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1. INTRODUCTION

These are some notes on Shalom’s theorem that two quasi-isometric
nilpotent groups have the same Betti numbers. Shalom’s proof uses uni-
tary representations of the two groups based on a measure equivalence,
i.e., a pair of commuting actions. While Shalom simply uses the existence
of such a measure equivalence, one can also construct an explicit pair of
commuting actions on the space of quasi-isometries.

In this case, the cocycles that Shalom uses to describe the relationship
between the two actions can be written in terms of a particular quasi-
isometry φ : Λ→ Γ, and the map from H∗(Γ) to H∗(Λ) can be written in
terms of the pullback

φ∗ω(λ0, . . . ,λd ) =ω(φ(λ0), . . . ,φ(λd )),

where ω ∈ H d (Γ) is an invariant cochain (a map ω : Γd+1 → C which is
invariant under the action of Γ) andφ∗ω is a mapφ∗ω : Λd+1 →Cwhich is
not necessarily invariant; we think of φ∗ω as a d–cochain for ∆(Λ), where
∆(Λ) is the infinite-dimensional simplex whose vertex set isΛ. (When not
otherwise specified, we take complex coefficients, so H∗(Γ) = H∗(Γ;C).)

SinceΛ is amenable, one can average φ∗ω over a Følner sequence Fn to
construct a cochain

φ∗ω(δ) := lim
n→∞

1

|Fn |
∑
λ∈Fn

φ∗ω(λδ).

In general, this limit need not exist, but we will see that if φ satisfies an
ergodicity property, then this limit always exists. In fact, the main goal of
these notes is to prove the following proposition.

For any simplex δ = 〈g0, . . . , gd 〉 ∈ ∆(G), any g ∈ G , and any f : G → H ,
we write gδ= 〈g g0, . . . , g gd 〉 and f (δ) = 〈 f (g0), . . . , f (gd )〉.
Proposition 1.1. Let Λ and Γ be finitely generated nilpotent groups and
suppose that there is a surjective quasi-isometry fromΛ to Γ. Then there are
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a Følner sequence Gn ⊂Λ and quasi-isometries φ0 : Λ→ Γ and ψ0 : Γ→Λ

such that φ0 ◦ψ0 = idΓ and

(1) For ω ∈C∗(Γ) and δ= 〈h0, . . . ,hd 〉 ∈F d (∆(Λ)), the limit

φ∗
0ω(δ) := lim

n→∞
1

|Gn |
∑

λ∈G−1
n

ω
(
φ0(λδ)

)
(1)

exists and φ∗
0 induces a homomorphism φ∗

0 : H∗(Γ) → H∗(Λ).
For d ≥ 0, ζ ∈C∗(Λ) and δ ∈F d (∆(Γ)), the limit

ψ∗
0ζ(δ) := lim

n→∞
1

|Gn |
∑

λ∈G−1
n

ζ
(
ψ0(φ0(λ)δ)

)
(2)

exists, and ψ∗
0 induces a homomorphism ψ∗

0 : H∗(Λ) → H∗(Γ).

(2) The composition ψ∗
0 ◦φ∗

0 : H∗(Γ) → H∗(Γ) is the identity map.

Consequently, βd (Γ) ≤βd (Λ) for all d ≥ 0.

IfΛ and Γ are quasi-isometric nilpotent groups and G is a sufficiently
large finite group, then there is a surjective quasi-isometry from G×Λ→ Γ.
Taking the product with a finite group doesn’t affect the cohomology (with
coefficients in C) ofΛ, so

βd (G ×Λ) =βd (Λ) ≤βd (Γ).

By symmetry, βd (Λ) =βd (Γ). In particular, the maps ψ∗
0 and φ∗

0 are vector
space isomorphisms.

These notes are indebted to Shalom’s original proof, and many of the
constructions in these notes are simply translations of Shalom’s construc-
tions to this new context. Our goal is to make the proof more accessible
and perhaps inspire extensions of Shalom’s methods.

Thanks to Roman Sauer for some helpful discussions on this topic and
Gioacchino Antonelli for his careful reading and corrections.

2. ERGODICITY AND THE SPACE OF QUASI-ISOMETRIES

The first step in the proof of Proposition 1.1 is to choose φ0 and ψ0. In
this section, we construct a space Q of the possible choices of φ0 and ψ0,
define actions ofΛ and Γ on Q, and choose φ0 and ψ0 so that (φ0,ψ0) ∈Q
has an ergodic orbit. We then use Lindenstrauss’s ergodic theorem for
amenable groups to prove Proposition 1.1.(1).

LetΛ and Γ be as in Proposition 1.1. For C > 0, let QIC (Λ,Γ) be the set
of C –quasi-isometries from Λ to Γ. Let lλ : Λ→ Λ and lγ : Γ→ Γ be the
left-multiplication maps. Let

X := {(φ,ψ) ∈ QIC (Λ,Γ)×QIC (Γ,Λ) |φ◦ψ= idΓ},
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where C is chosen large enough that X is nonempty. Then Γ andΛ act on
QIC (Λ,Γ) by commuting actions; for γ ∈ Γ, λ ∈Λ, and (φ,ψ) ∈ X , we define
the left action

γ · (φ,ψ) = (lγ ◦φ,ψ◦ lγ−1 )

and the right action

(φ,ψ) ·λ= (φ◦ lλ, lλ−1 ◦ψ).

Let Q := {(φ,ψ) ∈ X |φ(0) = 0}. This is a compact fundamental domain
for the Γ–action on X , and, since φ is surjective, Q ·Λ = X . We can use
the actions on X to define two actions on Q. For every λ ∈Λ and (φ,ψ),
there is a unique γ ∈ Γ such that γ(φ,ψ)λ ∈Q, namely γ=φ(λ)−1. We thus
obtain a right action ofΛ on Q by letting τλ : Q →Q,

τλ(φ,ψ) =φ(λ)−1 · (φ,ψ) ·λ
= (l−1

φ(λ) ◦φ◦ lλ, l−1
λ ◦ψ◦ lφ(λ)). (3)

(Equivalently, since the actions ofΛ and Γ commute,Λ acts on Γ\X , and
there is a bijection between Γ\X and Q.)

Likewise, for every γ ∈ Γ, we have γ(φ,ψ)ψ(γ−1) ∈ Q, and we define a
right action of Γ by setting σγ : Q →Q,

σγ(φ,ψ) = γ−1 · (φ,ψ) ·ψ(γ).

It is straightforward to check that this is an action.
We think of these actions as “recentering” φ and ψ; given q = (φ,ψ) ∈Q,

the graphs of φ and ψ are subsets of Λ×Γ. The graph of φ goes through
(0,0) and the graph of ψ comes close to (0,0); the action τλ corresponds
to left-translating these graphs by (φ(λ),λ)−1, and the action of σγ corre-
sponds to left-translating them by (γ,ψ(γ))−1. Note that since φ(ψ(γ)) = γ,

σγ(φ,ψ) =φ(ψ(γ)) · (φ,ψ) ·ψ(γ) = τψ(γ). (4)

To constructφ0 andψ0, we use an ergodic theorem due to Lindenstrauss
[Lin01]. A Følner sequence in G is a sequence of sets Fn ⊂G such that there
is a finite generating set S ⊂G satisfying |Fn |→∞ and

lim
n→∞ |Fn △ sFn | = 0

for all s ∈ S. A tempered Følner sequence Fn is a Følner sequence such that
there is some C > 0 such that for all n,∣∣∣∣∣ ⋃

k≤n
F−1

k Fn+1

∣∣∣∣∣≤C |Fn+1|.

For instance, the sequence Fn = [−n,n] ⊂Z is tempered, but Gn = [2n ,2n+
n] is not. Lindenstrauss proved the following theorem.
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Theorem 2.1 (Lindenstrauss). Let G be an amenable group acting ergodi-
cally on a measure space (X ,η) and let Fn be a tempered Følner sequence.
Then for any f ∈ L1(η) and for η–a.e. x ∈ X ,

lim
n→∞

1

|Fn |
∑

g∈Fn

f (g x) =
ˆ

X
f dη.

We use this to chooseφ0 andψ0 so that the closure of the orbit of (φ0,ψ0)
supports an ergodic measure. For p ∈ Q, let δp be the point measure
supported at p.

Lemma 2.2. There are a Λ–invariant Radon measure µ on Q, a point
q = (φ0,ψ0) ∈ supp(µ), and a symmetric Følner sequence Gn = G−1

n ⊂ Λ

such thatΛ acts ergodically on (Q,µ) and the averages

µn := 1

|Gn |
∑
λ∈Gn

δτλ−1 (q) (5)

converge weakly to µ.

Proof. We first construct an invariant measure η on Q. Take a symmetric
generating set for Λ and let Gn ⊂ Λ be the ball of radius n in the word
metric. This is a tempered Følner sequence and G−1

n =Gn .
Let C (Q) be the set of continuous complex-valued functions on Q. Let

p ∈Q, let lim be an ultralimit, and for any continuous function ω : Q →C,
let

α(ω) = lim
n→∞

1

|Gn |
∑

g∈Gn

ω(τg−1 (p)).

Since Gn is a Følner sequence, for any h ∈Λ,

α(ω◦τh) = lim
n→∞

1

|Gn |
∑

g∈Gn

ω(τh(τg−1 (p))) = lim
n→∞

1

|Gn |
∑

g∈h−1Gn

ω(τg−1 (p)) =α(ω),

i.e., α isΛ–invariant.
By the Riesz representation theorem, since Q is compact and Hausdorff,

there is a Radon measure η on Q such that α(ω) = ´Q ωdη and η is a Λ–
invariant probability measure. That is, the set P ofΛ–invariant probability
measures on Q is nonempty, closed, and convex. Let µ be an extreme
point of P . ThenΛ acts ergodically on (Q,µ).

Let f : Q → C be continuous. Since µ is a Radon measure, we have
µ(Q \ supp(µ)) = 0, and by Theorem 2.1, for µ–almost every q ∈ supp(µ),

lim
n→∞

1

|Gn |
∑

g∈Gn

f (τg−1 (q)) =
ˆ

Q
f dµ. (6)

Since Q is compact and metrizable, there is a countable dense set of
continuous functions. We can therefore find a q ∈ supp(µ) such that (6)
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holds for every continuous function. Let µn be as in (5); then µn converges
weakly to µ, as desired. □

We use this lemma to prove the first part of Proposition 1.1.

Proof of Proposition 1.1.(1). Let q = (φ0,ψ0) be as in Lemma 2.2 and let
µn be as in (5). Let d ≥ 0, let ω ∈C d (Γ), and let δ= 〈h0, . . . ,hd 〉 ∈F d (∆(Λ)).
Let fω : Q →C, fω(φ,ψ) =ω(φ(δ)). Then fω is continuous andˆ

Q
fωdµn = 1

|Gn |
∑
λ∈Gn

fω(τλ−1 (q))

= 1

|Gn |
∑
λ∈Gn

ω(φ0(λ−1)−1(φ0(λ−1δ)))

= 1

|Gn |
∑
λ∈Gn

ω(φ0(λ−1δ)),

where the last equality follows from the Γ–invariance of ω. Thus, if φ∗
0ω(δ)

is as in (1), then

φ∗
0ω(δ) = lim

n→∞

ˆ
Q

fωdµn =
ˆ

Q
fωdµ

by the weak convergence ofµn . It is straightforward to check thatφ∗
0 (dω) =

d(φ∗
0ω), so φ∗

0 induces a map on homology.
Similarly, let ζ ∈C d (Λ) and let δ ∈F d (∆(Γ)). Let gζ : Q →C, gζ(φ, psi ) =

ζ(ψ(δ)). Then gζ is continuous andˆ
Q

gζdµn = 1

|Gn |
∑
λ∈Gn

ζ(λ−1ψ(φ(λ−1)δ))

= 1

|Gn |
∑

λ∈G−1
n

ζ(ψ(φ(λ)δ)).

Thus, by the weak convergence of µn ,

ψ∗
0ζ(δ) = lim

n→∞

ˆ
Q

gζdµn =
ˆ

Q
gζdµ.

This induces a map from H∗(Λ) to H∗(Γ) as desired. □

The second part of Proposition 1.1 relies on Theorem 4.1.3 of [Sha04],
which is based on Theorem 10.1 of Blanc [Bla79]. (See also [Del77].)

Theorem 2.3. Let Γ be a nilpotent group and let Y be a unitary represen-
tation with no fixed points. Then, for any n ≥ 0, the reduced cohomology
H

n
(Γ;Y ) is trivial.
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Recall that an invariant cochain h ∈ C d (G ;Y ) with coefficients in a
G–module Y is a function h : Gd+1 → Y such that for any λ ∈ Λ and
δ ∈ F d (∆(G)), h(λδ) = λh(δ). The reduced cohomology H

n
(Γ;Y ) is the

quotient
H

n
(Γ;Y ) = ker(dn)/clos(im(dn−1)),

where dn : C n(Γ;Y ) → C n+1(Γ;Y ) is the coboundary map. This is a quo-
tient of H n(Γ;Y ), and if H n(Γ;Y ) is finite-dimensional, then H n(Γ;Y ) =
H

n
(Γ;Y ).

We will prove Proposition 1.1.(2) by describing φ∗
0 and ψ∗

0 in terms
of cohomology with coefficients in C (Q) and L2(µ). As in the proof of
Lemma 2.2, let C (Q) be the set of continuous complex-valued functions
on Q, equipped with left actions λ· f = f ◦τλ and γ· f = f ◦σγ for f ∈C (Q),
λ ∈Λ, γ ∈ Γ.

First, we show that φ∗
0 : C∗(Γ) →C∗(∆(Λ)) can be written φ∗

0 =ΠΛ ◦T ♯,
where T ♯ : C d (Γ) →C d (Λ;C (Q)) andΠΛ : C d (Λ;C (Q)) →C∗(∆(Λ)).

For ω ∈C d (Γ;R) and δ ∈F d (∆(Λ)), let

T ♯ω(δ)(φ,ψ) :=ω(φ(δ)). (7)

We check that T ♯ω is Γ–equivariant: for λ ∈Λ,

(λ ·T ♯ω(δ))(φ,ψ) = T ♯ω(δ)(τλ(φ,ψ)).

Since
τλ(φ,ψ) = (l−1

φ(λ) ◦φ◦ lλ, l−1
λ ◦ψ◦ lφ(λ)),

we have
(λ ·T ♯ω(δ))(φ,ψ) =ω(φ(λ)−1φ(λδ)) =ω(φ(λδ))

by the invariance of ω, and ω(φ(λδ)) = T ♯ω(λδ)(φ,ψ). Furthermore, T ♯

commutes with the coboundary map.
Now, for G =Λ or G = Γ and every h ∈ C k (G ;C (Q)), we define a corre-

sponding cochainΠG h ∈C k (∆(G)) by

ΠG h(g0, . . . , gk ) := h(g0, . . . , gk )(q)

for g0, . . . , gk ∈G . This map likewise commutes with the coboundary map,
and for δ ∈F d (∆(Γ)),

ΠΛT ♯ω(δ) = T ♯ω(δ)(φ0,ψ0) =ω(φ0(δ)) =φ∗
0ω(δ),

i.e.,
ΠΛT ♯ω=φ∗

0ω. (8)

In general, the image ofΠG consists of cochains which have symmetries
like those of q . For example, if q is periodic, thenΠG h is also periodic. That
is, if there is some λ ∈Λ such that τλ(q) = q , then for any δ ∈F d (∆(Λ)),

ΠΛh(λδ) = h(λδ)(q) = h(δ)(τλ(q)) = h(δ)(q) =ΠΛh(δ).
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Likewise, if τλ1 (q) is sufficiently close to τλ2 (q), thenΠΛh(λ1δ) is close to
ΠΛh(λ2δ).

We can define a map T♯ : C d (Λ;C (Q)) → C d (Γ;C (Q)) in a similar way.
This map roughly corresponds to the transfer maps constructed in [Sha04].
For δ ∈F d (∆(Γ)), ζ ∈C d (Λ;C (Q)), and (φ,ψ) ∈Q, let

T♯ζ(δ)(φ,ψ) := ζ(ψ(δ))(φ,ψ). (9)

Then T♯ commutes with coboundaries. We check that T♯ζ is Γ–equivariant:
for γ ∈ Γ, we note that

T♯ζ(γδ)(φ,ψ) = ζ(ψ(γδ))(φ,ψ),

and
(γ ·T♯ζ(δ))(φ,ψ) = T♯ζ(δ)(σγ(φ,ψ)),

where
σγ(φ,ψ) = (l−1

γ ◦φ◦ lψ(γ), l−1
ψ(γ) ◦ψ◦ lγ).

Then

(γ ·T♯ζ(δ))(φ,ψ) = ζ(ψ(γ)−1ψ(γδ))(σγ(φ,ψ))

(4)= ζ(ψ(γ)−1ψ(γδ))(τψ(γ)(φ,ψ))

= ζ(ψ(γδ))(φ,ψ)

by theΛ–equivariance of ζ, so

γ ·T♯ζ(δ) = T♯ζ(γδ). (10)

We can draw the following commutative diagram relating T ♯ and T♯ to
ψ∗

0 and φ∗
0 .

C d (Λ;C (Q)) C d (Γ;C (Q))

C d (Γ) C d (∆(Λ)) C d (∆(Γ))

T♯

φ∗
0 ψ∗

0

ΠΛ ΠΓ
T ♯

The left side of the diagram commutes by (8). For ζ ∈ C d (Λ;C (Q)) and
δ ∈F d (Γ),

ΠΓT♯ζ(δ) = T♯ζ(δ)(φ0,ψ0) = ζ(ψ0(δ))(φ0,ψ0),

and
ψ∗

0ΠΛζ(δ) =ΠΛζ(ψ0(δ)) = ζ(ψ0(δ))(φ0,ψ0),

so the right side commutes.
Furthermore, since φ◦ψ= idΓ for all (φ,ψ) ∈Q,

T♯T
♯ω(δ)(φ,ψ) = T ♯ω(ψ(δ))(φ,ψ) =ω(φ(ψ(δ))) =ω(δ) (11)
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andψ∗
0φ

∗
0ω(δ) =ω(δ). That is, T♯◦T ♯ is the inclusion of C d (Γ) into C d (Γ;C (Q))

induced by the inclusion C⊂C (Q) and ψ∗
0 ◦φ∗

0 is the inclusion of C d (Γ)
into C d (∆(Γ)).

Next, we show that the maps above extend to chains with coefficients
in L2(µ). Every function in C (Q) is L2, so we can view T ♯ as a map from
C d (Γ) to C d (Λ;L2(µ)). Extending T♯ takes a little more work.

Lemma 2.4. The map T♯ extends to a continuous map from C d (Λ;L2(µ))
to C d (Γ;L2(µ)).

Proof. For ζ ∈C d (Λ;C (Q)) and δ′ ∈F d (Λ), we have

∥ζ(δ′)∥L2(µ) =
ˆ
ζ(δ′)(φ,ψ)2 dµ(φ,ψ) = lim

n→∞
1

|Gn |
∑

λ∈G−1
n

ζ(δ′)(τλ(q))2.

Let δ ∈F d (Γ). For λ ∈Λ, note that

T♯ζ(δ)(τλ(q)) = ζ(λ−1ψ0(φ0(λ)δ))(τλ(q)).

Let
δλ =λ−1ψ0(φ0(λ)δ).

Let D(δ) = {δλ |λ ∈Λ}. Since φ0 and ψ0 are quasi-inverses, D(δ) is a finite
set.

Then ˆ
T♯ζ(δ)(φ,ψ)2 dµ(φ,ψ) = lim

n→∞
1

|Gn |
∑

λ∈G−1
n

T♯ζ(δ)(τλ(q))2.

By the above,

T♯ζ(δ)(τλ(q))2 = ζ(δλ)(τλ(q))2 ≤ ∑
x∈D(δ)

ζ(x)(τλ(q))2.

Therefore,
∥T♯ζ(δ)∥2 ≤

∑
x∈D(δ)

∥ζ(x)∥2, (12)

so T♯ is a continuous map from C d (Λ;C (Q)) to C d (Λ;L2(µ)). Since µ

is a Radon measure, C (Q) is dense in L2(µ), so T♯ can be extended to
C d (Λ;L2(µ)) by continuity. □

For G =Λ,Γ, let MG : C d (G ;L2(µ)) →C d (G) be the integral

MGα(δ) =
ˆ

Q
α(δ)dµ (13)

for δ ∈F d (∆(G)). If α ∈C d (G ;C (Q)), then Lemma 2.2 implies

MGα(δ) = lim
n→∞

1

|Gn |
∑
λ∈Gn

α(δ)(τλ−1 (q)). (14)
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Then MG commutes with coboundaries and the following lemma holds.

Lemma 2.5. For all ω ∈ C d (Γ) and ζ ∈ C d (Λ), we have φ∗
0ω = MΛT ♯ω

and ψ∗
0ζ = MΓT♯ζ, where we view ζ as an element of C d (Λ;C (Q)) via the

inclusion C⊂C (Q).

Proof. Let δ ∈F d (∆(Λ)). By (14) and (7),

MΛT ♯ω(δ) = lim
n→∞

1

|Gn |
∑
λ∈Gn

T ♯ω(τλ−1 (q))

= lim
n→∞

1

|Gn |
∑
λ∈Gn

ω(λφ0(λ−1δ)).

By the invariance of ω,

MΛT ♯ω(δ) = lim
n→∞

1

|Gn |
∑
λ∈Gn

ω(φ0(λ−1δ)) =φ∗
0ω(δ).

Likewise, let δ ∈F d (∆(Γ)). Then, by (9),

MΓT♯ζ(δ) = lim
n→∞

1

|Gn |
∑
λ∈Gn

T♯ζ(τλ−1 (q))

= lim
n→∞

1

|Gn |
∑
λ∈Gn

ζ(λψ0(φ0(λ−1)δ))(τλ−1 (q)).

Since ζ ∈C d (Λ), ζ(δ′) is a constant function for any δ′, and ζ(λδ′) = ζ(δ′).
Therefore, by (2),

MΓT♯ζ(δ) = lim
n→∞

1

|Gn |
∑
λ∈Gn

ζ(ψ0(φ0(λ−1)δ)) =ψ∗
0ζ(δ).

□

Finally, we prove Proposition 1.1.(2).

Proof of Proposition 1.1.(2). It suffices to show that for any ω ∈C d (Γ), the
difference ω−ψ∗

0 ◦φ∗
0 (ω) is a coboundary.

Let

ν := T ♯ω−MΛT ♯ω ∈C d (Λ;C (Q)).

Then ν ∈C d (Λ;L2
0(µ)), where L2

0(µ) = { f ∈ L2(µ) | ´ f dµ= 0}. SinceΛ acts
ergodically onµ, L2

0(µ) is a unitary representation ofΛwith no fixed points,
so by Theorem 2.3, ν is a reduced coboundary in C d (Λ;L2

0(µ)), i.e., a limit
of coboundaries.

Since C (Q) is dense in L2(µ), there are ηi ∈ C d−1(Λ;C (Q)) such that
dηi → ν and thus d MΓT♯ηi → MΓT♯ν. Therefore, MΓT♯ν is a reduced
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coboundary in C d (Γ). Since H d (Γ) is finite-dimensional, the subspace of
coboundaries has finite codimension in C d (Γ) and is thus closed. Thus

MΓT♯ν= MΓT♯T
♯ω−MΓT♯MΛT ♯ω

is a coboundary.
By (11),

MΓT♯T
♯ω= MΓω=ω,

and by Lemma 2.5,

MΓT♯MΛT ♯ω=ψ∗
0 ◦φ∗

0 (ω),

so ω is cohomologous to ψ∗
0 ◦φ∗

0 (ω), as desired. □

3. QUESTIONS

(1) Can we construct the cochain that arises from Theorem 2.3 ex-
plicitly? That is, a similar argument implies that if α ∈ C d (∆(Γ))
generates an ergodic measure µ on C d (∆(Γ)) and

lim
n→∞

1

|FΓ
n |

∑
g∈FΓn

gα= 0,

thenα=ΠΓ(β) for some β ∈C d (Γ;C0(Q)), where Q =C d (∆(Γ)) and
C0(Q) =C (Q)∩L2

0(µ). By Theorem 2.3, β is a reduced boundary, so
there are ηi ∈C d−1(Γ;C0(Q)) such that ∂ηi →β. One can show that
the imagesΠΓηi also generate ergodic measures, so α is the limit
of the coboundaries of cochains that generate ergodic measures
and average to zero along a Følner sequence.

Can we construct these cochains explicitly?
(2) Can we state a version of Theorem 2.3 for cocycles in C d (∆(Γ))? For

instance, suppose that α ∈C d (∆(Γ)) is a cocycle which averages to
zero along a Følner sequence. When is α the limit of coboundaries
of cochains that also average to zero along a Følner sequence?

(3) Suppose φ : Λ→ Γ is a quasi-isometric embedding. When can
we define a pullback φ∗ : H∗(Γ) → H∗(Λ)? When is this pullback
functorial?

(4) Can we prove Sauer’s result [Sau06] that the cohomology ring is
quasi-isometry invariant this way?
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