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Flying insects have evolved sophisticated sensory–motor systems, and here

we argue that such systems are used to keep upright against intrinsic flight

instabilities. We describe a theory that predicts the instability growth rate in

body pitch from flapping-wing aerodynamics and reveals two ways of

achieving balanced flight: active control with sufficiently rapid reactions

and passive stabilization with high body drag. By glueing magnets to fruit

flies and perturbing their flight using magnetic impulses, we show that

these insects employ active control that is indeed fast relative to the instabil-

ity. Moreover, we find that fruit flies with their control sensors disabled can

keep upright if high-drag fibres are also attached to their bodies, an obser-

vation consistent with our prediction for the passive stability condition.

Finally, we extend this framework to unify the control strategies used by

hovering animals and also furnish criteria for achieving pitch stability in

flapping-wing robots.
1. Introduction
Flight of both animals and machines requires not only generating aerodynamic

force sufficient to overcome gravity but also maintaining balance while aloft

[1–3]. For fixed-wing aircraft, the need for balance has led to solutions ranging

from passenger airliners that are stable by design to fighter jets that require

active control of wing surfaces to overcome intrinsic instabilities [4]. More

generally, control strategies are constrained by instabilities, with fast-growing

instabilities demanding fast reactions [5,6]. Here, we show how these same prin-

ciples play out in the case of flapping-wing flight of insects. We apply techniques

from dynamical systems and control theory to form a framework that links the

physical stability characteristics of flying insects with the sensory–motor systems

needed for control. We use the fruit fly, Drosophila melanogaster, as a model organ-

ism in establishing this framework and also show how the stabilization strategies

of other animals and flapping-wing robots can be assessed.

Our approach builds on the last decade’s rapid progress in understanding

how intrinsic stability or instability emerges from the aerodynamics of flapp-

ing wings. A variety of studies have used computational fluid flow solvers

[7–10] and aerodynamic models [11–13] to assess a simulated insect’s passive

dynamical response to flight perturbations. Such studies have shown that the

back-and-forth flapping motions characterizing the wing kinematics of fruit

flies and a broad class of other insects induce an oscillating diverging in-

stability in the body pitch orientation. The appearance of this instability in a

variety of simulations using different body plans and wing motions suggests

that it is a generic feature of insect flight. Thus, the pitch dynamics is an appeal-

ing platform for investigating how insect flight control systems contend with

physical instabilities.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2013.0237&domain=pdf&date_stamp=2013-05-22
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Figure 1. Fruit flies quickly overcome in-flight perturbations. (a) Reconstruction of a flight perturbation filmed with three high-speed cameras. Selected images are
shown on the side panels, and the measured configurations of the insect (body length 2.7 mm) are displayed on the model. A black bar on the insect body
highlights its pitch orientation. As the insect ascends from left to right, an impulsive magnetic field (blue arrow) induces a nose-down torque on the ferromagnetic
pin glued to its back. (b) Perturbations are applied to the body pitch orientation, and the insect responds with changes to the wing-stroke angle. (c) By sweeping its
wings further in front, the insect generates a nose-up corrective torque. (d ) Body pitch (solid blue line) and wing-stroke (dashed red line) angles, with each quantity
shifted so that the average pre-perturbation value is zero. The magnetic torque perturbation (thin blue stripe) tips the insect downwards, and the insect responds by
correcting its orientation. After a reaction time of 12 ms (thick red stripe), the fly generates corrective wing motions. Each gray and white stripe denotes a wing beat,
with a typical period of about 4 ms. (e) Histogram of reaction times measured in 12 perturbation experiments. (Online version in colour.)
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The intrinsic instability of body orientation in flapping-

wing flight seems consistent with the highly specialized sen-

sory adaptations of flying insects [14]. The flight control

system of the true flies (order Diptera), for example, includes

the halteres, a pair of stalk-like organs that flap and serve as

vibrating structure gyroscopes capable of sensing body

rotations [15,16]. The sensory neurons at the base of the hal-

teres are directly wired to the motor neurons of the flight

muscles [17], implicating this system in fast flight behaviours.

Indeed, neural recordings show that the delay or reaction

time of the haltere system is fast compared with other sensory

modalities such as the visual system [18,19]. These findings,

as well as behavioural experiments that apply perturbations

to insects [20,21], indicate that the haltere system plays a cen-

tral role in fast flight stabilization.

In this work, we explore the hypothesis that the flight con-

trol systems of insects have evolved to overcome the intrinsic

instabilities of flapping flight. Building on the recent work on

the role of control delay in animal movement [22–24], we con-

jecture that the reaction time of sensory–motor flight control

systems must be fast relative to the time scale of instability

growth. We first motivate this hypothesis through a series of

experiments that mechanically perturb the free flight of fruit

flies and assess the flight of these insects after manipulations

to their sensors and to their body morphology. We then

show how these observations can be organized by a control

theoretic framework that evaluates flight performance as a

function of the physical time scales associated with stability

as well as the reaction time of the control system. Finally,

we generalize our results to unify the stability and control strat-

egies used by a broad class of hovering insects, hummingbirds

and flapping-wing robots.
2. Experiments
2.1. Flight perturbations
To determine the flight control strategy used by fruit flies

(D. melanogaster), we apply impulsive torques to these insects
while capturing high-speed video of their flight [21,25]. In

these experiments, we first glue a small ferromagnetic pin to

the dorsal thoracic surface of each insect. We then release

many prepared flies within a clear chamber that is placed at

the intersection point of three orthogonal high-speed video

cameras. Our set-up includes a laser trigger in which a flying

insect initiates both video capture as well as the application

of an impulsive magnetic field generated by Helmholtz coils.

In this study, the coils are placed above and below the chamber,

generating a vertical magnetic field and thus a torque that

perturbs the body pitch orientation. Nose-up and nose-down

perturbations are achieved by running experiments at both

polarities of the applied current through the coils. The magni-

tude of the current, and thus field strength, is selected by trial

and error to produce moderate body pitching of 5–258. Finally,

we use custom motion-tracking algorithms to extract the wing

and body kinematics from the videos [26], thus providing a

window into the flight control response of these insects.

A typical flight perturbation experiment is shown in the

reconstruction of figure 1a. Selected images captured from

each high-speed camera are shown on the side panels, and

the extracted body and wing configurations are displayed

on the model insect. A black cylinder is drawn through its

long axis, highlighting the changes to body pitch orientation.

As the insect ascends and progresses left to right, the mag-

netic torque is applied (curved arrow) and causes a nose-

down rotation. The insect then recovers its pitch orientation

by a nose-up rotation as it continues on its trajectory. We

quantify these dynamics by measuring the pitch angle over

time, and in figure 1d we display the deviations in the pitch

relative to its mean value prior to the perturbation. The mag-

netic torque is applied for one wing beat (blue stripe) starting

at time zero, and the body pitch then rapidly decreases by

almost 208. Pitch then increases to near its original value,

making a recovery in about 60 ms or 15 wing beats.

To gain insight into the fly’s stabilization mechanism, we

compare the wing motions before the perturbation and

during the nose-up response. This recovery is driven by

subtle but stereotyped wing adjustments, most notably by
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Figure 2. Active and passive stabilization of fruit fly flight. (a) Fruit flies use fast gyroscopic sensors called halteres to mediate flight control. Each haltere vibrates
during flight and detects changes in body orientation. If glued down, the haltere no longer properly functions. (b) Dandelion seed fibres add drag to the insect body,
thus increasing passive stability. (c) Inset: body orientation and flight trajectory of a fly with halteres disabled (left), showing a tumbling motion while falling
downwards. When fibres are attached to a haltere-disabled insect, it is able to keep upright as it descends (right). Main figure: insects are released in air,
and flight performance is assessed by measuring the trajectory angle with respect to the downward vertical. Distributions of flight angles for insects with halteres
disabled (light grey) and insects with halteres disabled and with fibres attached (dark grey). (Online version in colour.)
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increasing the forward sweep of the wings, as shown by the

overhead views in figure 1c. This observation is consistent

with a strategy in which the aerodynamic centre is shifted

forwards in order to generate a nose-up pitch torque [27]. To

quantify this response, we measure the stroke angle of the

wings, and in figure 1d we display the deviation in this angle

from its value prior to the perturbation. The fast response is

characterized by an increase in the stroke angle that occurs

about two or three wing beats after the initiation of the pertur-

bation (red stripe). We quantify this reaction time, TRXN ¼

12 ms, by determining the first time in which the stroke angle

exceeds and remains higher than any pre-perturbation level.

By conducting many such experiments, we find that the

flight control response of fruit flies to pitch perturbations is

similar across different individuals. In particular, for 12 trials

of near hovering flight—with the body speed always less

than 20 per cent of the wing speed—we measure that the

mean reaction time is TRXN ¼ 13+2 ms, as shown by the his-

togram in figure 1e. We note that our determination of the

reaction time reflects the entire behavioural response sequence.

Thus, in addition to the neural delay time that has been

measured to be 2–9 ms [19], our measurements also include

the physical lag times associated with body motion to sensor

detection and muscle activation to wing motion. Further, our

measurements for pitch control are in quantitative agreement

with the delay in wing adjustments for fruit flies responding

to yaw perturbations [21]. Thus, these insects are able to

remain upright against flight disturbances by applying fast,

active control over wing motions.

2.2. Manipulation of sensors and body plan
To offer further evidence that fruit flies rely on active control,

we revisit classic experiments that disable the fast mechanical

sensors of these insects [1,15,16]. As shown in figure 2a, the

halteres of the fly are located below each wing and oscillate

in flight, serving as gyroscopic sensors of body rotations.

Here, we disable this sensory function by glueing the halteres

to the abdomen and thereby preventing any oscillations.

When released in still air, these sensor-disabled insects fall

nearly straight down as indicated by the measured left trajec-

tory in figure 2c. High-speed video shows that these flies
are indeed flapping their wings at typical frequencies and

amplitudes but that their body rapidly tumbles nonetheless,

suggesting that a lack of orientational control undermines

their flight. To quantify their flight performance, we release

sensor-disabled flies from 1 m high and measure the radial dis-

tance these insects are able to travel. We then compute the flight

angle as the inverse tangent of the ratio of the distance travelled

to the initial drop height. A histogram of many trials is shown

in light grey in figure 2c, and the typical flight trajectory angle

near zero quantifies their poor flight performance.

Interestingly, stability can be reinstated by modifying the

insect body itself [15,16]. In these experiments, we glue down

the halteres and also attach to the abdomen approximately 10

thin fibres taken from a dandelion seed pod, as shown in

figure 2b. When released in air, these modified insects are

able to maintain a coherent flight trajectory, typically descend-

ing at a flight angle near 458 before landing on the ground. This

increased performance is quantified in figure 2c by the dark

grey histogram of flight angles for many trials. Further, a typi-

cal flight trajectory extracted from high-speed video is shown

to the right in the inset of figure 2c, revealing that these flies

are able to maintain an upright orientation throughout flight.

Thus, while these insects are rather weak flyers, it appears

that this modification enhances orientational stability and

allows for directed flight over long distances.

Collectively, these experimental observations suggest

that the flapping-wing flight of insects is intrinsically unsta-

ble but may be either actively controlled with fast reactions

or passively stabilized with high body drag. In the following

section, we use these findings as a guide for formulating a

mathematical model that unifies the elements of stability

and control.
3. Model of pitch stability and control
3.1. Body pitch dynamical model
Recent aerodynamic simulations indicate that body orientation

is intrinsically unstable for some insects [7,8,11,13]. These

simulations include both computational fluid dynamics

(CFD) codes that numerically solve the Navier–Stokes
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Figure 3. A force diagram shows how an instability in body pitch develops.
During hovering, the wings flap back and forth to produce lift that balances
body weight. A perturbation to the pitch orientation causes the insect to
move forwards. Drag on the wings then becomes unbalanced, inducing a
torque that tends to tip the insect backwards. This simplified picture high-
lights some of the important effects to be incorporated in a model of the
pitch dynamics. (Online version in colour.)

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130237

4
equations as well as quasi-steady models that approximate

aerodynamic forces on the flapping wings. Both formulations

couple fluid forces to the rigid-body dynamics of the insect

body, and simulations of a variety of flies, bees and moths

show that body pitch is subject to diverging oscillations.

These simulations motivate a simplified physical picture

that captures the nature of the instability [7]. As shown in

figure 3, the relevant physical mechanisms can be illustrated

most simply for normal hovering flight. The wings beat back

and forth, the average lift is directed upwards to balance

body weight, and drag points horizontally but cancels for

the two half-strokes. If pitched forwards, the re-directed lift

drives the insect forwards. This leads to a net drag on the

wings, because the wing airspeed on the forward sweep is

now greater than the airspeed on the backward sweep [28–

30]. If the wings are located above the body centre of mass,

as is the case for flies and many other insects [31], this drag

creates a nose-up pitch torque that rotates the insect. In

effect, the insect is flipped backwards by the drag on its

wings. If left uncontrolled, this instability rocks the insect

back and forth with growing amplitude and ultimately

causes it to tumble from the air.

These observations suggest a minimal set of ingredients

to be included in a reduced-order model. The insect body is

an extended rigid body of mass M and pitch moment of

inertia I. We will evaluate longitudinal motion of this body,

that is, the dynamics of the forward velocity, pitch angle and

pitch rate (u,u,v ¼ u). The body orientation during hover-

ing defines u ¼ 0. So-called ‘normal hovering’ insects beat

their wings back and forth [32], and the average lift points

upwards and balances body weight: L ¼Mg. We assume that

the wings co-move with the body, so the average lift vector is

of fixed position and orientation with respect to the body

[31,33]. As we will show, the distribution of drag is critical to

the flight dynamics. For the sake of generality, we assume

that the insect body has distributed sources of linear drag D

at displacements r from the centre of mass. Such drag sources

include the wings, which have been shown to give rise to

drag linear in body velocity [30], as well as viscous forces on

the body itself and on other damping surfaces such as the

legs. Drag is directed opposite to the velocity u for each drag

source, dD ¼ 2u . dm. Here, dm represents the dependence of

drag on aerodynamic characteristics of the source, such as

size and coefficient of drag, as well as on fluid properties,

such as density and viscosity.

We next write down a general linear model of the longi-

tudinal dynamics. If the insect is pitched, horizontal body

acceleration _u ¼ L=M sin u � gu results from the re-directed

lift. The vertical body acceleration stemming from the loss

of lift is a second-order effect and therefore not included in

this analysis. Drag causes both translational and angular

velocities to couple to both translational and angular accelera-

tions. Thus, the system can be described using the linearized

Newton–Euler equations,

_u ¼ a � u� b � u� d � v;
_u ¼ v

and _v ¼ �1 � v� g � uþ t:

9>>=
>>; ð3:1Þ

Here, a ¼ g is the re-directed lift-based acceleration, the

coefficients (b,g,d,1) define how the sources of drag give

rise to accelerations and t is the net external pitch torque

divided by the body moment of inertia. Evaluation of the
drag sources distributed at displacements r from the body

centre of mass leads to the following relations: b ¼
Ð

dm=M;

1 ¼
Ð

r2dm=I; g ¼
Ð

r � ŷdm=I; d ¼
Ð

r � ŷdm=M with ŷ the ver-

tical unit vector. Thus, coefficients in this dynamical system

appear as ratios of moments of the drag distribution and

moments of the mass distribution, M ¼
Ð

dm and I ¼
Ð

r2dm.

We note that our simplified model of the pitch dynamics

is similar in form to those presented in previous studies

[7,11,13,34]. Our goal is to re-cast these equations in terms

of the relevant time scales, a language that offers physical

intuition and lends itself to biological interpretation.

3.2. Time-scale formulation of the model
Algebraic elimination of the dynamical variables u and v in

favour of the pitch angle u leads to a third-order differential

equation that describes pitch in the absence of external

torques, t ¼ 0:

1

b
_€uþ 1þ 1

b

� �
€uþ 1� dg

b

� �
_uþ ag

b
u ¼ 0: ð3:2Þ

Thus, while the variables b and e appear on their own, the

other variables appear only in combinations. To physically

interpret these combinations, it is convenient to define a

centre-of-drag vertical displacement from the centre of

mass, h ¼
Ð

r � ŷdm=
Ð

dm: Then, one can show that ag/b ¼

Mgh/I and dg/b ¼Mh2b/I. This second term is negligible

for small h, that is, when drag sources are distributed

nearly symmetrically about the body.

The dynamics of equation (3.2) lends itself to an interpret-

ation in terms of physical time scales. First, forward motion is

damped with a characteristic time of TF ; 1/b. Likewise,

pitch rotations are damped over a time scale of TP ; 1/e.

Finally, the insect body has an inherent inertial rotation

time scale of TI ;
ffiffiffiffiffiffiffiffiffiffiffi
b=ag

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=Mgjhj

p
, which is similar in

form to the oscillation period of a compound pendulum sup-

ported a distance h from its centre of mass. Cast in these

variables, the pitch dynamical equation becomes

TF
_€uþ 1þ TF

TP

� �
€uþ 1

TP

� �
_u+

1

T2
I

 !
u ¼ 0: ð3:3Þ

Here, the positive form refers to a low centre of mass relative

to centre of drag, while the negative form refers to top-heavy

body plans. This equation is similar to a damped rotational

oscillator. In fact, in the limit of strong forward damping,

TF! 0, the dynamical equation has the same form as that
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of a damped compound pendulum. But the presence of for-

ward damping leads to two differences. First, the effective

moment of inertia is enhanced by the ratio TF/TP. Second

and most critically, the presence of the third-derivative term

acts as a source term that injects energy into the oscillator

and can destabilize it.

3.3. Assessing flight stability
The inherent stability of body pitch during flight can be for-

mally evaluated by assessing the mathematical stability of

equation (3.3). This procedure considers solutions of the

form u � elt, where l is a complex eigenvalue of the system

[6]. This leads to the characteristic equation

TFl
3 þ 1þ TF

TP

� �
l2 þ 1

TP

� �
l+

1

T2
I

 !
¼ 0; ð3:4Þ

which has three roots corresponding to three eigenvalues. If

the real part of any root is greater than zero, then deviations

grow exponentially and the system is unstable. If all eigen-

values have negative real parts, then deviations decay and

the system is stable.

The Routh criterion provides a general relationship among

the physical time scales necessary to furnish inherent stability

[6]. If the centre of drag is low, corresponding to the negative

form of equation (3.3), then this criterion indicates that flight

is unstable for all values of the physical time scales. If the

centre of drag is high, corresponding to the positive form of

equation (3.3), then the Routh criterion for stability is

1

TF
þ 1

TP

� �
1

TP
.

1

T2
I

: ð3:5Þ

If equation (3.5) is not satisfied, then flight is unstable and

pitch perturbations grow exponentially in time. In this case,

the time scale of instability growth, TINST, is related to the

eigenvalue of equation (3.4) with positive real part and thus

can be computed from the physical time scales.

These aspects of intrinsic stability can be summarized by

the diagram shown in figure 4. Here, we have non-dimension-

alized all relevant time scales by the inertial time TI. First, we

plot the stability criterion of equation (3.5) as the heavy black

curve. To the left of this stability boundary (blue region), the
dimensionless damping time scales TF/TI and TP/TI are such

that flight is intrinsically stable. To the right, flight is unstable

and the coloured contours represent the dimensionless

instability growth time scale, TINST/TI. Near the boundary,

it grows slowly, and as one moves to the right on the diagram

there is a broad region in which the instability grows a few

times faster than the inertial time scale.

This diagram shows that the stability properties depend

only weakly on the parameter TF/TI: neither the intrinsic

stability boundary nor the instability growth time vary

strongly with forward damping. Thus, in much of the

remaining analysis, we will hold TF/TI ¼ 5.1, which we cal-

culate as the value of this parameter for fruit flies.

However, the parameter TP/TI is critical to determining

intrinsic stability. In particular, the stability boundary is

located near TP/TI � 1. Thus, when body rotations are

damped quickly compared with inertia, flight is passively

stable. When rotations are weakly damped relative to inertia,

flight is unstable and active control is necessary.
3.4. Active control and reaction time
We next seek a quantitative framework that describes the

demands placed on the active control system by the presence

of the pitch instability. Just as the physical aspects of stability

can be written in terms of time scales, a flight control scheme

can be characterized by its delay or reaction time, TRXN. Our

formulation is guided by the intuition that unstable processes

are inherently difficult to control, especially in cases in which

the control response is delayed in time [5]. In such cases,

control theory provides rules of thumb for assessing perfor-

mance [6,35,36]. Perhaps the simplest rule is that reactions

must be several times faster than the growth of the instabi-

lity. This suggests that the time-scale ratio TINST/TRXN is a

natural performance metric, with higher values indicating

better control.

The passive and active aspects of flight stabilization are

then unified in figure 5a, which plots contours of this per-

formance metric as a function of the dimensionless pitch

damping and reaction times. Qualitatively, one can think

of the horizontal axis as indicating decreasing passive

stabilization, the vertical axis as indicating decreasing active

stabilization, and the contours as the overall control perform-

ance. Here, a given insect should be viewed as a set of four

independent time scales, namely the three physical time

scales (TI,TF,TP) as well as its reaction time TRXN. Intrinsic or

passive stability is achieved if TP=TI � 1 (blue region) and,

in this case, the value of TRXN is irrelevant since no active

control is needed. If this condition is not met, then flight is

intrinsically unstable and TINST is determined by the three

physical time scales. Control performance can then be quanti-

fied by the ratio TINST/TRXN. For example, a performance of

TINST/TRXN ¼ 6 (light blue curve) can be achieved by a

family of solutions ranging from slow reactions but high

drag (upper left) to fast reactions and low drag (lower right).

In general, the value of TINST/TRXN increases as one moves

down or to the left, quantifying the better flight control that

one expects with faster reactions or increased damping.

Control theory also provides a second and more involved

assessment of performance for the delayed control of an

unstable system [6,35,36]. For the control theory enthusiast,

we present this phase margin analysis below. Importantly,

we show that the two metrics give similar results, with
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least 458. (Online version in colour.)
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acceptable control performance corresponding to a phase

margin of about 458 and a time-scale ratio of TINST/TRXN � 6.

The phase loss formulation determines the fundamental

limitations placed on control performance by the presence

of control delay and physical instabilities [6]. To understand

the analysis in the context of this work, consider the pitch

torque on the fruit fly as a signal that propagates around a

loop [21]. An external torque is the input signal that triggers

the unstable pitch dynamics, the resulting pitch rate is then

detected by the halteres, and a sensory–neural controller dic-

tates the compensatory torque generated by the wings. This

corrective torque is the output signal, and the reaction time

TRXN is the delay between the input disturbance and this

output response.

The key principle is that performance suffers when there

is a phase shift, or phase loss, for an input disturbance torque

that propagates through the physical process and controller.

Consider, for example, how a sinusoidal disturbance torque

is affected by different phase losses under the action of nega-

tive feedback. For a phase loss of 0, the corrective torque

exactly cancels the disturbance signal. A phase loss of p, on

the other hand, reinforces the disturbance and leads to

instability of the combined controller–process system. Thus,

controllers and physical processes that induce phase loss
are generally undesirable. The phase loss owing to both insta-

bilities and time delays can be rigorously evaluated and then

compared with standards for acceptable control performance.

The qualitative reasoning given above has been formalized

into the so-called design inequality [6,36],

� arg LnmpðivgcÞ � p� fm þ ngc
p

2
; fl; ð3:6Þ

with good performance requiring that the constants fm � p/4

and ngc � 20.5 and thus fl � p/2. Here, L ¼ PC is the open-

loop transfer function for a physical process P and a controller

C, and Lnmp is its so-called non-minimum phase portion, which

includes the effects of instabilities and delays. The gain cross-

over frequency vgc is the frequency for which jLj ¼ 1.

A pure delay of TRXN corresponds to Lnmp(s) ¼ exp(2s.

TRXN), which then gives 2argLnmp(s ¼ ivgc) ¼ vgc
. TRXN [36].

Thus, long delays are troublesome since they correspond to a

pure loss of phase.

Instabilities also induce loss of phase, and the loss depends

on the nature of the instability or ‘pole’ in the system dynamics.

For a pure real pole (or eigenvalue) of l ¼ s . 0, Lnmp(s) ¼

(s þ s)/(s 2 s), which then gives 2argLnmp(s ¼ ivgc) ¼

2arctan(s/vgc) [36]. Thus, fast instabilities (large s) are also

troublesome because of the large phase loss.

For the case of insect flight, we typically have a pair

of complex conjugate poles, l ¼ s+ ir, with s . 0 signifying

an oscillating divergence instability. In this case, the phase

loss of each pole can be shown to be � arg Lnmpðs ¼ ivgcÞ ¼
2 arctanðs=ðvgc + rÞÞ: Combining the two poles and delay

together gives the following design inequality:

vgc � TRXN þ 2 arctan
s

vgc � r
þ 2 arctan

s

vgc þ r
� fl: ð3:7Þ

Thus, given TRXN as well as the physical time scales TI, TF and

TP that determine s and r, one can calculate the phase loss

and thus the control performance of the system.

Conventionally, one characterizes the performance by the

phase margin fm, which is contained in the phase loss

expression of equation (3.6), with fm � p/4¼458 denoting

acceptable performance [6,36]. In figure 5b, we plot contours

of the phase margin for varying dimensionless reaction time

and pitch damping time. Comparing this plot with figure 5a,

we see that a phase margin of p/4 ¼ 458 is similar to a rule of

thumb that TINST/TRXN � 6.

In summary, this phase margin analysis offers a way to

assess the performance of a delayed control system that seeks

to overcome the pitch instability. The power of this approach

is that it does not depend on the details of the control

scheme, such as the quantity being sensed or the specific con-

trol law implemented. The analysis only requires the physical

time scales as well as the reaction time as its input variables.

In the following section, we take advantage of this generic for-

mulation to assess the performance not only for fruit flies but

also for other animals and flapping-wing robots.
4. Results
4.1. Estimating physical time scales
To apply this framework to the fruit fly, we must compute

the physical time scales TI, TF and TP. With an eye towards

expanding our analysis to include other insects, here we pre-

sent a general procedure for estimating these time scales.
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First, the inertial time scale is given by TI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=Mgh

p
, which

depends on the body morphological parameters M, I and h.

Body mass M is taken from the literature directly, and the

moment of inertia is estimated as I ¼M(L2 þ 3/4d2)/12 by

approximating an insect’s body as a cylinder of length L
and diameter d. The distance from the centre of mass to the

centre of drag is h, which we approximate as the distance

from the centre of mass to the wing attachment point. For

the fruit fly, the centre of mass is located near where the

abdomen and thorax connect, and we take the centre of

drag to be located at the wing attachment point.

The forward damping time scale TF is largely determined

by wing drag [30]. To evaluate the resistance to forward

motion, we approximate the instantaneous drag on the two

wings by the high Reynolds number law D ¼ 2 � rSCDv2/2,

where r is the fluid density, S is the wing area, CD is the coef-

ficient of drag and v is the wing speed relative to air. For

forward flight, the resistive damping force arises from the

faster wing speed and thus greater drag on the forward

sweep than on the backward sweep. For wings that beat at

speed w relative to the body and a body moving with speed

u, the forward dynamics can be determined by averaging

the drag for the two half-strokes,

D ¼ 2� 1
2rSCD � 1

2½�ðwþ uÞ2 þ ðw� uÞ2�
� �2rSCDw � u ¼M _u:

)
ð4:1Þ

The approximation considers small body speeds and thus

drops second-order terms or order (u/w)2. Thus, the wings act

as a source of drag that is linear in body velocity. The forward

damping time represents the characteristic time that motion is

slowed and is given by

TF ¼
u
_u
¼ M

2rSCDw
¼ w

2g
� CL

CD
: ð4:2Þ

Here, the final equality is a simplification that makes use of

the hovering condition that body weight is balanced by lift:

Mg ¼ L ¼ 2 � rSCLw2/2, with a lift coefficient of CL. Thus,

we estimate the forward damping time scale by determining

the typical wing speed w and lift-to-drag ratio CL/CD.

Features other than wing drag may contribute signifi-

cantly to forward damping. For fruit flies and other small

insects in particular, the viscous drag on the body will slow

forward motion. Further, for the experiments in which

fibres are added to the fruit flies, we expect viscous drag on

these structures also to be important. We approximate the

drag both on the body and on each fibre by the viscous

drag on a cylinder of length L and diameter d moving at

speed u: D ¼ 4pmLu/ln(L/2d ) [37]. Here, m ¼ 1.8 �
1025 kg m21 . s is the viscosity of air. In these cases in

which multiple sources of damping are important, the cumu-

lative damping time scale must be appropriately computed

from all individual sources. For example, if both the wings

(W) and body (B) contribute, then 1=TF ¼ 1=TW
F þ 1=TB

F .

Pitch damping also arises from different sources, most

notably from the wings. During body pitching motions, lift

is modified because of changes in the angle of attack [13],

although this is a second-order effect for wings that are oper-

ating near the angle of maximum lift. Wing drag, however,

contributes a first-order effect because of its redirection

during pitch rotations. To estimate this contribution, we

again consider simplified kinematics consisting of two

back-and-forth half-strokes of constant speed w ¼ A/T,
where A is the full travel distance of the wing during the

wing-beat period T. The component of the redirected drag mul-

tiplied by the torque arm—which is the wing position x from

mid-stroke—gives the instantaneous pitch torque,

D sinðhÞ � x � Dhx ¼ Mg
CD

CL

� �
vx
w

� �
x: ð4:3Þ

Here, D ¼ L . CD/CL ¼Mg . CD/CL is the nominal drag, and

the drag vector is redirected by an angle h � vx/w owing to

the pitch rotational angular velocity v. Integrating equation

(4.3) yields the time-averaged torque over a wing stroke,

t ¼ 1

48
Mg

CD

CL
TA � v ¼ I _v: ð4:4Þ

This torque gives rise to the pitch damping time scale of

TP ¼
v

_v
¼ I

1
48MgCD=CLTA

¼ 96
I

MA2
� TF; ð4:5Þ

where equation (4.2) is used to yield the second equality.

Thus, the wing drag contribution to the pitch damping

time scale can be readily estimated from morphological and

aerodynamic parameters.

Pitch damping of the fruit fly is also enhanced by viscous

drag on the body and, most importantly, by the presence of

the fibres. For these elements, we again approximate each

structure as a cylinder of length L and diameter d, and

calculate the torque t ¼ pmL3v/3ln(L/2d ), where m ¼ 1.8 �
1025 kg m21 s is the viscosity of air [37]. In cases of multiple

sources of pitch damping, the cumulative damping time scale

is again computed from all individual sources.
4.2. Theoretical interpretation of experiments
To illustrate the utility of the time-scale formulation, we next

offer a theoretical interpretation of the experiments. In asses-

sing the flight stability of the fruit fly, we use aerodynamic

and morphological parameters and the mean reaction time

of TRXN ¼ 13 ms measured in the perturbation experiments

to determine that TP/TI ¼ 6.1 and TRXN/TI ¼ 0.93, as indi-

cated by the lower cross in figure 6. These data show that

fruit flies experience relatively weak damping and thus are

inherently unstable. However, these insects are able to

actively control flight because of their fast reactions. Consist-

ent with control theory rules of thumb, we find that fruit flies

use reactions that are about six times faster than the insta-

bility growth time, which is equivalent to a phase margin

near 458.
According to our model, increasing the reaction time of

fruit flies would significantly degrade their ability to main-

tain stable flight. We interpret our experiments in which we

glue down the halteres as forcing these insects to rely on

slower sensory modalities, such as the visual system which

has TRXN � 50 ms [18]. Our model indicates that these

slower sensors yield significantly worse performance, as indi-

cated by the upper right cross in figure 6. As predicted, the

haltere-disabled fruit flies lose control of flight and tumble

from the air, as indicated by the flight angle measurements

in figure 2c.

Interestingly, our formulation predicts that flight capa-

bility can be reinstated if pitch damping is increased. In

particular, if damping is strong enough such that TP/TI , 1,

then flight can be stabilized passively, without the need

for active control. In the experiments in which we add fibres
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to the insects, we estimate that the fibres add so much pitch

damping as to cause TP/TI ¼ 0.63 and flight is predicted to

be passively stable, as shown by the upper left cross in figure

6. Consistent with our prediction, these insects are able to

maintain body orientation while aloft, as indicated by the

measurements presented in figure 2c.

4.3. Generalization to other insects
More broadly, this framework for understanding passive and

active flight stabilization is readily extended to other hover-

ing insects, hummingbirds, and even flapping-wing robots.

The calculations above allow us to estimate the physical

time scales given relatively few parameters for these flyers.

In table 1, we compile the relevant morphological and aero-

dynamic parameters from the literature, and in table 2 we

display the calculated time scales. The inertial time TI has

been used to non-dimensionalize the time scales characteriz-

ing forward damping TF, pitch damping TP, instability

growth time TINST and the required reaction time TRXN. For

all flyers, the damping time scales include the wing drag

contribution. When other additional sources of drag are

important in computing TF and TP, the sources are marked

with a note in the column labelled ‘drag’ in table 1.

As outlined above, the body mass M, length L, diameter d
and centre-of-mass to centre-of-drag distance h are needed to

estimate TI
. TF can be estimated from the body mass M, the

lift-to-drag ratio CL/CD, and rms wing speed at two-thirds

span: w � f0(2pf )R/2, where f0 is the stroke amplitude, f
is the wing-beat frequency and R is the wing span length.

Similarly, TP can be calculated from the wing aerodynamic

parameters as well as from body morphological parameters.

To our knowledge, reliable CL/CD measurements have only

been performed recently and are available for the fruit fly,

hawkmoth, honeybee and Rufous hummingbird. For other

animals and robots, we assume a value that corresponds to

one of these animals that is closest in size. Kinematic data

are not available for the woolly aphid, so fruit fly parameters

have been used.
In figure 7a–c, we highlight some animals and machines

of varying size and shape, and in figure 2d we summarize the

stability and control properties of all the flyers tabulated

above. In addition to the fruit fly, the honeybee and hawk-

moth are important case studies because the flight reaction

times of these insects have been measured or estimated. For

the honeybee, the reaction time was determined by measur-

ing when compensatory wing motions were induced after a

gust perturbation [60]. For the hawkmoth, the allowable

delay was estimated in computer simulations of free flight

[61]. These insects are represented by filled circles in figure

7d, and indeed these data are consistent with the control law

that reactions are approximately six times faster than the

instability. Thus, these insects have a similar control perform-

ance to that of the fruit fly despite their different control

systems. In particular, neither the bee nor the moth have hal-

teres, and the hawkmoth probably relies on its antennae for

flight stabilization [62]. We are not aware of a study that has

identified the relevant sensors for the honeybee.

These findings suggest that our formulation can be gener-

alized to predict the flight control reaction times of other

insects. We use the same rule of thumb that reaction time is

six times the instability growth time to furnish predictions

for a variety of insects, and these data are displayed as

open circles in figure 7d.

Similarly, there are several prototypes of flapping-wing

robots whose stability properties are reported in the litera-

ture. In particular, three such robots are designed to be

passively stable with the addition of sails or tails that act as

rotational dampers. An example is the Cornell robot (CR)

shown in figure 7c, which relies on fixed sails attached

above and below the stroke plane of the wings [58]. This

and other damped robots are shown as filled squares in

figure 7d, and indeed our time scale estimates confirm that

the damping is sufficient to passively stabilize flight. Finally,

we indicate as open squares the robots that are predicted to

be intrinsically unstable and thus require active control. For

example, we predict that the Harvard micro-robotic insect

(HR) is unstable, which is consistent with the need to restrict

its flight along vertical guide wires [59]. Importantly, our for-

mulation furnishes predictions for the controller speed

necessary to actively stabilize such designs.
5. Discussion
Taken together, these results shed light on the roles played

by both physical effects as well as sensory–motor control in

the stabilization of insect flight. Our framework unites the

elements of stability and control by combining ideas from

dynamical systems with control theory. In this respect, our

work is part of a growing appreciation of the power of these

disciplines in understanding how animals navigate through

and manipulate their environment. The spirit of our approach,

however, is to apply these techniques while retaining a

language that is physically intuitive and biologically meaning-

ful. To this end, our framework is built around the idea that

stability and control strategies can be organized by comparing

the relevant time scales in the problem.

In the first step of this formulation, we have built upon

pioneering simulation work to derive a simplified mathemat-

ical model of the body orientation dynamics. Our model

shows that the pitch degrees of freedom of an insect body
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Table 2. Time scales relevant to pitch stability and control for hovering insects, hummingbirds and flapping-wing robots.

TI (ms) TF/TI TP/TI TINST/TI TRXN/TI

honeybee, Apis mellifera 26 8.8 20 5.3 0.96

bumblebee, Bombus terrestris 27 11 23 5.5 0.92

bumblebee, Bombus hortorum 31 7.7 17 5.2 0.87

bumblebee, Bombus lucorum 31 7.7 15 5.3 0.88

hover fly, Episyrphus balteatus 29 3.8 14 4.7 0.78

drone fly, Eristaltis tenax 40 6.3 14 5.1 0.85

hawkmoth, Manduca sexta male 45 7.3 7.8 5.8 0.85

hawkmoth, Manduca sexta female 44 8.4 6.6 6.3 0.86

fruit fly, Drosophila melanogaster 14 5.1 6.1 5.8 0.93

fruit fly with fibres 14 4.0 0.63 — —

parasitic wasp, Encarsia formosa 6 3.7 3.3 7.2 1.2

orchid bee, Euglossa dissimula 25 7.6 14 5.3 0.89

orchid bee, Euglossa imperialis 25 8.4 16 5.4 0.89

orchid bee, Eulaema meriana 37 5.9 11 5.2 0.87

march fly, Bibio marci female 34 4.1 7.4 5.3 0.88

march fly, Bibio marci male 34 4.4 8.5 5.2 0.86

conopid fly, Conops strigatus 31 4.8 9.7 5.1 0.85

bluebottle fly, Calliphora vicina 20 8.0 10 5.7 0.94

black fly, Simulium Latreille 14 5.2 5.4 6.0 1.0

crane fly, Tipula paludosa 27 5.2 4.1 6.8 1.1

mosquito, Aedes aegypti 24 3.1 1.8 14.6 2.4

woolly aphid, Eriosomatina 15 0.95 0.19 — —

blue-throated hummingbird, Lampornis clemenciae 93 15 19 6.1 1.0

magnificient hummingbird, Eugenes fulgens 120 11 23 5.5 0.92

black-chinned hummingbird, Archilochus alexandri 75 18 55 6.0 1.0

Rufous hummingbird, Selasphorus rufus 89 18 26 6.3 1.0

Mentor SF-2.5 110 11 18 5.7 0.94

DelFly II 140 1.0 0.71 — —

Cornell micro-air vehicle I 330 0.52 0.20 — —

Cornell micro-air vehicle II 72 0.93 0.18 — —

Harvard micro-robotic insect 20 8.0 11 5.6 0.93
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can be described by an equation similar to that of a damped

pendulum. Importantly, the pitch dynamics also include a

forcing term that is associated with forward motion of the

body and that can act to destabilize the pendular motion.

Analysis of this model offers a surprisingly simple condition

for intrinsic or passive stability: the time scale that character-

izes the damping of pitch rotations TP must be faster than the

time scale that characterizes inertial or pendulum-like oscil-

lations TI. Thus, intuitively, passive stability requires that

damping overcomes body inertia.

The second component of our theory addresses the active

control that is needed if this condition is not met and flight is

unstable. As our compilation of figure 7d shows, most hover-

ing animals rely little on damping and thus are predicted to

be intrinsically unstable. In this case, we find a surprisingly

simple requirement for achieving well-controlled flight:

TRXN=TI � 1, that is, the reaction time must be as fast as the

inertial rotation time scale. Intuitively, a flyer with weak
damping must apply corrective responses before its body

rotates appreciably owing to inertia.

This time-scale formulation offers a natural interpreta-

tion of our experiments on the flight performance of fruit

flies. By mechanically perturbing the flight of these insects,

we find that they indeed react as quickly as their inertial

time scale. When we disable the fast sensors, the insects

can no longer respond sufficiently quickly and consequently

are unable to maintain body orientation during flight. Finally,

our formulation shows that, even without fast-acting control,

flight could be stabilized if the insect body were modified to

increase the degree of pitch damping. We confirm this pre-

diction by attaching high-drag fibres to sensor-disabled fruit

flies and observing that they are indeed able to keep upright

while aloft.

We envision that this work is but a step in bringing

together the elements of stability and control in flapping-

wing flight, and each component of our study offers clear
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Figure 7. Control requirements for hovering insects, hummingbirds and flapping-wing robots. (a) Insects of varying size whose reaction time has been measured or
estimated: fruit fly (typical body length 2.7 mm), honeybee (16 mm) and hawkmoth (46 mm). (b) Insects with unusual damping characteristics. The viscous drag on the
body of the tiny wasp (0.6 mm) is significant, the mosquito (4.4 mm) flies with its long legs extended and the woolly aphid (3.2 mm) has a fibrous coat. (c) Robots with
different stabilization strategies: Harvard robot (15 mm) is externally stabilized with wire guides; Cornell robot (220 mm) has large sails; Mentor robot (360 mm) uses
sensory feedback control. (d ) Reaction time needed to stabilize flight for hovering animals (circles) and robots (squares). Reaction time is known for the fruit fly,
honeybee and hawkmoth (filled circles) and predicted for other flyers (open symbols). Predictions are determined by the rule of thumb that reactions must be six
times faster than the instability, with variations within the grey band due to differences in the unplotted parameter TF/TI. (Online version in colour.)

rsif.royalsocietypublishing.org
JR

SocInterface
10:20130237

11
avenues for improvement and expansion. First, we have

focused on the pitch orientation during normal hovering, a

scenario that a variety of models and simulations agree is

plagued by a diverging oscillating instability. It may be that

other degrees of freedom are also unstable during normal

hovering. For example, recent CFD simulations indicate that

roll of drone flies exhibits a fast diverging instability [9],

though reduced-order aerodynamic models find either

slowly growing or decaying oscillatory modes [12,13]. Ulti-

mately, a clear picture of roll stability will probably emerge

from the combination of flow simulations, aerodynamic

models and experiments, at which point a similar control

theory analysis such as the one presented here should be devel-

oped. Similarly, future work might examine stability during

other flight modes, such as forward motion or ascent, and

different wing kinematics, such as the vertical heaving

motion of dragonflies. Based upon our study of pitch during

normal hovering, we anticipate that the physical stability prop-

erties during these other flight conditions will place additional

constraints on the sensory–motor systems needed for control.

In spite of these caveats, however, our formulation does

allow us to make concrete and testable predictions. For

example, our discovery that TRXN � TI provides a powerful

way to estimate sensory–neural control characteristics from

morphological factors. Large flyers will generally be able to

react more slowly since TRXN � TI�
ffiffiffi
L
p

, where L is the charac-

teristic length scale of the animal or robot. This analysis also

shows that small flying insects require fast reaction times.

The millimetre-sized parasitic wasp [32], for example, is pre-

dicted to need a 7 ms stabilization reflex, which, if validated,

would be among the fastest behavioural response times in

the animal kingdom [63–65]. Thus, flight control is most chal-

lenging at small scales and may be an important factor in

determining the lower limit in body size of flying insects.
The strategy of using high-drag surfaces appears to be

employed by relatively few insects. For example, the mos-

quito by extending its long legs in flight provides damping

that would enable slower control, as indicated in figure 7d.

The woolly aphid represents a bizarre extreme in this strat-

egy. Our calculations indicate that its cotton-like fibrous

covering provides such strong damping that the aphid may

be one of the few passively stable insects.

For biomimetic flapping-wing robots, our time-scale formu-

lation could serve as an important guide in achieving stable

flight. Like their biological counterparts, current prototypes can

be characterized in terms of passive versus active stabilization.

Several implementations that have achieved passive stability

rely on the addition of sails or tails which provide damping.

For such designs, stability models can be used to determine the

size and placement of these surfaces [34,57]. Other robotic

designs must rely on active control, and here our finding that

the reaction time be at least as fast the inertial rotation time will

probably prove to be an important design criterion. In particular,

our formulation shows that a key challenge in miniaturizing such

designs will be in devising automatic control schemes that can

respond quickly enough to keep the device upright.

Finally, we speculate that the strategies used by flying

insects may have changed over the course of their 400 million

years of evolution. In particular, early flyers are unlikely to

have had the fast and sophisticated sensory–neural systems

of modern insects and may instead have relied on body plans

that confer intrinsic stability [66]. Though the palaeontological

record is too incomplete to fully support this conjecture, fossil

insects do include damping features such as plate-like lobes

and hair-like fibres [67]. The conspicuous absence of damping

structures in most modern insects may reflect an adapta-

tion towards manoeuvrability and evasiveness in Nature’s

increasingly crowded airspace.
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