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Linear drag law for high-Reynolds-number flow past an oscillating body
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An object immersed in a fast flow typically experiences fluid forces that increase with the
square of speed. Here we explore how this high-Reynolds-number force-speed relationship
is affected by unsteady motions of a body. Experiments on disks that are driven to
oscillate while progressing through air reveal two distinct regimes: a conventional quadratic
relationship for slow oscillations and an anomalous scaling for fast flapping in which the
time-averaged drag increases linearly with flow speed. In the linear regime, flow visualiza-
tion shows that a pair of counterrotating vortices is shed with each oscillation and a model
that views a train of such dipoles as a momentum jet reproduces the linearity. We also show
that appropriate scaling variables collapse the experimental data from both regimes and for
different oscillatory motions into a single drag-speed relationship. These results could pro-
vide insight into the aerodynamic resistance incurred by oscillating wings in flight and they
suggest that vibrations can be an effective means to actively control the drag on an object.
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A central goal of fluid dynamics is to relate the shape and motion of a body to the aerodynamic
or hydrodynamic forces it experiences. Investigations into such force laws have formed the basis of
fluid physics and engineering and have led to far-reaching applications [1], from minimizing drag
by streamlining shapes to generating lift and thus enabling heavier-than-air flight [2]. Studies over
the past two centuries have revealed fundamental scaling relationships relating forces to speed for
the case of steady flow past a body or, equivalently, steady motion of a body through a fluid. For
small objects in slow flows, forces vary in direct proportion to the speed, while large objects in fast
flows experience forces that increase as the square of speed [1,3]. These linear and quadratic regimes
are demarcated by the Reynolds number, which quantifies the relative importance of fluid inertia
to viscosity. Large bodies in fast flows correspond to high Reynolds number and the well-known
quadratic drag law stems from the separation of flow from the surface and the associated pressure
difference across the body [4].

Strongly unsteady motions of a body in a flow are likely to significantly modify flow separation
and thus alter force-speed scaling relationships. Such time-dependent motions are common in many
contexts. For example, the flow-induced fluttering of flexible structures, such as the flapping of
a flag, has recently been studied as an archetype of passively excited oscillations [5–7]. Animal
locomotion provides examples in which oscillations of structures are actively driven, such as in
flying or swimming propelled by flapping wings or fins [8–10]. One feature common to all these
problems is the superposition of unsteady or ac motions and steady or dc motions. For the case of
locomotion, for example, this involves the oscillations or flapping of an appendage superposed on
the body translation during steady forward flight or swimming.

Here we aim to experimentally characterize how the addition of oscillations onto the otherwise
steady motion of a structure affects the force-speed relationship. We seek an idealized situation of a
simply shaped body undergoing a simple combination of sinusoidal and steady motions relative to
a fluid. As illustrated in Fig. 1(a), we focus on the case of in-line oscillations of a thin disk within
an oncoming steady flow, where the ac and dc motions are both normal to the plane of the disk. In
terms of the passive and active contexts mentioned above, this situation is most analogous to in-line
vibrations of a flexible structure in a flow or the back-and-forth flapping of an insect wing as it moves
along with the body during forward flight. Rather than replicate these particular situations, we aim to
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FIG. 1. (a) In-line oscillations of a translating disk in a flow. (b) Experimental apparatus: Disks are driven
to oscillate back and forth by a motor and are free to rotate through air in response to an applied force.

abstract the problem in order to investigate the fluid mechanical consequences of combined dc and
ac motions. Specifically, we will vary the relative magnitudes of the (time-averaged) ac speed w and
the dc speed U in order to explore a range of fluid dynamic conditions, from purely steady to strongly
unsteady. For dc-dominated conditions, one expects that local flows generated in one oscillation are
left behind and do not strongly affect the next. The ac-dominated conditions, in contrast, could lead
to strong body-vortex interactions that significantly alter the fluid forces.

I. EXPERIMENTS

A. Experimental setup and procedures

To characterize the effect of unsteady motions on drag, we devise an experimental apparatus
that allows for direct force measurement on oscillating objects moving through air. As illustrated
in Fig. 1(b), oscillations are driven by a reciprocating motor and the steady motion takes the form
of rotation around a central vertical axis. More specifically, a pair of thin disks is connected via
horizontal supports to a central housing, which itself is attached via low-friction rotary bearings
to an upright axle. This allows for free rotation through air in response to an imposed external
torque applied at the base. The disks attain a terminal rotation speed when the applied torque
and aerodynamic resistance come into balance. Measurements of the terminal rotation speed for
increasing applied torque can then be converted to yield a relationship between time-averaged drag
and the translational speed at the center of each disk. This scheme thus involves imposing the force
and measuring the resulting speed, which is an alternative to wind tunnel studies that impose the
flow speed and measure the resulting force.

The drag incurred for steady or dc motions can be characterized by fixing the disks relative to
the central housing, leading to simple revolving of the bodies about the vertical axle. To investigate
the effect of ac motions, the on-board motor is powered and drives sinusoidal flapping of prescribed
frequency and amplitude. The force-speed relationship is again obtained by sweeping through values
for the applied force and measuring terminal rotation speed for specified oscillation kinematics. In
this case, each disk undergoes an unsteady motion through the air that is the superposition of
ac and dc components, as illustrated by the trajectory of Fig. 1(b). For all cases, we employ a
mass-string-pulley system to impose the external force: A mass falls under gravity and is fixed to a
string that wraps around the central axle. The resulting terminal rotation speed is measured using a
high-speed video camera that records the motion of the disks.

We report on measurements carried out for disks of diameter d = 24 cm whose centers are
27 cm from the axis of rotation. The disks are flapped at peak-to-peak amplitude A = 3.5 cm and
frequency in the range f = 5–10 Hz. The average flapping speed w = 2Af characterizes the ac
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FIG. 2. Force-speed characterization. (a) Time-averaged drag D on each disk moving at steady dc speed
U while driven to oscillate at frequencies f = 6, 8, and 10 Hz (blue, yellow, and red curves, respectively) and
peak-to-peak amplitude A = 3.5 cm. The inset shows data collapse for D/w vs U . (b) Logarithm-scale plot
of the same, revealing a linear drag-speed (slope 1) relationship for low U and conventional quadratic scaling
(slope 2) for high U . Arrows indicate the state for which U equals the mean oscillation speed w = 2Af .

component of motion and the terminal speed U is the dc component. Typical parameter values lead
to Reynolds numbers Re = ρUd/μ ∼ 103–104, where ρ and μ are the density and viscosity of air,
respectively [1,3]. The two relevant speeds U and w are of the same order and thus the Re defined
using either is high (Re � 1), indicating the dominance of fluid inertial forces over viscosity. The
relative magnitude of these two speeds, however, is expected to play a critical role in governing
the drag. The ratio of dc to ac speeds J = U/w is analogous to the advance ratio or inverse of the
Strouhal number in other contexts of unsteady flow [8,10–12].

B. Measurement of drag for steady and unsteady motions

Considering first the case of purely steady motion, the black curve in Fig. 2(a) displays the
dependence of drag D on speed U . The curve represents many individual measurements, each
of which employs a mass-string-pulley system to impose the external force that balances drag at
the terminal speed. The raw data are converted to yield a plot of the drag D on a single disk
as its center moves at speed U . The apparent nonlinear increase of D with U can be quantified
using a logarithm-scale plot, as shown in Fig. 2(b). The black curve shows that the data follow
a line of slope 2 across all speeds, indicating a quadratic relationship D ∼ U 2, as is expected for
high-Reynolds-number flows [1,3]. Here the value of Re is labeled on the upper horizontal axes in
Fig. 2, showing that Re > 103 for all experimental conditions. The black curve of Fig. 2(b) also
shows that our measurement system captures the quadratic relationship down to forces as small
as 3 × 10−3 N, which is several times greater than the force needed to overcome friction in our
apparatus.

These data also allow us to infer the dimensionless drag coefficient for the case of steady
motion, defined as C∗

D = D/ 1
2ρSU 2, where S = πd2/4 is the disk cross-sectional area. Applying

a linear regression to the black data in Fig. 2(b), we measure a best-fit value of C∗
D = 3.5 ± 0.1.

We note that this coefficient is significantly greater than the value of 1.2 measured for a steadily
translating disk at Reynolds numbers similar to those in our experiments [13]. The cause for this
difference seems to be the form of the motion, that is, revolving versus translation. Nonetheless,
our measurement quantitatively agrees with a value for the drag coefficient of 3.4 ± 0.1 obtained in
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previous experiments for thin wings steadily revolved at a 90◦ angle of attack [14]. We interpret this
close correspondence, even for somewhat different shapes, as a validation of our force measurement
apparatus and procedure. This case of steady revolving motion, and the associated experimental
value of C∗

D , will serve as a point of comparison for our force measurements for unsteady motions.
To investigate unsteady drag, we power the motor to drive oscillations of the disks at prescribed A

and f and we again carry out the measurement procedure in which an external force is imposed and
comes into balance with drag on the bodies at a terminal speed. In this work, we keep a peak-to-peak
amplitude of A = 3.5 cm and employ six different frequencies in the range f = 5–10 Hz. The blue,
yellow, and red curves of Fig. 2(a) represent the cases of flapping at selected frequencies of 6, 8,
and 10 Hz, respectively. Just as for the steady case, each curve is composed of many points, each
of which is collected by independent runs in which an external force is imposed and a terminal
speed is measured. These data show that increasing frequency leads to stronger deviations from the
steady drag-speed curve (black). This is most clearly seen in the logarithm-scale plot of Fig. 2(b).
For example, for f = 10 Hz (red), the drag at low U is significantly higher than that of the steady
case (black) and the slope of the D(U ) curve differs significantly from the conventional value of
2. In fact, the low-U data for each frequency is consistent with slope 1 or linear scaling, while at
higher U each curve transitions to a quadratic scaling. The transition in scaling appears as a bend in
each curve of Fig. 2(b) and seems to correspond to the condition in which the dc speed equals the
time-averaged ac speed U ≈ w, as indicated by the arrows.

These measurements also allow us to examine the dependence of drag on the flapping speed
w = 2Af for sufficiently small U . As can be seen in Fig. 2(b), the upward shift in the curves for
increasing f suggests that drag increases with w. Indeed, as shown by the inset of Fig. 1(a), plotting
D/w vs U collapses all data sets with f > 0, implying that D scales linearly with w when U is
small.

Taken together, these experiments for unsteady motions reveal two distinct drag scaling regimes
demarcated by the speed ratio J = U/w. The quasisteady or dc-dominated regime for J > 1 is
characterized by the conventional quadratic drag-speed law D ∼ U 2. The unsteady or ac-dominated
regime for J < 1 is characterized by drag scaling as the product of the dc and ac speeds D ∼ Uw.

C. Dimensionless drag-speed relationship

To unify these observations across different unsteady motions, we consider dimensionless forms
for the time-averaged speed of motion and the time-averaged fluid force experienced. The speed
ratio J = U/w is a natural choice, with J < 1 signifying unsteady or ac-dominated motions and
J > 1 signifying steady or dc-dominated motions. As a normalization of force, we choose the drag
coefficient CD = D/ 1

2ρSU 2, defined exactly as is done for steady motion at speed U for a body of
area S in a fluid of density ρ. We note that other dimensionless forms of the force could be employed,
in particular coefficients based on other choices for the speed scale such as w,

√
Uw,

√
U 2 + w2,

etc. Our choice to use U , which is the average speed relative to the far-field fluid, allows one to
directly compare the drag experienced for an unsteady motion at a given J to steady motion at the
same average speed. This involves comparing CD(J ) to C∗

D , the steady drag coefficient. Further,
as we show below, our selections of these dimensionless quantities leads to a unification of the
force-speed data in terms of CD(J ) curves.

In Fig. 3(a) we plot CD versus J and arrive at a collapse of the experimental data across all six
measured frequencies (f = 5–10 Hz) and for both scaling regimes. As a point of comparison, we
show the experimentally measured steady drag coefficient value C∗

D = 3.5 as a dashed horizontal
line. To interpret this plot, one can consider the effect of adding oscillations to a disk undergoing
motion at speed U . Without oscillations, the force coefficient is C∗

D and one can see that adding
unsteady motion can either increase or decrease the force coefficient CD depending on J . For
exceedingly slow oscillation speeds of J � 1, the drag is similar to the steady case CD ≈ C∗

D , as is
expected. For exceedingly fast oscillations of J � 1, the time-averaged drag is significantly larger
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FIG. 3. Normalization reveals a universal drag-speed relationship for unsteady motions. (a) Drag coefficient
CD = D/ 1

2 ρSU 2, where S is the disk area, plotted vs the speed ratio J = U/w. The dashed line indicates the
experimentally measured value of C∗

D = 3.5 ± 0.1 for steady motion and colored curves represent six cases of
unsteady motions with different values of f . (b) Plotting CD vs 1/J emphasizes the unsteady regime 1/J > 1.
Also shown are predictions of a quasisteady calculation (dotted curves) and an unsteady dipole-jet model (gray
bands). See the text for model details.

than that for steady motion. In addition, one can see that a drag reduction occurs for moderate
oscillations of 1 < J < 2.

The strong drag amplification occurs in the unsteady regime of J < 1. To emphasize these
ac-dominated conditions, we display CD vs 1/J in Fig. 3(b), where now increasing unsteadiness
occurs to the right in the plot. This form shows that CD scales linearly with 1/J for large 1/J , which
is simply a dimensionless form for the unsteady drag law inferred earlier: CD ∼ 1/J is equivalent to
D/U 2 ∼ w/U and thus D ∼ Uw. Having established this relationship in the unsteady regime, our
central goals are to understand the flows involved under these conditions and to use these findings
to formulate a mathematical model capable of reproducing this unsteady drag law.

D. Flow visualization

To understand the fluid dynamic origin of these scaling regimes, we visualize the flows produced
by a flapping disk [15]. Here we use a visualization water tunnel that provides a laminar flow and
whose test section is custom fitted with a motor assembly that drives oscillations. Maintaining a
similar Re as in the previous experiments, we explore the effect of varying J = U/w, where U is
the speed provided by the tunnel and w is set by the motor assembly. In one method, fluorescein dye
is released from the front of the disk near the stagnation point, spreads over the front surface, and
washes off the disk edge. The resulting streaklines shown in Figs. 4(a)–4(c) highlight the vorticity
generated by the edge motion [1]. In a second technique, we seed the water with glass microparticles,
illuminate a plane with a laser sheet, and capture time-exposed photographs, as shown in Fig. 4(d).
The resulting particle pathlines give an indication of the flow velocity field over a plane. This
technique is particularly well suited for fast flapping conditions, in which case dyes tend to rapidly
disperse and homogenize.

The steady case (w = 0) is shown in Fig. 4(a) as well as [16], where the flow past a stationary
disk separates off the edge and forms an unstable wake downstream. In contrast, Fig. 4(b) shows
that even relatively gentle flapping of J ≈ 2 leads to a qualitatively different separated flow region.
Captured here during the forward stroke, the disk motion leads to a large and coherent vortex ring
that curls up around the edge. The back-and-forth motion generates the pair of counterrotating vortex
rings that can be seen downstream. Shedding of such vortex pairs, or dipoles [17], has also been
observed in other cases of oscillatory flows past an object [18–21]. The close-up photograph of
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FIG. 4. Visualization of flow past stationary and oscillating disks (see movies in the Supplemental Material
[16]). (a) Fluorescein dye streaklines reveal the flow (top to bottom) past a stationary disk oriented horizontally
near the top of the photograph. (b) Streaklines for a flapping disk with speed ratio J = U/w ≈ 2. (c) Close-up of
an asymmetric dipole generated under the same conditions. (d) Time-exposed photograph of glass microspheres
illuminated by a laser sheet reveal flow path lines for faster flapping (J ≈ 0.5). A more symmetric dipole is
generated near the disk edge and these dipoles lose their coherence further downstream.

Fig. 4(c) captures a highly asymmetric dipolar ring, whose constituent vortices differ strongly in size
and intensity. Faster flapping of J ≈ 0.5 produces more symmetric dipoles, as shown in Fig. 4(d).
In this case, the dipoles quickly lose their coherence as they propagate outward from the disk edge.

These visualization studies identify vortex dipoles as prominent local flow structures in the
unsteady regime of fast oscillations. At a given dc speed U , fast oscillations (J � 1) tend to form
intense and relatively symmetric dipoles, while slower oscillations (J � 1) tend to form weaker and
more asymmetric dipoles. In what follows, we will consider a mathematical model that calculates
the strength and asymmetry of such dipoles from the motion of the body and then uses the dynamics
of these vortex pairs to estimate the drag on the body.

II. MATHEMATICAL MODEL

A. Quasisteady calculation

As a first step towards a mathematical model, we consider a quasisteady calculation of the
aerodynamic drag, as is often used to estimate the forces on wings undergoing flapping motions
[22–31]. Such calculations approximate the instantaneous force during an unsteady motion by that
experienced for steady motion under the same conditions, i.e., at the same speed and angle of
attack. For the problem considered here, a disk moves at an attack angle of 90◦ and instantaneous
velocity u(t) = U + π

2 w sin(2πf t). Within the quasisteady calculation (QSC), the instantaneous
drag is − 1

2ρSC∗
Du|u|, D is its time average over an oscillation cycle, and CD = D/ 1

2ρSU 2 is the
nondimensional form. Using MATLAB to numerically compute the integral associated with time
averaging, we arrive at the solution displayed as the dotted curve CD(J ) labeled QSC in Fig. 3(a).

Because the QSC is based on approximating the instantaneous force by that experienced under
steady conditions, one expects it to be most accurate when the ac speed w is a small perturbation
to the dc speed U , that is, for J = U/w � 1. Indeed, Fig. 3(a) shows that the QSC curve and the
experimental data both approach the steady drag coefficient C∗

D for large J . Further, we note that
in this quasisteady regime of U � w, the velocity resulting from the combined dc and ac motions
is strictly positive, in which case the integral for time-averaged drag can be solved analytically,
yielding CD = C∗

D(1 + π2/8J 2). Thus, the QSC predicts an approach of CD to C∗
D from above as

J increases, while the experimental curves of Fig. 3(a) show an approach from below. Overall, the
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FIG. 5. A train of vortex dipoles can be modeled as a jet. (a) A plate flaps with frequency f , peak-to-peak
amplitude A, and average speed w = 2Af in an oncoming flow of speed U . (b) The forward stroke generates
a clockwise vortex and the backward stroke produces a counterrotating vortex. Together, a complete stroke
creates a vortex pair. (c) Repeated oscillations create a train of dipoles that can be viewed as a jet. The jet is
emitted straight outward for U = 0 and curves downstream for U > 0.

QSC seems accurate only in predicting the limiting value CD(J → ∞) = C∗
D , but does not account

for the asymptotic scaling.
One expects the QSC to fare even worse for highly unsteady motions. Indeed, for J < 1, the

QSC tends to overpredict the forces by more than a factor of 2, as is apparent in Fig. 3(a) and more
clearly in the plot of CD(1/J ) in Fig. 3(b), which accentuates the unsteady regime.

While not quantitatively accurate for the unsteady limit of interest in this work, the QSC does
recover the scaling relationship CD ∼ 1/J observed in experiments for J < 1. This scaling is most
clearly seen in the dotted curve of Fig. 3(b), which approaches a line for large 1/J . Within the
quasisteady framework, this scaling can be motivated by a simple calculation: The forward stroke of
the disk has a speed u ∼ w + U and a negative force (resisting U ), while the backward stroke has
a slower speed u ∼ w − U and a positive force. The magnitude of the time-averaged force over a
complete cycle thus scales as D ∼ −(w + U )2 + (w − U )2 ∼ Uw. As discussed earlier, D ∼ Uw

is equivalent to the dimensionless form CD ∼ 1/J . It is somewhat surprising that the QSC recovers
the observed force-speed scaling in the unsteady regime, even though the quasisteady assumption
of U � w or J � 1 is strongly violated.

The QSC is thus successful in recovering the scaling and order of magnitude of the forces but is
not quantitatively accurate in the unsteady regime and, because it has no sound physical basis under
these conditions, it is difficult to conceive of improvements within the quasisteady framework. This
motivates the formulation of a mathematical model that is explicitly rooted in the unsteady flows
generated by an oscillating body. Below we consider an intrinsically unsteady model with the goals
of furnishing more accurate force estimates in the fast flapping or low-J limit as well as providing
a physical explanation for the CD ∼ 1/J scaling relationship.

B. Dipole-jet model: Overview and key results

Here we provide a brief overview of the mathematical model, including the key findings, and in
the sections that follow we outline the steps and calculations in detail. Inspired by the visualization
experiments, we seek a model that relates drag to the formation and dynamics of vortices and focus
in particular on the limit of fast flapping motions. In this case J � 1 and the oncoming dc speed U

can be viewed as a small perturbation to the condition of pure oscillations of average speed w. We
consider the two-dimensional (2D) situation of an oscillating plate in a flow and we assume that a
dipole is created at each edge during a back-and-forth cycle, as shown in Figs. 5(a) and 5(b). The
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unperturbed state (U = 0) generates a symmetric dipole in which each constituent vortex has equal
strength. A single dipole in a fluid tends to propagate [17] and we assume that repeated oscillations
form an array of dipoles that propagate outward, as sketched in Fig. 5(c). In our model, we associate
this train of discrete dipoles with a continuous jet [1,3] or localized region of fast flow extending
outward from the disk edge.

As illustrated in Fig. 5(b), the perturbed state (U > 0) involves a faster relative speed on the
forward stroke than on the backward stroke, generating an asymmetric dipole with each complete
oscillation. In isolation, such a structure propagates but also rotates due to the unbalanced vorticity,
leading to a curved trajectory [3,17]. In our model, this effect is associated with a curved centerline
of the jet, as shown in Fig. 5(c). Importantly, our model takes advantage of the fact that the curvature
of a jet serves as a signature of the pressure difference that induces its bending [32]. By calculating
this jet pressure differential and assuming it to also act across the body itself, our model ultimately
relates drag to the dc and ac speeds.

To make a quantitative comparison of the dipole-jet model (DJM) to the experimental data,
the calculations below consider a spectrum of spatial distributions of vorticity within the emitted
jet. This ranges from two vortex sheets bounding an irrotational core to two adjacent regions
of uniform vorticity. For all such jet geometries, we recover the scaling CD ∼ 1/J and the
multiplicative coefficient relating these two quantities is found to vary relatively little, from 2 to
2.7. These different solutions are shown together as the gray band labeled as the dipole-jet model in
Fig. 3(b), where the gradient in the band emphasizes that the model applies in the large-1/J limit.
The DJM can be seen to somewhat underpredict the measured drag. To quantify this, we use a
linear regression to measure the coefficient relating CD and 1/J in the experimental data, finding
CD ≈ (3.0 ± 0.2) × 1/J . Thus, while the QSC overestimates the measurements with relative error
of about 100%, the DJM underestimates the drag with smaller error of about 20%. Importantly,
as discussed below, the DJM also offers a clear fluid dynamical mechanism behind the unsteady
drag-speed relationship and suggests possible improvements in these force estimates.

C. Determining vorticity from flapping motions

The work of Schnipper et al. [33] furnishes an estimate for the total or area-integrated vorticity
ejected at separation off a sharp edge in unsteady motion. Their calculation relies on the integration
of vorticity across a boundary layer of flow profile uBL(y) and thickness δ as it is being ejected to
form a vortex or eddy of circulation �. Here uBL(0) = 0 on the body surface and uBL(δ) represents
the flow speed just outside the boundary layer. Then the circulation is given by

� =
∫∫

eddy
�ω · d �S =

∫∫
edge

uBL
duBL

dy
dy dt =

∫
1

2
u2

BL(δ)dt.

One might assume that uBL(δ) is given by the instantaneous speed of the plate edge relative to
the fluid at infinity. Schnipper et al. suggest that such a calculation somewhat underestimates the
vorticity generated. Here we assume

� = k

∫
1

2
u2(t)dt, (1)

where k is a dimensionless prefactor and u(t) is the instantaneous speed of the plate. In what follows,
we retain k throughout all calculations but ultimately choose k = 1, which Schnipper et al. argue
applies to boundary layer separation for steady flow over a body.

For the flapping motions studied here, the velocity at the plate edge is given by πf A sin(2πf t).
During each half stroke, the above calculation yields a circulation of magnitude

�0 = k
1

2
(πf A)2

∫ 1/2f

0
sin2(2πf t)dt = kπ2A2f

8
. (2)
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The forward stroke generates the vorticity −�0 on the right side of the dipole, as dictated by the
right-handed convention. Likewise, the backward stroke generates the left side of vorticity +�0. This
provides an estimate for the total vorticity, however its distribution in space has yet to be specified.

If there is a (small) dc speed U , the relative speed at the plate edge is now u = πf A sin(2πf t) + U

for the forward and backward strokes, respectively. The motion then generates an asymmetric dipole
of unbalanced vorticity and it can be shown from Eq. (1) that the forward stroke produces a total
vorticity of

�1 = −�0 − ��, (3)

where

�� ≈ kUA. (4)

Here we have retained up to first-order terms in the small parameter U/w. Similarly, on the backstroke
the total vorticity generated is

�2 = �0 − ��. (5)

In what follows, we distribute these eddies into a continuous jet and determine from the jet
momentum and curvature the pressure decrement aft of the body. This will furnish an estimate of
drag since the weak translational speed U contributes negligibly to the pressure difference.

D. Train of vortex dipoles as a jet

An isolated symmetric dipole tends to propagate along a straight trajectory and for point vortices
with spacing 2a it is well known that the dipole will move with speed

Ud = �0

4πa
= kπA2f

32a
. (6)

See, for example, the texts by Batchelor [3] or Saffman [17]. Asymmetric dipoles propagate but also
turn toward the stronger member of the pair. Repeated oscillations of the plate emit a dipole array
or train that propagates straight outward for the case of U = 0 and curves downstream for U > 0,
as shown in Fig. 5(c).

It is not immediately clear, however, how to compute the drag on the plate directly from the dipole
dynamics. The key step in our model is to associate a train of discrete dipoles with a continuous
jet, that is, a thin region of high-speed flow. Qualitatively, the dipole speed Ud sets the scale of the
jet speed and the dipole spacing 2a sets the jet width. A straight jet is produced for U = 0 and a
curving jet for U > 0. In what follows, we build up the vorticity and velocity distributions in the jet
from the dipoles generated.

For U = 0, we spread the vorticity in each half of the symmetric dipole train into continuous
bands on the outside of the jet, as shown in Fig. 6(a). Positive vorticity ω is distributed on the left
side and negative vorticity of equal strength on the right. These regions bound an irrotational core of
ω = 0. Integrating ω across the jet gives its velocity profile u and plots of these quantities are shown
in Fig. 6(b). Here we assume the width of the jet to be 2a and the parameter α defines the width of
the irrotational core.

For U > 0, the train of asymmetric dipoles corresponds to a curving jet of asymmetric vorticity
distribution and a corresponding velocity profile, as shown in Figs. 6(c) and 6(d). In all cases, with
the velocity distribution specified, one can compute the pressure difference across the jet under the
assumption of inviscid flow using the Euler equations. For U = 0, the pressure difference is zero,
as is expected by symmetry, and one also expects zero drag across the plate. For U > 0, the flow
field in cylindrical coordinates has zero radial component ur = 0 and nonzero angular component

uθ , therefore the pressure difference across the curved or perturbed jet is given by �p = ρ
∫

PJ
u2

θ

r
dr .
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FIG. 6. A train of vortex dipoles can be viewed as a continuous jet. (a) The vorticity associated with
symmetric dipoles can be spread into outer regions (gray regions) that bound an irrotational core. (b) Vorticity
ω and velocity u profiles across the jet. Asymmetric dipoles tend to propagate and turn. A train of such dipoles
can be viewed as a curving jet. (c) The inside of the jet (region 1) is of more intense vorticity than the outside
(region 2) and the jet has radius of curvature R. (d) Vorticity ω and velocity u profiles across the jet.

It can be shown that keeping only first order in U/w yields

�p ≈ ρ
1

R

∫
UJ

u2dx, (7)

where R is the radius of curvature of the perturbed jet and the integral is over the straight or
unperturbed jet.

E. Unperturbed jet

In the unperturbed jet, the assumption of uniform vorticity exterior regions bounding an
irrotational core leads to a velocity field [Fig. 6(b)] of the form

u =
⎧⎨
⎩

ω0(x + a), −a � x < −αa

ω0a(1 − α), −αa � x � αa

ω0(a − x), αa < x � a.

Here ω0 is the strength of vorticity generated in each half stroke, a is the half width of the jet, and
α defines the width of the irrotational core. We will retain these jet geometry parameters a and α

in the calculations that follow and later explore the sensitivity of our results to variations in these
quantities. As required for Eq. (7), we then compute∫

UJ

u2dx = 2

3
ω2

0a
3(1 − α)2(1 + 2α). (8)

Next we determine ω0 through Eqs. (1) and (2). We uniformly spread the vorticity produced in each
vortex over a rectangular region on each side of the jet. The circulation of Eq. (1) is simply

�0 =
∫∫

�ω0 · d �S = ω0a(1 − α)L,
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where a(1 − α) is the width of each exterior vorticity band and

L = Ud/f = kπA2

32a
(9)

is the distance between successive dipoles or, equivalently, the distance a dipole travels in one flap
of the plate. Equivalently,

ω0 = �0

a(1 − α)L
. (10)

F. Perturbed jet

Now switching to cylindrical coordinates for the curving jet, we solve for the velocity field by
integrating �ω = �∇ × �u = 1

r
∂
∂r

(ruθ )ẑ. Here r is the radial distance from the center of the jet and the
simplified form of the curl results from only the angular component of the velocity uθ being nonzero.
In the outer regions, uniform vorticity implies that uθ ∼ r + 1

r
. The center region of irrotational flow

has the form uθ ∼ 1
r
. Imposing the boundary condition that uθ = 0 on the outer boundaries and

continuity conditions between the three regions gives the full velocity profile as well as the radius
of curvature R of the jet. Here we are restricting our attention to a small segment of the jet emerging
from the tip so that the radius of curvature may assumed to be constant:

uθ =

⎧⎪⎨
⎪⎩

1
2ω1

[
r − (R−a)2

r

]
, R − a � r < R − αa

a2(α2 − 1) ω1ω2
ω1+ω2

1
r
, R − αa � r � R + αa

1
2ω2

[
r − (R+a)2

r

]
, R + αa < r � R + a.

(11)

Here it can be shown that R = a
2 (α + 1)ω1−ω2

ω1+ω2
.

As in Eq. (10), we integrate the uniform vorticity in the outer bands of the jet to arrive at
ω1,2 = �1,2

a(1−α)L . This allows us to express the radius of curvature in terms of the total vorticity of the
symmetric jet �0 and its perturbation ��,

R = a

2
(α + 1)

�0

��
. (12)

G. Pressure differential and drag

Using the results of Eqs. (8), (10), and (12), Eq. (7) then becomes

�p = 4

3
ρ

�0��

L2

1 + 2α

1 + α
.

Using Eqs. (2), (4), and (9) we can now relate the pressure difference to the kinematic variables U ,
A, and f . This leads to a drag coefficient of

CD = �p
1
2ρU 2

= 512

3

1 + 2α

1 + α

(
a

A

)2
w

U
, (13)

where w = 2Af is the average flapping speed.
The jet width 2a is yet to be determined in terms of the flapping motion of the plate. One

prescription demands that the average jet speed uJ is equal to the dipole propulsion speed Ud , a
choice that achieves consistency between the dipole and jet pictures. For the average jet speed we
again make use of the velocity profile in the unperturbed jet:

uJ = 1

2a

∫
UJ

u dx = ω0a

2
(1 − α2).
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Taken together with Eq. (2), (10), and (9), we arrive at

uJ = 2πaf (1 + α). (14)

Equating this to the dipole speed in Eq. (6), we arrive at the ratio ( a
A

)2 = k
64

1
(1+α) . Invoking the

assumption of k = 1 from Eq. (1) gives ( a
A

)2 = 1
64

1
(1+α) . The drag coefficient then becomes

CD = 8k

3

1 + 2α

(1 + α)2

w

U
= 8

3

1 + 2α

(1 + α)2

w

U
. (15)

This central result of the DJM shows that CD ∼ w/U = 1/J , which is the scaling measured in
experiments in the unsteady limit of large 1/J .

Finally, we explore how CD is affected as α is varied over its entire range 0 � α � 1. Plotting
CD(1/J ) for all values of α leads to the gray band shown in Fig. 3(b). When α = 1, the jet is a region
of irrotational flow bounded by two vortex sheets and CD = 2 × 1/J . At the other extreme α = 0,
we have a jet composed of two regions of uniformly distributed vorticity and CD = 8

3 × 1/J . Thus,
the predicted drag is relatively insensitive to the details of the vorticity distribution within the jet.
Further, because of the assumption k = 1, we expect this model to somewhat underestimate CD and
indeed Fig. 3(b) shows that the DJM underestimates the experimental data by about 20%.

III. DISCUSSION

In this work we explore how the drag or aerodynamic resistance of a body in a flow is affected
by unsteady motions and our idealized experiments involve a disk that is driven to oscillate while
progressing through air. Our force measurements for different oscillation (ac) and steady (dc) speeds
reveal two regimes: Slow oscillations lead to a drag that increases with the square of the dc speed
and fast oscillations lead to a time-averaged drag that increases linearly with flow speed. This latter
unsteady regime is the focus of this work, and experiments and modeling reveal the scaling law
D ∼ Uw, where U and w are the dc and ac speeds, respectively. This relationship lends itself to two
physical interpretations for bodies undergoing fast oscillations in a flow. For fixed speed U of the
body relative to the far-field fluid, the drag can be modulated in proportion to the flapping speed w.
Similarly, for a body subject to a fixed force, its terminal speed U through the fluid can be slowed
by increasing w.

The key physical insight provided by our dipole-jet model lies in the fact that faster oncoming flow
speed U leads to more asymmetric dipoles and a more strongly curved jet. This produces a narrower
wake downstream, as suggested by the schematic of Fig. 5(c). Counterintuitively, increasing U

thus leads to an apparent streamlining, or diminished disturbance to the oncoming current by the
body. In essence, the effective area S of the body presented to the flow decreases with increasing U

and thus drag grows more weakly than the conventional U 2 scaling. For example, if the effective
area decreases as S ∼ 1/U , then D ∼ SU 2 ∼ U , which is the scaling relationship measured in
experiments and recovered by our model.

While the quasisteady framework applies in the dc-dominated limit (J � 1) and our dipole-jet
model applies in the ac-dominated limit (J � 1), the experimental data in the transitional region
between these regimes show a number of features yet to be explained. We first note that J = 1
represents an unusual dynamical condition: The disk is nearly still relative to the fluid on the
backward stroke when the ac and dc motions largely cancel and it then advances quickly on the
forward stroke when the motions add. Interestingly, J ≈ 1 seems to demarcate a surprisingly sharp
transition between scaling regimes, as revealed by the kinks in the curves of Fig. 2(b). Other oddities
include large variations in forces at J ≈ 1 for higher f , as well as a pronounced drop in CD near
J = 1.5 [Fig. 3(a)]. This drop in CD in particular, together with the high CD for J < 1, indicates
that drag can be either decreased or increased by the superposition of an ac oscillation on a steady dc
motion. This suggests that imposed vibrations may be an effective means to modulate the resistance
of a body to motion through a fluid [34].
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Additional topics and parameters to be explored include system dimensionality (2D plate vs
3D disk), translational versus rotational motions, body shape, and kinematic parameters such as
amplitude. To quantitatively assess the dipole-jet model predictions of the flows generated, future
studies will involve two-dimensional experiments using a long plate undergoing fast flapping.
Computational fluid dynamics simulations will also likely prove advantageous in comparing both
the flows and forces to the predictions of this model [18,34]. Finally, unsteady fluid forces might
also be inferred from quantitative measurements of the flow velocity field [35].

Animal flight provides analogs to the two regimes studied here, where J > 1 is represented by
gliding and fast forward flight and J < 1 by hovering and slow maneuvering. Because natural flight
involves wing shapes and flapping kinematics that differ markedly from those studied here, it is
unclear whether the anomalous scaling for J < 1 is manifest among natural hoverers or flapping-
wing robots. Interestingly, numerous recent studies have shown flight dynamics that are in fact
consistent with a linear resistance to motion [22–31]. For example, measurements of the turning
dynamics of animals [22,23,25,27,28,36,37] indicate a countertorque that is proportional to the body
rotation speed. Similarly, the forward flight of insects [24] and robots [29] are also consistent with
a linear drag-speed relationship. These observations suggest that the basic physical mechanisms
studied in our idealized system may also be at work for more complex shapes and motions.

ACKNOWLEDGMENT

We thank F. Fang, H. Masoud, N. Moore, and M. Shelley for useful discussions.

[1] D. J. Tritton, Physical Fluid Dynamics (Clarendon, Oxford, 1988).
[2] J. D. Anderson, A History of Aerodynamics (Cambridge University Press, Cambridge, 1997).
[3] G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 2000).
[4] H. Schlichting and K. Gersten, Boundary Layer Theory (Springer, Berlin, 2000).
[5] J. Zhang, S. Childress, A. Libchaber, and M. Shelley, Flexible filaments in a flowing soap film as a model

for one-dimensional flags in a two-dimensional wind, Nature (London) 408, 835 (2000).
[6] M. Argentina and L. Mahadevan, Fluid-flow-induced flutter of a flag, Proc. Natl. Acad. Sci. USA 102,

1829 (2005).
[7] M. Shelley, N. Vandenberghe, and J. Zhang, Heavy Flags Undergo Spontaneous Oscillations in Flowing

Water, Phys. Rev. Lett. 94, 094302 (2005).
[8] R. M. Alexander, Principles of Animal Locomotion (Princeton University Press, Princeton, 2003).
[9] S. P. Sane, The aerodynamics of insect flight, J. Exp. Biol. 206, 4191 (2003).

[10] Z. J. Wang, Dissecting insect flight, Annu. Rev. Fluid Mech. 37, 183 (2005).
[11] N. Vandenberghe, J. Zhang, and S. Childress, Symmetry breaking leads to forward flapping flight, J. Fluid

Mech. 506, 147 (2004).
[12] S. Alben and M. Shelley, Coherent locomotion as an attracting state for a free flapping body, Proc. Natl.

Acad. Sci. USA 102, 11163 (2005).
[13] F. W. Roos and W. W. Willmarth, Some experimental results on sphere and disk drag, AIAA J. 9, 285

(1971).
[14] M. H. Dickinson, F.-O. Lehmann, and S. P. Sane, Wing rotation and the aerodynamic basis of insect flight,

Science 284, 1954 (1999).
[15] N. Agre, S. Childress, J. Zhang, and L. Ristroph, Comparative flow visualization for steady and unsteady

motions of a disk through a fluid, Phys. Fluids 27, 091103 (2015).
[16] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.1.033202 for flow

visualization movies.
[17] P. G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1992).

033202-13

http://dx.doi.org/10.1038/35048530
http://dx.doi.org/10.1038/35048530
http://dx.doi.org/10.1038/35048530
http://dx.doi.org/10.1038/35048530
http://dx.doi.org/10.1073/pnas.0408383102
http://dx.doi.org/10.1073/pnas.0408383102
http://dx.doi.org/10.1073/pnas.0408383102
http://dx.doi.org/10.1073/pnas.0408383102
http://dx.doi.org/10.1103/PhysRevLett.94.094302
http://dx.doi.org/10.1103/PhysRevLett.94.094302
http://dx.doi.org/10.1103/PhysRevLett.94.094302
http://dx.doi.org/10.1103/PhysRevLett.94.094302
http://dx.doi.org/10.1242/jeb.00663
http://dx.doi.org/10.1242/jeb.00663
http://dx.doi.org/10.1242/jeb.00663
http://dx.doi.org/10.1242/jeb.00663
http://dx.doi.org/10.1146/annurev.fluid.36.050802.121940
http://dx.doi.org/10.1146/annurev.fluid.36.050802.121940
http://dx.doi.org/10.1146/annurev.fluid.36.050802.121940
http://dx.doi.org/10.1146/annurev.fluid.36.050802.121940
http://dx.doi.org/10.1017/S0022112004008468
http://dx.doi.org/10.1017/S0022112004008468
http://dx.doi.org/10.1017/S0022112004008468
http://dx.doi.org/10.1017/S0022112004008468
http://dx.doi.org/10.1073/pnas.0505064102
http://dx.doi.org/10.1073/pnas.0505064102
http://dx.doi.org/10.1073/pnas.0505064102
http://dx.doi.org/10.1073/pnas.0505064102
http://dx.doi.org/10.2514/3.6164
http://dx.doi.org/10.2514/3.6164
http://dx.doi.org/10.2514/3.6164
http://dx.doi.org/10.2514/3.6164
http://dx.doi.org/10.1126/science.284.5422.1954
http://dx.doi.org/10.1126/science.284.5422.1954
http://dx.doi.org/10.1126/science.284.5422.1954
http://dx.doi.org/10.1126/science.284.5422.1954
http://dx.doi.org/10.1063/1.4930899
http://dx.doi.org/10.1063/1.4930899
http://dx.doi.org/10.1063/1.4930899
http://dx.doi.org/10.1063/1.4930899
http://link.aps.org/supplemental/10.1103/PhysRevFluids.1.033202


AGRE, CHILDRESS, ZHANG, AND RISTROPH

[18] H. A. Khaledi, H. I. Andersson, M. Barri, and B. Pettersen, Flow past a normal flat plate undergoing inline
oscillations, Phys. Fluids 24, 093603 (2012).

[19] M. Canals and G. Pawlak, Three-dimensional vortex dynamics in oscillatory flow separation, J. Fluid
Mech. 674, 408 (2011).

[20] J. J. Williams, N. Metje, L. E. Coates, and P. R. Atkins, Sand suspension by vortex pairing, Geophys. Res.
Lett. 34, 15 (2007).

[21] O. M. Griffin and S. E. Ramberg, Vortex shedding from a cylinder vibrating in line with an incident
uniform flow, J. Fluid Mech. 75, 257 (1976).

[22] A. J. Bergou, L. Ristroph, J. Guckenheimer, I. Cohen, and Z. J. Wang, Fruit Flies Modulate Passive Wing
Pitching to Generate in-Flight Turns, Phys. Rev. Lett. 104, 148101 (2010).

[23] L. Ristroph, A. J. Bergou, G. Ristroph, K. Coumes, G. J. Berman, J. Guckenheimer, Z. J. Wang, and I.
Cohen, Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles, Proc. Natl. Acad.
Sci. USA 107, 4820 (2010).

[24] L. Ristroph, A. J. Bergou, J. Guckenheimer, Z. J. Wang, and I. Cohen, Paddling Mode of Forward Flight
in Insects, Phys. Rev. Lett. 106, 178103 (2011).

[25] L. Ristroph, G. Ristroph, S. Morozova, A. J. Bergou, S. Chang, J. Guckenheimer, Z. J. Wang, and I. Cohen,
Active and passive stabilization of body pitch in insect flight, J. R. Soc. Interface 10, 20130237 (2013).

[26] B. Cheng, S. N. Fry, Q. Huang, and X. Deng, Aerodynamic damping during rapid flight maneuvers in the
fruit fly drosophila, J. Exp. Biol. 213, 602 (2010).

[27] I. Faruque and J. S. Humbert, Dipteran insect flight dynamics. Part 1 Longitudinal motion about hover,
J. Theor. Biol. 264, 538 (2010).

[28] T. L. Hedrick, B. Cheng, and X. Deng, Wingbeat time and the scaling of passive rotational damping in
flapping flight, Science 324, 252 (2009).

[29] Z. E. Teoh, S. B. Fuller, P. Chirarattananon, N. O. Prez-Arancibia, J. D. Greenberg, and R. J. Wood,
Proceedings of the International Conference on Intelligent Robots and Systems (IEEE, Piscataway, 2012),
p. 3209.

[30] L. Ristroph and S. Childress, Stable hovering of a jellyfish-like flying machine, J. R. Soc. Interface 11,
20130992 (2014).

[31] F. van Breugel, W. Regan, and H. Lipson, From insects to machines, IEEE Robot. Autom. Mag. 15, 68
(2008).

[32] D. A. Spence, The lift coefficient of a thin, jet-flapped wing, Proc. R. Soc. London Ser. A 238, 46 (1956).
[33] T. Schnipper, A. Andersen, and T. Bohr, Vortex wakes of a flapping foil, J. Fluid Mech. 633, 411 (2009).
[34] D. Shiels and A. Leonard, Investigation of a drag reduction on a circular cylinder in rotary oscillation,

J. Fluid Mech. 431, 297 (2001).
[35] G. R. Spedding and A. Hedenstrom, PIV-based investigations of animal flight, Exp. Fluids 46, 749 (2009).
[36] T. Hesselberg and F.-O. Lehmann, Turning behavior depends on frictional damping in the fruit fly

Drosophila, J. Exp. Biol. 210, 4319 (2007).
[37] W. B. Dickson, P. Polidoro, M. M. Tanner, and M. H. Dickinson, A linear systems analysis of the yaw

dynamics of a dynamically scaled insect model, J. Exp. Biol. 213, 3047 (2010).

033202-14

http://dx.doi.org/10.1063/1.4749803
http://dx.doi.org/10.1063/1.4749803
http://dx.doi.org/10.1063/1.4749803
http://dx.doi.org/10.1063/1.4749803
http://dx.doi.org/10.1017/S0022112011000012
http://dx.doi.org/10.1017/S0022112011000012
http://dx.doi.org/10.1017/S0022112011000012
http://dx.doi.org/10.1017/S0022112011000012
http://dx.doi.org/10.1029/2007GL030761
http://dx.doi.org/10.1029/2007GL030761
http://dx.doi.org/10.1029/2007GL030761
http://dx.doi.org/10.1029/2007GL030761
http://dx.doi.org/10.1017/S0022112076000207
http://dx.doi.org/10.1017/S0022112076000207
http://dx.doi.org/10.1017/S0022112076000207
http://dx.doi.org/10.1017/S0022112076000207
http://dx.doi.org/10.1103/PhysRevLett.104.148101
http://dx.doi.org/10.1103/PhysRevLett.104.148101
http://dx.doi.org/10.1103/PhysRevLett.104.148101
http://dx.doi.org/10.1103/PhysRevLett.104.148101
http://dx.doi.org/10.1073/pnas.1000615107
http://dx.doi.org/10.1073/pnas.1000615107
http://dx.doi.org/10.1073/pnas.1000615107
http://dx.doi.org/10.1073/pnas.1000615107
http://dx.doi.org/10.1103/PhysRevLett.106.178103
http://dx.doi.org/10.1103/PhysRevLett.106.178103
http://dx.doi.org/10.1103/PhysRevLett.106.178103
http://dx.doi.org/10.1103/PhysRevLett.106.178103
http://dx.doi.org/10.1098/rsif.2013.0237
http://dx.doi.org/10.1098/rsif.2013.0237
http://dx.doi.org/10.1098/rsif.2013.0237
http://dx.doi.org/10.1098/rsif.2013.0237
http://dx.doi.org/10.1242/jeb.038778
http://dx.doi.org/10.1242/jeb.038778
http://dx.doi.org/10.1242/jeb.038778
http://dx.doi.org/10.1242/jeb.038778
http://dx.doi.org/10.1016/j.jtbi.2010.02.018
http://dx.doi.org/10.1016/j.jtbi.2010.02.018
http://dx.doi.org/10.1016/j.jtbi.2010.02.018
http://dx.doi.org/10.1016/j.jtbi.2010.02.018
http://dx.doi.org/10.1126/science.1168431
http://dx.doi.org/10.1126/science.1168431
http://dx.doi.org/10.1126/science.1168431
http://dx.doi.org/10.1126/science.1168431
http://dx.doi.org/10.1098/rsif.2013.0992
http://dx.doi.org/10.1098/rsif.2013.0992
http://dx.doi.org/10.1098/rsif.2013.0992
http://dx.doi.org/10.1098/rsif.2013.0992
http://dx.doi.org/10.1109/MRA.2008.929923
http://dx.doi.org/10.1109/MRA.2008.929923
http://dx.doi.org/10.1109/MRA.2008.929923
http://dx.doi.org/10.1109/MRA.2008.929923
http://dx.doi.org/10.1098/rspa.1956.0203
http://dx.doi.org/10.1098/rspa.1956.0203
http://dx.doi.org/10.1098/rspa.1956.0203
http://dx.doi.org/10.1098/rspa.1956.0203
http://dx.doi.org/10.1017/S0022112009007964
http://dx.doi.org/10.1017/S0022112009007964
http://dx.doi.org/10.1017/S0022112009007964
http://dx.doi.org/10.1017/S0022112009007964
http://dx.doi.org/10.1017/S002211200000313X
http://dx.doi.org/10.1017/S002211200000313X
http://dx.doi.org/10.1017/S002211200000313X
http://dx.doi.org/10.1017/S002211200000313X
http://dx.doi.org/10.1007/s00348-008-0597-y
http://dx.doi.org/10.1007/s00348-008-0597-y
http://dx.doi.org/10.1007/s00348-008-0597-y
http://dx.doi.org/10.1007/s00348-008-0597-y
http://dx.doi.org/10.1242/jeb.010389
http://dx.doi.org/10.1242/jeb.010389
http://dx.doi.org/10.1242/jeb.010389
http://dx.doi.org/10.1242/jeb.010389
http://dx.doi.org/10.1242/jeb.042978
http://dx.doi.org/10.1242/jeb.042978
http://dx.doi.org/10.1242/jeb.042978
http://dx.doi.org/10.1242/jeb.042978



