sheet section of negative (positive)
strength generated by the left (right) wing, as coloured in blue (red), and denote by
Γlower the circulation of the vortex sheet section of positive (negative) strength shed
by the left (right) wing. Note that Γupper and Γlower are functions of time, denoting the
strength of the near-dipoles generated at each flapping stroke. As the flyer accelerates,
the lower vortex, which is generated in the closing or power stroke, is always slightly
stronger than the upper vortex generated in the opening or recovery stroke, i.e. Γlower>
Γupper, see figure 6(b,c). Such asymmetric strength causes the near-dipole to move
downwards, in addition to moving sideways. The downward motion of the near-dipoles
carries downward momentum, and the flyer experiences an upward force as a result.

In these ascent simulations, we replace the far-field vortex sheets using point
vortices (Alben 2009), allowing us to perform long-time simulations efficiently. The
long-time simulation reveals a stroke-averaged steady ascent. That is, the flyer’s
period-averaged ascending velocity, V(t) = 〈v〉 = ∫ t+1

t v(t′) dt′, approaches a terminal
speed V∞, where v(t) is the instantaneous vertical velocity of the flyer (see figure 7a).
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FIGURE 6. The flyer takes off when θa = 0.3> θ̂a. (a) The wake structure of the flyer’s
ascending take-off, when t= 11. Each stroke generates one vortex quadrupole, consisting
of two symmetric near-dipoles. Within the near-dipoles, Γupper and Γlower denote the
circulation (strength) of the upper and lower vortices respectively. The near-dipoles move
sideways and also downwards, leading to curved trajectories. The flyer’s initial position
is shown in grey. (b) Circulation of vortices in the near-dipoles. Lower vortex circulation
Γlower is always greater than the upper Γupper. (c) Circulation difference in near-dipoles, on
a logarithmic scale. The difference decays exponentially in time as Γlower −Γupper ∼ e−0.09t.

For θa = 0.3, the instantaneous velocity v(t) attains a mean of V∞ ≈ 16.22 and
oscillates with a peak-to-peak amplitude of 25 %. This steady state seems to be
unique: starting the flyer from different initial conditions yields the same terminal
speed. When the steady state is reached, the stroke-averaged aerodynamic force F and
the flyer’s weight come into balance (figure 7b). The quadrupoles are now composed
of symmetric dipoles of equal strength, i.e. Γlower = Γupper, as no mean downward
fluid momentum is generated when the flyer reaches its steady speed. The trend of
Γlower − Γupper→ 0 as t→∞ is displayed in figure 6(c).

The flyer’s period-averaged ascent speed V(t) approaches the steady speed V∞
exponentially in time (figure 7a), and the near-dipole strength difference Γlower−Γupper
also decays exponentially, which implies the momentum generation diminishes with
an exponential rate (figure 6c). This exponential relaxation to the steady state implies
a linear relationship between the aerodynamic force F and ascent speed V (figure 7b),

MV̇ = F−MFr−2, where F=−C1V +C0. (4.3)

Here C1 and C0 are constants whose values are calculated by fitting the F− V curve
in figure 7(b) linearly. Note that C1 determines a time scale of system relaxation τ =
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FIGURE 7. Dynamics of ascent. (a) The flyer’s instantaneous ascent speed v(t) and its
stroke average V . A time-averaged ascent speed V∞ ≈ 16.22 is approached exponentially
in time, as the inset shows |V − V∞| ∼ e−0.083t. At steady state v(t) fluctuates with an
amplitude of approximately 25 % of the mean V∞. (b) The aerodynamic force F on the
free ascending flyer is linear in ascent speed V , and approaches the weight at steady state.
The aerodynamic force F on the flyer with an imposed ascent speed V is linear in the
speed. Both results show the linear force–speed relationship of the active flyer.

M/C1, as the solution to (4.3) is V = V∞(1 − e−t/τ ). For the simulation shown here
(θa = 0.3), the time scale is found to be τ = 11∼ 12.

To further investigate the force–speed relationship, we impose on the flyer a fixed
ascent speed V , and measure the aerodynamic force F when the system reaches
steady state. In the flyer’s frame this is equivalent to fixing an active flapping flyer
in a wind tunnel, where the flyer’s centre of mass is fixed in place and the flyer
is immersed in a uniform downward background flow of speed V . A linear relation
between the aerodynamic force F and the imposed speed V is found yet again, as
shown in figure 7(b). However, note that the free flight forces are different from those
experienced in the imposed flow, a topic we take up in the discussion section § 5.

4.2.1. Results with respect to variation of physical parameters
We consider the effect of two physical parameters on ascent dynamics and steady

states, the flapping amplitude θa and wing separation distance d, with the main
quantities of interest being the steady ascent speed V∞ and the Froude efficiency
η= 〈Pout〉/〈Pin〉, calculated by (2.10)–(2.12).

We begin by examining the result of varying the flapping amplitude θa. We fix
the flyer’s base opening angle to be θ0 = π/8 ≈ 0.39, and we examine the flapping
amplitude in the range of θa ∈ [0.2, 0.54], and show the results in figure 8(a).
(Smaller θa does not generate ascent and larger θa values would cause the wings to
collide.) As the flapping amplitude θa increases, the steady ascent velocity increases
monotonically in θa. This is consistent with previous studies of self-propelled flapping
wings which have shown the swimming speed is an increasing function of flapping
speed (Vandenberghe et al. 2004; Alben & Shelley 2005; Vandenberghe et al. 2006).
The Froude efficiency η decreases dramatically as θa increases. This may be because
larger amplitudes accelerate the fluid more outwardly rather than downwardly.

We now consider the wing separation distance d, as shown in figures 9 and 8(b).
When d is small (for example d=0.2 in figure 9), the wings are close, the interactions
between symmetric left–right wings and their vortex sheets are strong. The separation
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FIGURE 8. The effect of varying physical parameters on the steady ascent speed V∞ and
Froude efficiency η (2.12). (a) Varying flapping amplitude θa. (b) Varying wing separation
d. Results are compared with a single pitching wing that has the same flapping motion and
supports half of the flyer’s mass (dashed line), which can be considered as representing
the case of d=∞.

0 01.6–1.6 –6 0 6

25

35

45

20

30

40

10

15

25

35

20

30

5

10

15

25

20

5

10

15

25

20

30

FIGURE 9. The instantaneous wake structure of flyers with wing separation d =
0.2, 3.2, 12 and the wake structure of a single skewed pitching wing. The single wing has
the same pitching motion as the right wing of the flyer and supports half of the flyer’s
mass, which can be considered as representing d = ∞. Snapshots are taken at t = 8.5,
where θa = 0.3. The far-field vortex sheets are approximated using point vortices.

between successive quadrupoles is large so that the vortex interaction is dominated
by the quadrupole self-interaction. Within a wake quadrupole, the symmetric left–right
near-dipoles are repelled and move sideways shortly after being generated from their
wing tips. As d increases (d= 3.2 in figure 9), the quadrupole wake pattern becomes
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more compressed vertically. In this case, the flyer generates two mirror-symmetric
skewed inverse von Kármán streets, and each vortex interacts strongly with vortices
on its own street and on the other street. As d is incrementally varied (d = 12 in
figure 9), the two vortex streets are well separated. The skewed inverse von Kármán
street shed by each wing resembles the vortex street generated by a single pitching
wing, as expected. Here the single wing is prescribed with the same pitching motion
as the flyer’s right wing, which models a half of the flyer with d =∞. The single
wing is free to ascend in the vertical direction and supports 1/2M mass.

Figure 8(b) shows how the ascent performance is affected by d. We see that the
steady ascent velocity V∞ and the efficiency η are both increased as d is reduced, and
interactions between symmetric wings and wake get stronger. By reducing d from ∞
to 0, the ascent speed is doubled and the efficiency is increased by 50 %, compared
to d = ∞. This increased interaction of the wings about their symmetry plane is
reminiscent of ‘ground effect’. One recent study by Quinn et al. (2014) examined
experimentally an airfoil pitching near a solid boundary but otherwise held against a
background flow, and also simulated the corresponding computational problem of two
mirror image pitching airfoils. They find that thrust increases as the airfoil separation
distance decreases, and that the Strouhal number (St = fa/u∞ with f the pitching
frequency, a the peak-to-peak amplitude of pitching, and u∞ the free-stream speed)
decreases as a defined ‘propulsive efficiency’ increases. While in our case the velocity
is chosen by the wing dynamics, their results are nonetheless consistent in that the
speed increases with decreasing wing separation, which yields both decreased Strouhal
number (using the ascent velocity as the free-stream speed) and increased efficiency η.

4.2.2. Stability of the ascending state
Finally, we examine the flyer’s stability during ascent. Like the hovering stability

study, we consider the flyer’s free response to an external Gaussian torque impulse
Tp(t)= ε exp(−(t− tc)

2/2τ 2
c ), via (4.1), after the flyer has reached an ascending steady

state. Flyers with their centre of mass located at h=−2,−1.5,−1,−0.5, 0, 1 (shown
in figure 4a) are examined. Here we have used Θa = 0.3 and wing separation d = 1.
We initialize the ascent speed near the terminal speed, and apply the perturbation at
tc= 13.5 when the speed is within 10 % of the terminal speed. Specifically, we impose
a Gaussian torque perturbation centred at time tc = 13.5 and with width of τc = 0.05,
so that the impulse lasts only approximately 0.3 flapping periods.

The flyer’s response to a perturbation of strength ε = 100 is shown in figure 10.
The impulse is stronger than that used in the hovering stability study, where ε = 20,
because during an ascending flight the relative fast background flow provides a
stronger restoring torque when the perturbation is applied. For the centre-of-mass
locations h we investigate, three types of ascent stability are found. The top-heavy
flyers with h ∈ [−1, 1] generate a strong resistive aerodynamic torque when the
external torque is applied at t ∈ [13.3, 13.7], leading to a small net torque on
the flyer (figure 10c). The flyer then tilts slightly towards one side (figure 10a).
Within one period after the impulse, the tilt angle reaches a maximum value
Θmax = maxt∈[13.7,14.7] Θ(t) < 13◦ (shown in figure 10a). After approximately one
flapping period after the impulse has vanished (t > 15), the tilt angle Θ changes
(increases or decreases) steadily in time, and the period-averaged angular velocity
〈Θ̇〉 = ∫ t+1

t Θ̇(t′) dt′ is nearly constant. The angle of the most top-heavy flyers (h= 0
or 1) increases steadily, while the angle of flyers with h=−1,−0.5 decreases steadily.
The linear growth rate of the stroke-averaged tilt angle, λ=〈Θ̇〉/〈Θ〉, is averaged over
t ∈ [20, 50], and denoted by λ as shown in figure 11(a). A mathematical justification
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FIGURE 10. The flyer’s free response to a torque impulse during ascending steady state.
An impulse of strength ε = 100 is applied at tc = 13.5. The flyers of centre of mass h=
−2,−1.5,−1,−0.5,0,1 are examined for t∈[0,50]. (a) The tilt angle Θ . The inset shows
t ∈ [35, 50]. (b) The flyers’ paths after the torque perturbation. (c) The torque impulse
Tp(t) (black curve) and the net torque on the flyer (coloured curves). The inset shows
t ∈ [15, 20]. (d) A phase space plot for tilt dynamics.

of the linear growth rate is shown in appendix D. Although the angle of the top-heavy
flyers, h= 0 or 1, diverges steadily, the growth rate is very small and the top-heavy
flyers can be considered weakly unstable (angle increment is less than 1◦ every
20 flapping periods). Figure 11(a) also shows a bifurcation point at hc ≈ −0.3 in
centre-of-mass location h. For flyers with h ∈ [hc, 1], the tilt angle diverges slowly
after the impulse, and for flyers with h ∈ [−1, hc], the angle converges and the flyer
recovers steadily to the upright orientation.

For bottom-heavy flyers with h = −1.5 and −2, the aerodynamic resistive torque
is weak when the impulse is applied, resulting in a large net tilting torque on flyers
(figure 10c). Unlike the top-heavy ones, when t ∈ [13.6, 13.9] the bottom-heavy flyers
feel another strong tilting torque soon after the impulse. Both the weak resistive torque
and the post-impulse torque make the bottom-heavy flyers turn to large angles soon
after the perturbation. In one period after the perturbation, the flyer with h = −1.5
reaches a maximal angle Θmax ≈ 25◦ and the flyer of h = −2 reaches Θmax ≈ 52◦

(figure 10a). After the impulse, the two flyers present different recovery dynamics.
The tilt angle of the flyer of h = −1.5 oscillates and converges to zero, with an
oscillation time scale of approximately two flapping strokes. After approximately 31
flapping periods after the impulse when t > 45, the angle Θ reaches a value less than
1◦. The other bottom-heavy flyer h=−2, unlike the flyers discussed before, recovers
from the large tilt Θmax≈ 52◦ to the upright orientation quickly in approximately five
flapping periods (figure 10). The angle satisfies |Θ(t)|6 1◦ when t > 21, about seven
flapping periods after the impulse.
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FIGURE 11. (a) For flyers with h∈ [−1,1], the linear growth rate λ of the stroke-averaged
tilt angle 〈Θ〉 is averaged over t ∈ [20, 50], denoted by λ. A stability bifurcation point is
denoted at hc ≈ −0.3. The growth rate is intrinsic to flyers as it is independent of the
impulse strength ε. (b) The maximum tilt angle in one period after the torque impulse
(t ∈ [13.7, 14.7]) normalized by ε. Bottom-heavy flyers turn over in strong perturbations,
resulting in missing data for h=−2, ε = 400 or 1000 and h=−1.5, ε = 400. Fixing h,
the maximum angle Θmax is proportional to perturbation strength ε.

Next, we show that the ascent stability seems to be an intrinsic property of the
flyer, which depends on the centre-of-mass location h but not on the perturbation. In
particular, for a flyer of fixed h, the stability properties do not change as ε is increased,
as long as the flyer is not turned over by the impulse. For flyers with h∈ [−1, 1], the
linear growth rate is found to be independent of the perturbation strength ε, as shown
in figure 11(a). Moreover, the flyer’s response to the perturbation is proportional to the
impulse strength ε. Figure 11(b) shows data of the post-impulse maximal tilt Θmax, and
the data collapse when normalized by ε. For ε = 400, the flyer of h=−2 is turned
over quickly by the external impulse as the tilt angle exceeds 180◦ at t = 14.1. A
similar turning over occurs for both h=−2 and h=−1.5 when ε = 1000. The free
recovery flight of a bottom-heavy flyer with h = −1.5 after an impulse of strength
ε = 400, and the recovery of h = −2 after an impulse ε = 200 are displayed in
figure 12 and movies 5 and 6. Under an impulse of ε = 200, the bottom-heavy flyer
h =−2 undergoes an extreme tilt to an angle of Θmax = 137◦, but after the impulse
it recovers back to the upright orientation after several flapping periods due to the
intrinsic stability.

5. Conclusion and discussions

We have studied a 2-D mathematical jellyfish-like flyer using a vortex-sheet-based
simulation method. We find that the flyer is able to hover and ascend freely, where
these simple manoeuvres are achieved through adjusting flapping-wing amplitude. We
find that a time-averaged steady ascent state is approached exponentially in time,
during which the aerodynamic force is a linear function of the speed. We have
varied the flapping amplitude of the wings and the wing separation to study how
they influence the performance of ascending flight. We find that the steady ascent
speed is strongly correlated with the flapping amplitude but efficiency is inversely
correlated, whereas both the speed and efficiency increase as the wings are brought
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FIGURE 12. Free recovery flight of two bottom-heavy flyers h=−1.5 (a) and h=−2 (b)
for t ∈ [13, 20]. An external torque perturbation is applied at tc = 13.5 during the steady
ascending state of the flyer. The snapshots are taken at the beginning of each flapping
period, t= 13, 14, . . . , 20. The grey dashed line shows the flyer’s trajectory in t ∈ [13, 20].
(a) h=−1.5 and ε = 400. (b) h=−2 and ε = 200.

closer together due to a symmetric ‘ground effect’. These results provide us with
insights for engineering designs of future jellyfish-like ornithopters which could
be both manoeuvrable and efficient, and our study implies this might be achieved
through a cooperative adjustment of the flapping amplitude, flapping frequency, the
wing separation and centre-of-mass position.

We have incorporated the FMM into the vortex sheet simulation. Implementing
FMM allows us to simulate 10 flapping strokes of hovering flight, where the complex
fluid wake is composed of 106 vortices on the free vortex sheets. In hovering
simulations, the vortex sheets cannot be coarse grained simply using point vortices,
because the wake lingers close to the flyer. Therefore, as the number of vortices on
the vortex sheets grows linearly in time, longer time simulations of hovering become
very challenging due to the expensive computational cost, and thus we are not able
to definitively evaluate the long-time hovering stability. To improve the method, the
free vortex sheets need to be coarse grained properly in order to reduce the number
of degrees of freedom. Appropriate kernel regularization might also be necessary
for stabilities, and robust quadrature rules could be developed accordingly. Another
approach would be to not shed a vortex at every time step, but less frequently while
still maintaining the smoothness of the flow near the wings’ trailing ends; see the
work of (Michelin, Smith & Glover 2008).

The time-averaged steady ascent state is found to be approached exponentially in
time, and the aerodynamic force F is a linear function of the stroke-averaged ascent
speed V . This linear force–speed relationship is found in both freely ascending flyers
and flyers held in an imposed flow. The coefficient relating force and speed, however,
is different in these two cases, as shown in figure 7(b), which indicates that the
oscillations in ascent speed v(t) within a stroke affect the dynamics. This difference
highlights the importance of modelling the true free flight dynamics where the body
and wing motions are coupled instantaneously to the fluid flows.
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Hovering Ascending

Experiment Model Experiment Model

Very top
heavy

Unstable (fast
divergence)

Unstable (slow
divergence)

Unstable Unstable (slow
divergence)

‘Just right’ Stable Stable (provisionally,
i.e. h=−0.5,−1)

Stable Stable (i.e.
h=−0.5,−1)

Very bottom
heavy

Unstable to
oscillatory mode

Static stable but long
time (oscillatory)

unstable

Unknown Stable

TABLE 1. Qualitative stability comparisons of the model flyer with experimental flyer
(Ristroph & Childress 2014).

The experiments and simulations have a number of differences that might be
expected to lead to differences in flight dynamics and flyer stability. Perhaps most
importantly, the model is two-dimensional while the experiment is (obviously)
three-dimensional (Ristroph & Childress 2014). We note that when the experimental
3-D flyer hovers it can leave behind its wake by moving around in a horizontal
plane. In our 2-D model, the flyer is much more constrained in how it can escape
the complex flows generated during hovering. This particular aspect makes simulating
long-time hovering dynamics difficult. Moreover, the experimental flyers have wings
which bend elastically as they are flapped, which is not captured in our model.
Further, the wing mass comprises a significant portion of the total mass of the
experimental flyer, while we concentrate the mass into a virtual centre of mass.

Nonetheless, we have studied the postural stability during hovering and ascent, and
our results compare quite well with experimental observations (Ristroph & Childress
2014). Some of these comparisons are summarized in table 1. Firstly, the experiments
found very top-heavy flyers to be unstable both during hovering and in ascending
flight. Our simulations show that while such flyers generate a strong and immediate
resistive torque, the flyer orientation ultimately shows a slow divergence. Thus both
experiments and simulations suggest the very top-heavy flyers are subject to eventual
postural instability. For very bottom-heavy flyers, experiments showed instability
to oscillatory model during hovering (personal communications). Simulations show
that such flyers generate a weak and immediate resistive torque to an orientation
perturbation in both hovering and ascent. In hovering, the flyers will return towards
the upright position, perhaps with overshoot, which is consistent with static stability
but may also reflect a slow oscillatory instability. Unfortunately, computational
limitations prevented us from investigating this dynamics further in time. Thus
experiments and simulations both show that the hovering of very bottom-heavy flyers
is oscillatory unstable. During ascent, the simulations of very bottom-heavy flyers
show a robust upright stability, while experiment results are not known from Ristroph
& Childress (2014). Finally, as in the experiments we also find a region of ‘just
right’ flyers, in particular with h = −0.5 and −1.0 where the flyer shows postural
stability both while hovering (provisionally, given the limited computation time) and
ascending.

Our hovering stability simulations can also be compared to the linear model
in Ristroph & Childress (2014), in which the aerodynamic forces are calculated
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Drag

Body velocity

Drag

Drag

Drag
Body velocity

1.2

0

0.4
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0 0.4 0.8 1.2

0
–0.5
–1
–1.5
–2

1

(a)

(b)

(c)

FIGURE 13. Stability mechanisms during ascent. (a) Schematics of the rotation-induced
restoring torque. The sudden angular motion causes a motion of the wings, which induces
a restoring torque on both the top-heavy flyers (left) and the bottom-heavy flyers (right).
(b) Torque associated with misalignment of body orientation and body velocity. (c) Flyer’s
orientation Θ(t) is aligned with the flying velocity (u(t), v(t)), t ∈ [0, 50]. Here the
impulse strength is ε = 100.

under steady assumptions and linearization of the flyer’s motion. For the parameter
range of interest, the linear model predicts three types of stability depending on the
centre-of-mass height h, and the body-to-fluid moment-of-inertia ratio ib/(4mbL2).
If the flyer’s centre of mass is above a critical value h > ha the flyer’s tilt angle
diverges unstably, and if it is lower than another critical value h< hb the angle shows
growing oscillations. A stable hovering region exists for intermediate centre of mass
h ∈ [ha, hb], where the tilt angle shows damped oscillations. Our simulation results
for the most bottom-heavy flyers (h=−2,−1.5), show that they recover from a large
tilt once and then turn over (figure 4), consistent with an oscillatory instability for
h< hb. The tilt angle of the most top-heavy flyers (h= 1 and 0) grows steadily after
the torque perturbation, which is consistent with unstable divergence mode predicted
by the linear model for h> ha. Lastly, for flyers with intermediate h=−1, and −0.5,
the long-time dynamics in our simulation may in fact be stable, but evaluating this
would require improved simulation methods.

The stability of ascending flight, on the other hand, seems to be beyond what a
simple linear model can capture. While we do not have a simple explanation for
the stability characteristics during ascent, we can speculate about some contributing
factors. First, we have identified a resistive torque that tends to immediately counteract
the sudden rotation of the flyer during a perturbation. When the flyer tilts suddenly,
it’s rotational motion is necessarily accompanied by a motion of the wings, as
displayed in figure 13(a). The motion of the wings is associated with a drag in the
opposite direction of the wing’s motion and thus induces a stabilizing torque that
resists the external perturbation. This resistive torque can be seen in figure 10(c)
for t ∈ [13.3, 13.7]. This rotation-induced torque is always a restoring torque for all
the flyers. However, the torque is stronger on the top-heavy flyers and weaker on
the bottom-heavy flyers, as the top-heavy flyers have longer torque arms. Secondly,
we have identified an aerodynamic torque associated with the sudden change in the
tilt angle, which results in a misalignment of the body orientation with the body
velocity, as shown in figure 13(b). For top-heavy flyers in ascent, the increased drag
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on one wing relative to the other would seem to cause the body to align with its
velocity. This is often called ‘weathercock stability’ (Watkins et al. 2006) and is
well known in the literature of airplanes and rockets (Etkin & Reid 1995). The case
of bottom-heavy flyers is more subtle in this respect. As shown in the right panel
of figure 13(b), whether the modified wing forces provide a resistive or amplifying
torque would seem to depend on details of the changes in forces, the centre-of-mass
location, and the degree of tilt of the body. In particular, it is not at all clear whether
the line of action of the net force on the wings is to the left or right of the centre
of mass.

Nonetheless, weathercocking – or the alignment of the body with the direction of
travel – seems to be a general feature of both top- and bottom-heavy flyers during
ascent. Figure 13(c) shows that tan(Θ(t))≈ u(t)/v(t) for all flyers, where u(t) is the
flyer’s instantaneous horizontal speed and v(t) is the instantaneous vertical speed. This
orientation–velocity alignment is also observed in the experiments (cf. figure 5 of
Ristroph & Childress (2014)), and is reminiscent of the flight of passive bodies such
as shuttlecocks, darts and arrows, as well as powered objects like rockets. However,
the wings of our flyer not only play the role of stabilizing vanes but are also the
thrust-producing surfaces, and their motions and associated vortical flow fields may
affect the weathercocking effect. Further, while weathercocking is an important aspect
of the flight dynamics, it does not seem to offer an explanation for the robust upright
stability for bottom-heavy flyers during ascent.

Future engineering designs of practical jellyfish-like aerial vehicles could be guided
by our computational studies, with flight manoeuvrability and stability being achieved
through controlling the parameters of flapping amplitude θa, frequency f , the wing
separation d and the centre-of-mass location h. In our study, the hovering state and
steady ascent state are found by tuning the flapping amplitude θa with the flapping
frequency f and wing separation d fixed. One can also tune f or d and keep the other
two fixed. Regarding engineering convenience, tuning frequency f might be practically
easier than tuning θa and d. In future work, the relationship of the combination of
these parameters and the resulting flight performance needs to be examined, and the
effect on hovering of these parameters can be studied. For example, increasing d
(bringing wings further) could lead to a lift reduction and it might require increasing
θa or f to generate more lift to balance weight. The importance of the centre-of-
mass location to flight stability has also been shown in our study, which suggests an
approach to flight stability and control in which the centre of mass is dynamically
changed during flight.
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Appendix A. Vortex sheet model
Using complex variables, at any point z= x+ iy, the conjugate of the flow velocity

ux − iuy (u = (ux, uy) in vector form) at any point z not on the vortex sheet can be
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calculated through the Biot–Savart law by integrating the true vortex sheet strength γ̂k
against the Biot–Savart kernel:

w(z)= ux(z)− iuy(z)=U + 1
2πi

∑
k=1,2

∫
Cb

k+Cf
k

γ̂k(s)
z− ζk(s)

ds. (A 1)

Here Cb
k : −1 6 s 6 1 denotes the contours of the bound vortex sheets (i.e. the wings,

where k= 1, 2), and Cf
k : 16 s6 sk

max denotes the contours of the two free vortex sheets
attached to each wing, and s is the arclength parameter. The location of the vortex
sheet is denoted by ζk. The first term U in (A 1) denotes a prescribed dimensionless
uniform background stream (see § 4.1). This velocity expression yields a continuous
normal velocity and a jump in tangential velocity whose magnitude is given by γ̂ . The
average wk(s, t) of the flow velocities on either side at points ζk(s, t) on the vortex
sheets is given by

w1(ζ1(s, t), t) = U(t)+ 1
2πi

P
∫ s1

max

−1

γ̂1(s′, t) ds′

ζ1(s, t)− ζ1(s′, t)

+ 1
2πi

∫ s2
max

−1

γ̂2(s′, t) ds′

ζ1(s, t)− ζ2(s′, t)
, (A 2)

w2(ζ2(s, t), t) = U(t)+ 1
2πi

∫ s1
max

−1

γ̂1(s′, t) ds′

ζ2(s, t)− ζ1(s′, t)

+ 1
2πi

P
∫ s2

max

−1

γ̂2(s′, t) ds′

ζ2(s, t)− ζ2(s′, t)
, (A 3)

where the bar denotes the complex conjugate and P
∫

denotes the Cauchy principal
value integral. Where convenient we shall simply use wk(s, t) rather than wk(ζ1(s, t), t).

The dynamics of the free sheet is most easily posed and evolved in the average
velocity frame. Introducing α a new parametrization of the sheet we have (Shelley
1992),

∂tζk(α, t)=wk(ζk(α, t), t). (A 4)

In that frame we have for the unnormalized vortex sheet strength the conservation law:

∂tγk(α, t)= 0. (A 5)

We will refer to the average velocity frame of the free sheet as the Lagrangian frame
(since circulation is conserved in that frame), and to α as the Lagrangian variable
or marker. For convenience we retain the s parametrization of the free sheet velocity
integrals in (A 2)–(A 3), and trivially evolve the s parametrization in the average
velocity frame; see below.

On the bound vortex sheets, Cb
k , the arclength s is a material variable for the wings

(seen as rigid plates). The flyer’s location is determined by the flyer’s body variables
(Z(t), Θ(t)), where Z(t) denotes the location of the flyer’s centre of mass in the
complex form. The location of any point on the rigid wing (−1 6 s 6 1) can be
expressed as

ζk(s, t)= (s+ 1)ŝk + ζk(−1, t), (A 6)

ζk(−1, t)= Z(t)− h exp
(

i
(π

2
−Θ(t)

))
± d

2
eiΘ(t). (A 7)
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Here ζk(−1, t) is the location of the wing’s leading edge or hinge (see figure 1c), and

ŝk(t)= exp
(

i
(
θk(t)+Θ(t)− π

2

))
(A 8)

is the complex form of the tangent vector to the bound sheet (see (2.1)). The normal
vector is then

n̂k(t)= iŝk(t)= ei(θk(t)+Θ(t)). (A 9)

The no-penetration boundary condition, equation (2.6), yields on the bound vortex
sheet:

Re
(
n̂k
(
∂tζ k(s, t)−wk(s, t)

))= 0, −1 6 s 6 1. (A 10a,b)

Substituting (A 2)–(A 3) and (A 6)–(A 9) into (A 10a,b), we see that (A 10a,b) is an
integral equation for the vortex sheet strength γ̂k(s, t), −1 6 s 6 1, which requires
one more constraint to determine an integration constant. This constraint is provided
by applying the Kelvin’s circulation theorem on each wing and the free vortex sheet
attached to it, which states that the total circulation of each wing and its free vortex
sheet is conserved, i.e.

C=
∫ sk

max

−1
γ̂k(s, t) ds=

∫ 1

−1
γ̂k(s, 0) ds. (A 11)

We start with γ̂k(s, 0)= 0 at t= 0, giving C= 0, with the free vortex sheet is initially
a single point at the wing trailing edge, i.e. sk

max|t=0= 1. Denoting the total circulation
around the wing by Γk(t)=

∫ 1
−1 γ̂k(s, t) ds, we then have

Γk(t)=−
∫ sk

max

1
γ̂k(s, t) ds. (A 12)

The unsteady Kutta condition applied at the wing’s trailing edge determines the rate
of vorticity shedding (see Jones 2003), as

Γ̇k(t)+ (µk(1, t)− ξk(1, t))γ̂k(1, t)= 0, (A 13)

where ξk(s, t)= Re(ŝk∂tζ k(s, t)) is the tangential component of the wing velocity and
µk(s, t)=Re(ŝkwk(s, t)) is the tangential component of the average fluid velocity at the
wing boundary. The fluid and the wings are related through the pressure force on the
wings (2.7)–(2.8). On the bound vortex sheet the pressure jump and vorticity satisfy
the following variation of the Euler equations (Jones 2003; Alben 2009)

∂tγ̂k + ∂s((µk − ξk)γ̂k)= ∂s[pk], −1 6 s 6 1, (A 14)

found by posing the Euler equations, above and below the bound sheet, in the
common s-frame, and taking their tangential difference (How, Lowengrub & Shelley
1994). The boundary condition to (A 14) is that the pressure is continuous at the
wing’s trailing edge where s= 1:

[pk](1, t)= 0. (A 15)

Integrating equation (A 14), using the boundary condition equation (A 15) and the
Kutta condition equation (A 13), the pressure jump distribution on the wing is then

[pk](s, t)=
∫ s

1
∂tγ̂k(s′, t) ds′ + (µk(s, t)− ξk(s, t))γ̂k(s, t)+ Γ̇k(t). (A 16)
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We summarize the unknowns and the equations as follows:

(i) The flyer’s dynamical variables, the centre-of-mass location X(t) and tilt angle
Θ(t), are governed by (2.7)–(2.8), given in the real form, where the fluid pressure
force is provided by (A 16);

(ii) The free vortex sheets’ location ζk(s, t) and the free vortex sheet strengths γ̂k(s, t)
are given by (A 4)–(A 5), where 1 6 s 6 sk

max;
(iii) The bound vortex sheet strength γ̂k(s, t), −1 6 s 6 1 and the circulation around

the wing Γk(t) are found by the kinematic boundary condition equation (A 10a,b),
the circulation theorem equation (A 11) and the Kutta condition of the vortex
shedding equation (A 13).

Appendix B. Numerical method
B.1. Explicit method for the free vortex sheet

The free vortex sheet is discretized and evolved in the average velocity frame. At
each time step, a vortex sheet segment is shed into the existing free sheet at the wing
trailing edge, and then convects with velocity given by (A 4). At time tn, we denote
[ζ j−1,n

f ,k , ζ
j,n
f ,k ] the segment shed at time tj, for 1 6 j 6 n (no segment shed at t0). Note

that ζ j,n
f ,k , 06 j6 n, are Lagrangian points, and ζ n,n

f ,k is the newly generated endpoint of
the free sheet which is also the wing’s trailing edge.

The updating for the free vortex sheet position goes as follows. The endpoints of
segments generated at and before time tn−1 are updated explicitly by a second-order
Adam–Bashforth method, and the endpoint ζ n,n

f ,k of the last segment created at tn is
updated using the Euler method:

ζ
j,n+1
f ,k = ζ j,n

f ,k +
1t
2

(
3wk(ζ

j,n
f ,k )−wk(ζ

j,n−1
f ,k )

)
, j= 0, . . . , n− 1 (B 1)

ζ
n,n+1
f ,k = ζ n,n

f ,k +1t wk(ζ
n,n
f ,k ). (B 2)

To evaluate the boundary integral in (A 4) for the free sheet velocity we use
Chebyshev quadrature (Mason & Handscomb 2002) on the bound sheets and the
trapezoidal rule on the free sheets.

We define γ̂ j,n
f ,k as the mean of the true vortex sheet strength over the sheet segment

[ζ j−1,n
f ,k , ζ

j,n
f ,k ], i.e.

γ̂
j,n
f ,k =

∫ sn
j−1

sn
j

γ̂k(s′) ds′/(sn
j−1 − sn

j ), (B 3)

where sn
j , 0 6 j 6 n, denotes the arclength at point ζ j,n

f ,k , sn
0 = smax corresponds to the

endpoint ζ 0,n
f ,k , and sn

n = 1 corresponds to the wing trailing edge. As the unnormalized
vortex sheet strength γ is a material quantity (A 5), the circulation on the segment∫ αj

αj+1
γk(α

′) dα′ = ∫ sn
j

sn
j+1
γ̂k(s′) ds′ does not change with time, therefore at tn+1 the vortex

sheet strength is updated as

γ̂
j,n+1
f ,k = γ̂ j,n

f ,k (s
n
j−1 − sn

j )/(s
n+1
j−1 − sn+1

j ), j= 1, . . . , n. (B 4)

The circulation on the newly generated segment [ζ n,n+1
f ,k , ζ

n+1,n+1
f ,k ] equals the opposite

of the circulation change of the wing (A 12). The mean vortex sheet strength on the
last vortex sheet segment is thus given as:

γ̂
n+1,n+1
f ,k =−(Γ n+1

k − Γ n
k )/(s

n+1
n − 1), (B 5)
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where Γ n
k =Γk(tn), k= 1, 2 denotes the wing circulation at time tn. The last segment’s

mean vortex sheet strength γ̂
n+1,n+1
f ,k and its endpoint ζ n+1,n+1

f ,k (located at the wing
trailing edge) are computed in the implicit step next, where the updated wing
circulation Γ n+1

k and wing trailing-edge position are determined.

B.2. Implicit method for the body

When the free vortex sheets are updated to (ζ
j,n+1
f ,k , γ̂

j,n+1
f ,k ), j = 1, . . . , n, the bound

vortex sheets’ locations and strengths need to be updated to match the new free
sheets. There are three equations to be solved implicitly, the boundary integral
equation (A 10a,b), and the flyer’s dynamics equations, (2.7) and (2.8).

The no-penetration condition on the wing (A 10a,b) can be simplified, using
expressions (A 2)–(A 3) and (A 6)–(A 7), to

1
2π

P
∫ 1

−1

γ̂k(s′, t)
s− s′

ds′ = fk(s, t)− 1
2π
γ̂k(1, t) ln(1− s), (B 6)

where

fk(s, t) = Re

[
n̂k

(
−U(t)+ ∂tζ k(s, t)− 1

2πi

∫ sk
max

1

γ̂k(s′, t)
ζk(s, t)− ζk(s′, t)

ds′

− 1
2πi

∫ sl
max

−1

γ̂l(s′, t)
ζk(s, t)− ζl(s′, t)

ds′
)]
+ 1

2π
γ̂k(1, t) ln(1− s), l 6= k, (B 7)

is a continuous function in s ∈ [−1, 1], with a logarithmic singularity explicitly
subtracted (Alben 2010). Equation (B 6) is an integral equation, and its solution
γ̂k(s, t) contains an inverse-square-root singularity at the wing’s leading edge, s=−1
(Golberg 2013). Therefore we define νk(s, t) = γ̂k(s, t)

√
1− s2 and solve for νk(s, t)

and the wing circulation Γk(t), instead of solving for γ̂k and Γk.
We discretize the wing (the bound sheet Cb

k : −1 6 s 6 1) using m+ 1 Chebyshev–
Gauss–Lobatto nodes

si = cos(φi), φi = iπ
m
, i= 0, . . . ,m, (B 8)

interpolate fk(s, t) at si by the mth-order polynomial and then expand in a Chebyshev
series:

fk(s, t)=
m∑

j=0

aj
k(t) cos( jφ), where s= cos(φ). (B 9)

The solution to (B 6) is given as (Golberg 2013)

νk(s, t) = 2
m∑

j=1

aj
k(t) sin(φ(s)) sin( jφ(s))− a1

k(t)− 2a0
k(t)s+

Γk(t)
π

+ γ̂k(1, t)
π

√
1− s2(π− φ(s))− γ̂k(1, t)

π
(1+ s ln 2). (B 10)
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The constant in the integration is determined by the definition of Γk(t)=
∫ 1
−1 γ̂k(s, t) ds.

The Kutta condition, equation (A 13), which implies that the trailing-edge vorticity
γ̂k(1, t) is finite, enforces another constraint:

νk(1, t)=−a1
k(t)− 2a0

k(t)+
Γk(t)

π
− γ̂k(1, t)

π
(1+ ln 2)= 0. (B 11)

Denote ν
i,n
k = νk(si, tn), i = 0, . . . , m and Γ n

k = Γk(tn). To solve at time tn+1,
equations (B 10)–(B 11), discretized at Chebyshev–Gauss–Lobatto nodes, are given
as

0 = ν
i,n+1
k − 2

m∑
j=1

aj,n+1
k sin(φi) sin( jφi)+ a1,n+1

k + 2a0,n+1
k si − Γ

n+1
k

π

− γ̂
0,n+1
k

π

√
1− s2

i (π− φi)+ γ̂
0,n+1
k

π
(1+ si ln 2), i= 1, . . . ,m, (B 12)

0 = 2a0,n+1
k − Γ

n+1
k

π
+ γ̂

0,n+1
k

π
(1+ ln 2), (B 13)

where si = cos(φi), aj,n+1
k = aj

k(tn+1), i, j = 0, . . . , m and γ̂
0,n+1
k = γ̂k(1, tn+1). Note

that γ̂ 0,n+1
k also equals γ̂ n+1,n+1

f ,k as the vortex sheet strength is continuous at the wing
trailing edge (see (B 5)).

The flyer’s dynamics equations, (2.7)–(2.8), are also implicitly discretized, and
coupled with (B 12)–(B 13), since the bound vortex sheets positions’ are determined
by the dynamical variables X and Θ through (2.1) and (A 6)–(A 8). Defining
Xn+1 = X(tn+1), Ẋn+1 = Ẋ(tn+1), Θn+1 = Θ(tn+1), Θ̇n+1 = Θ̇(tn+1), we use the
second-order Crank–Nicolson time stepping for the flyer’s dynamics:

0=Xn+1 −Xn − 1t
2
(Ẋn+1 + Ẋn

), 0= Ẋn+1 − Ẋn − 1t
2M

(F n+1 +F n), (B 14a,b)

0=Θn+1 −Θn − 1t
2
(Θ̇n+1 + Θ̇n), 0= Θ̇n+1 − Θ̇n − 1t

2I
(T n+1 + T n), (B 15a,b)

where F n=F(tn) denotes the net force on the flyer at tn and T n= T (tn) denotes the
torque (see (2.7)–(2.8)), and they are evaluated by integrating the fluid pressure along
the wing (A 16).

To summarize, at the step from tn to tn+1, the implicit system consists of 2(m +
1) + 4 equations (B 12)–(B 14), while there are 2(m + 1) + 4 unknowns: ν i,n+1

k , i =
1, . . . , m, Γ n+1

k , k = 1, 2 and Xn+1 = X(tn+1), Ẋn+1
, Θn+1, Θ̇n+1. In our numerical

method, Chebyshev quadrature is applied to the integrals over the bound sheets, as in
(2.7)–(2.8), (A 16–2.11) and (B 7). The time derivatives in (A 16) and (B 7) are treated
using second-order Richardson extrapolation. This nonlinear system is solved by the
Broyden’s method (Broyden 1965). It is a quasi-Newton method that each iteration
requires O(N2) operations, where N = 2m + 6 is the system size. The convergence
of a quasi-Newton method is in general superlinear, which is slightly slower than
Newton’s method but is of low cost. In our case, with a error tolerance set at 10−10,
the algorithm converges in approximately 10–20 iterations.
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B.3. Velocity δ−smoothing treatment
The Birkhoff–Rott equation (A 2)–(A 4) for the dynamics of free vortex sheets is
mathematically ill posed, and it is well known that it leads to a curvature singularity
in finite time, before the rolling up of the sheets (Moore 1979; Krasny 1986; Shelley
1992). To subvert both the ill posedness and the singularity, and allow the sheets
to form vortex spirals, we regularize the singular kernel in (A 1) using the Krasny
δ−smoothing method (Krasny 1986; Alben 2009),

∂tζ k(s, t) = U(t)+ 1
2πi

P
∫ sk′

max

−1

γ̂k′(s′, t) ds′

ζk′(s, t)− ζk′(s′, t)

+ 1
2πi

∫ sk
max

−1
γ̂k(s′, t) ds′

ζ k(s, t)− ζ k(s′, t)
|ζk(s, t)− ζk(s′, t)|2 + δ2(s)

. (B 16)

The δ-smoothing is needed only on the dynamics of the free sheets, and we retain
the singular structure for the bound sheet dynamics. To resolve the discontinuity in
the velocity at the boundary between the bound sheet and the free sheet, i.e. the
wing’s trailing edge, we use the velocity smoothing treatment of Alben (2010). The
smoothing function we use in (B 16) is defined as:

δ(s) = δ1 + (δ0 − δ1)
|(s− 1)/η1|p

1+ |(s− 1)/η1|p , s ∈ (1, smax] (B 17)

δ(s) = δ1 exp (−|(s− 1)/η2|p), s ∈ [−1, 1]. (B 18)

In our simulations, we set δ0 = 0.2, δ1 = 0.1, η1 = 2δ0, η2 = 0.1 and p= 2.

Appendix C. FMM for the regularized kernel
We assume that the kernel that we are interested in applying is

K(z, z0)=− 1
2πN

z− z0

|z− z0|2 + δf (z0)
, (C 1)

where z, z0 ∈C are ‘complexified’ target and source points, respectively, in R2 (i.e. a
point (x, y) is mapped to the complex number z= x+ iy), and δf > 0 is a regularization
term that we have access to only numerically. This kernel comes from considering
the gradient of the two-dimensional Laplace potential, identified with the complex
logarithm; thus, applying K is, in effect, a force calculation.

Force calculations were accelerated using an adaptive kernel-independent FMM
based on interpolative decomposition (ID) (Carrier, Greengard & Rokhlin 1988).
The principal ideas have already appeared in Carrier et al. (1988), Martinsson &
Rokhlin (2007), Pan & Sheng (2013). In this section, we give a brief overview of the
algorithm and highlight the specific modifications necessary to efficiently approximate
the kernel (C 1) to high precision.

C.1. Overview of the FMM

Let A= (aij) ∈CN×N with entries aij =K(zi, zj), where K is a kernel function defined
on the complex points zi ∈ C for i = 1, . . . , N. We are interested in computing the
matrix–vector product x 7→ Ax, where x ∈ CN . If A is dense (as it is for the kernel
(C 1)), then this operation naively requires O(N2) work, which can be prohibitive if
N is large. The goal of the FMM is to reduce this to only O(N) or O(N log N) work.
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(a) (b) (c)

B

FIGURE 14. (a) Rank structure of an FMM-compatible matrix in one dimension.
Submatrices in white are low rank; those in grey are, in general, full rank. (b)
Well-separated point clusters in the plane. (c) Definition of neighbours and interaction lists.
The neighbours of a box B are indicated in dark grey, while its interaction list is indicated
in light grey; for reference, the parent of B is drawn in a thick outline.

The main observation underlying the FMM is that for many choices of K in practice,
A contains large submatrices that are numerically low rank and so can be applied very
efficiently; see figure 14(a). In essence, the FMM is simply a way of organizing such
low-rank computations in order to achieve linear complexity.

The core assumption in the FMM is that rank structure is determined by geometry.
Two point clusters C = {x1, . . . , xm} and C′ = {y1, . . . , yn} in C are said to be well
separated if

dist(C,C′) >max(diam(C), diam(C′)), (C 2)

where
dist(C,C′)=min

x∈C
y∈C′
|x− y|, diam(C)=max

x,y∈C
|x− y|; (C 3a,b)

see figure 14(b). It is well known that for the kernel (C 1) with δf ≡ 0, interactions
between well-separated sets have constant rank (to a specified numerical precision),
independent of the number of points in each set or their detailed structure (Greengard
& Rokhlin 1987). We observed experimentally that the same appears to be true of the
regularized kernel in this paper.

The remainder of the FMM consists of hierarchically decomposing A into well-
separated interactions. This is done by constructing a quadtree on C. First, enclose
all points inside a sufficiently large box. If the number of points in that box exceeds
a prescribed constant, subdivide it into four equally sized children and split its points
accordingly between them, keeping only those children that are non-empty. Repeat
this procedure for each new box added, terminating only when all boxes contain only
O(1) points. Boxes that do not have any children are called leaves.

For simplicity, we assume that all leaves are at the same level in the tree. This
makes the ensuing discussion much more concise while retaining the key features of
the algorithm. For details regarding the fully adaptive version, which we implemented
for this paper, we refer the reader to Carrier et al. (1988), Martinsson & Rokhlin
(2007).

For each box B in the tree, let its neighbours be those boxes at the same level
immediately adjacent to it. Moreover, let its interaction list consist of those boxes
at the same level whose parents are neighbours of the parent of B but who are not
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themselves neighbours of B (figure 14c). Each box in the interaction list of B is well
separated from B, so the corresponding submatrix can be approximated in low-rank
form. Note that all well-separated interactions with B are accounted for through the
interaction lists of B, of the parent of B, of the parent’s parent of B and so on.
Therefore, the interaction lists provide an efficient multiscale characterization of all
low-rank submatrices in A.

If we further had a method to compute the low-rank basis of a box hierarchically
from those of its children, then we would have all the ingredients for an FMM. This
operation can be viewed as anterpolation from children to parents; in reverse, it can
also be viewed as interpolation from parents to children. The FMM now proceeds as
follows:

(i) Upward pass. For each box in the tree from the finest level to the coarsest,
anterpolate its low-rank contributions from those of its children (or from the
sources in the box if it is a leaf).

(ii) Downward pass. For each box in the tree from the coarsest level to the
finest, interpolate its forces from those of its parent and add on the low-rank
contributions from the boxes in its interaction list.

(iii) Direct interactions. For each leaf box, compute its interactions with its
neighbours directly.

This algorithm computes the forces at all points using the most efficient low-rank
representation allowed by the well-separability condition (C 2) for each interaction.

C.2. Hierarchical ID
We now turn to task of computing the low-rank approximations to be used in the
FMM. In the original formulation by Greengard and Rokhlin (Greengard & Rokhlin
1987), low-rank compression was achieved via analytic expansions. We cannot do
the same here since the regularization δf is only available numerically. Therefore, we
require a so-called kernel-independent procedure based on numerical linear algebra.

The tool that we used is ID (Cheng et al. 2005), which, for a matrix W ∈ Cm×n

with numerical rank k = k(ε) for ε > 0 a specified precision, is a factorization
W ≈ XV ∗, where X ∈ Cm×k consists of k columns of W and V ∈ Cn×k is an
interpolation operator. Similarly, we can apply the ID to W ∗ to obtain W ≈ UY ,
where Y ∈Ck×n consists of k rows of W and U ∈Cm×k. In our implementation, the ID
is constructed from a pivoted QR decomposition of W , with the rank k determined
by examining the relative magnitudes of the diagonal elements of the triangular factor
(Cheng et al. 2005).

The primary advantage of the ID is that it enables hierarchical compression
precisely of the type needed for the FMM. Let B be a non-leaf box in the tree.
Restricting our attention to the columns of A to be concrete, suppose that low-rank
interpolation operators have been constructed for each of the children of B –
B1, . . . , Bp. This can be done by computing an ID of the tall-and-skinny submatrix
W i of A corresponding to all well-separated interactions outgoing from each Bi,
yielding W i ≈ X iV ∗i . The key observation now is that an ID of the submatrix W of
A corresponding to all well-separated interactions outgoing from B can be computed
from an ID on the submatrix W̃ of W consisting only of those columns selected by
X i, . . . , X p, via

W ≈ W̃ Ṽ
∗ ≈ (XV ∗)Ṽ

∗ = X(V ∗Ṽ
∗
), Ṽ

∗ = diag(V ∗1, . . . , V ∗p), (C 4a,b)
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B

FIGURE 15. Accelerated compression using proxy surfaces. Interactions of a box B with
all far-field points (grey) are replaced by interactions with an artificial circle Γ enclosing
B. The neighbour region of B is shown with a dotted outline.

where the first approximation is given by the fact that all well-separated interactions
with B are contained in those with its children. In other words, the interpolation
operator for W is constructed hierarchically from those of its children, exactly as
required. The same argument holds for the rows of A.

Another way to understand the appeal of the ID is to write the FMM as a matrix
decomposition A=Anear +Afar, where Anear contains all neighbouring interactions and
Afar the rest. By assumption, Afar is low-rank so there exist rectangular basis matrices
U and V such that Afar ≈USV∗. If U and V are constructed using the ID, then S is a
submatrix of Afar so it is available at no additional cost. Contrast this with the general
setting where S can contain O(N2) modified entries, thus precluding linear complexity.

However, the algorithm that we have described is still not yet fast due to the
consideration of all well-separated interactions of each box B in the ID, which is
at least an O(N2) process. For kernels satisfying a Green’s theorem, such as (C 1)
with δf ≡ 0, it is possible to achieve substantial acceleration by representing all such
interactions via kernel interactions with an artificial proxy surface Γ enclosing
B (figure 15). The number of points needed to discretize Γ is O(1), so each
tall-and-skinny matrix encountered is reduced to a very small short-and-skinny one.
This bypasses the quadratic bottleneck and constitutes a complete ID-based FMM as
reported in Martinsson & Rokhlin (2007), Pan & Sheng (2013).

In the present setting, the regularized kernel (C 1) does not satisfy a Green’s
theorem, so well-separated interactions cannot formally be represented using a proxy
surface. However, rank considerations suggest that some form of sparse sampling
should still be valid. To this end, for each box B, we sampled against a generalized
proxy surface Γ by evaluating K on several concentric rings around B. Specifically,
for a box with scaled side length 1 centred at the origin, we took as Γ the union of
four circles about the origin of radii 3/2, 3, 6 and 12, each discretized with 64 points,
as a rudimentary multiscale tiling of the far field. For outgoing interactions (columns),
this strategy is sufficient to approximate K to high precision, but some additional
work is required for incoming interactions (rows). This is because the regularization
δf is associated with sources, which, for incoming interactions, are artificial, hence δf
is undefined. In this case, using δf ≡ 0 resulted in a loss of accuracy, but we found
that setting δf ≡ (1/N)

∑N
i=1 δf (zi) seems to work.

Although the approximation error can no longer be rigorously controlled, very
simple and inexpensive a posteriori error estimators are available based on comparing
the FMM matrix-vector product against the direct calculation of a small random subset
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of the resulting vector. Such estimators reveal that the scheme described can reliably
achieve relative approximation errors of order 10−10.

Appendix D. Growth rate of the linear stability
Assume the dynamics of the stroke-averaged tilt angle 〈Θ〉 can be described by a

linearized model, and the torque perturbation can be modelled as a δ-function,

ẏ= λy+ εδ(t− tc), (D 1)

where tc is the centre of the Gaussian torque impulse (see (4.2)), and λ is the linear
growth rate. Equation (D 1) with initial condition y(0) = 0 can be solve using the
integrating factor method, and the solution is

y(t)=
{

0, t 6 tc,

εeλ(t−tc), t> tc.
(D 2)

The solution shows the flyer’s response to the external torque perturbation is
proportional to the strength of the perturbation (figure 11b). It also shows that
the linear growth rate λ can be evaluated via

λ= ẏ/y for t> tc. (D 3)
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