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ABSTRACT. We study the large-N limit of a system of N bosons in-
teracting with a potential of intensity 1/N. When the ground state
energy is to the first order given by Hartree’s theory, we study the next
order, predicted by Bogoliubov’s theory. We show the convergence of
the lower eigenvalues and eigenfunctions towards that of the Bogoliubov
Hamiltonian (up to a convenient unitary transform). We also prove the
convergence of the free energy when the system is sufficiently trapped.
Our results are valid in an abstract setting, our main assumptions being
that the Hartree ground state is unique and non-degenerate, and that
there is complete Bose-Einstein condensation on this state. Using our
method we then treat two applications: atoms with “bosonic” electrons
on one hand, and trapped 2D and 3D Coulomb gases on the other hand.
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1. INTRODUCTION

In a famous paper [9], Bogoliubov was able to predict the excitation spec-
trum of a quantum gas satisfying the Bose statistics and he used this to
understand its superfluid behavior. Since Bogoliubov’s work, there has
been several attempts to formulate Bogoliubov’s theory in a mathemati-
cally rigorous way. This was especially successful for completely integrable
1D systems [211, 36, [33), 12, 1T, 60, [61], for the ground state energy of one and
two-component Bose gases [42] [43], 56], and for the Lee-Huang-Yang formula
of dilute gases [19, 22, 65]. Recently, Seiringer [53] and Grech-Seiringer [24]
have for the first time justified Bogoliubov’s theory for the excitation spec-
trum of trapped Bose gases, with a general short range interaction, in the
mean-field regime. See, e.g., [66] for a recent review on the subject and [15]
for a discussion of translation-invariant systems.

The purpose of this article is to give general conditions under which Bo-
goliubov’s theory is valid, that is, predicts the lowest part of the spectrum
of the many-body Hamiltonian of bosons, in the mean-field regime. Our
results cover a very large class of interacting Boses gases and they general-
ize the recent works [53] 24]. In particular, our method applies to Coulomb
systems.

We consider a system of N quantum particles, described by the Hamil-

tonian
HN—ZT +— Z w(z; — ),

1§i<j§N
acting on the symmetric (a.k.a. bosonic) space

N
VM= L0
sym

of square-integrable functions ¥ € L2(QY) which are symmetric with respect
to exchanges of their variables, namely

\I’(xa(l), veey xU(N)) = \If(xl, ceny CCN).
for every o in the permutation group Gy. Here ) is an open subset of
R? with d > 1, T is a self-adjoint operator on L?(Q2) with domain D(T),
and w is an even real-valued function describing the interactions between
particles. We have neglected spin for convenience, but it can be added
without changing any of our result. The Hamiltonian H y describes a system
of N bosons living in 2.

The operator 1" can contain both the kinetic energy and an external po-
tential which is applied to the system, including possibly a magnetic field.
We typically think of T = —A on a bounded set €2 with appropriate bound-
ary conditions (Dirichlet, Neumann or periodic), or of T'= —A 4+ V(z) on
Q = R, with V an external potential which serves to bind the particles.
In the latter case, the function V' could tend to zero at infinity but it then
has to be sufficiently negative somewhere, or it could tend to infinity at
infinity, in which case all the particles are confined. We could also replace
the non-relativistic operator —A by its relativistic counterpart v1 — A — 1.
We shall keep the operator T' sufficiently general in this paper, such that all
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these situations are covered. The function w could also be replaced by an
abstract two-body operator but we do not consider this here for simplicity.

We are interested in the limit of a large number N of particles. Here we
are considering the mean-field regime, in which the interaction has a fixed
range (the function w is fixed) but its intensity is assumed to tend to zero
in the limit N — oo, hence the factor 1/(N — 1) in front of the interaction
term in the Hamiltonian Hpy. This factor makes the two sums of order N
in Hy and, in this case, an important insight is given by Hartree theory.

Let us recall that a Hartree state is an uncorrelated many-body wave
function in which all of the particles live in the same state u € L?(Q2) such
that [, |u[* =1, and which takes the form

U(zy,...,zny) = u(xy) - ulzy).

The energy of such a state is
1
(W) = N (0. 70) + 3D, 1)) o= N €nta)

where
D(f.g) :Z/Q/ng(y)w(cﬂ—y)dxdy

is the classical interaction. Henceforth, all the Hilbert spaces we consider
have inner products which are conjugate linear in the first variable and linear
in the second.

Provided that there is Bose-Finstein condensation, the leading term of
the ground state energy

E(N) :=infspec Hy

is given by Hartree’s theory:

|B(N) = Nex + o(N),

where ey is the corresponding Hartree ground state energy:

R : _ : 1 2 2
cwi= it guw = it {wTo e ol B}
[[ul|=1 [lul|=1

In this paper, we shall assume that there exists a unique Hartree minimizer
ug for eg. It is then a solution of the nonlinear Hartree equation

0= (T + |uol* * w — px)uo := huo, (2)

where ug € R is a Lagrange multiplier.

Bogoliubov’s theory predicts the next order term (of order O(1)) in the
expansion of the ground state energy E(N). It also predicts the leading
term and the second term for the lower eigenvalues of Hy. The Bogoliubov
method consists in describing variations of the wavefunctions around the
Hartree state ug ® -+ ® ug in a suitable manner. We will explain this in
detail in Section below. The final result is an effective Hamiltonian H,
called the Bogoliubov Hamiltonian which is such that the lower spectrum of
Hy in $HV is given, in the limit N — oo, by the spectrum of the effective
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operator Ney + H, up to an error of order o(1). Formally, we therefore find
that

Hy ~ Nen+H+o(l) | (3)

This vague statement is made precise in our main result, Theorem [2] below.
The essential fact about the Bogoliubov Hamiltonian H is that it is a non
particle conserving self-adjoint operator acting on the Fock space

]:+ :C@@®~6+

n>1 sym

where
9y ={u}" C L*(Q)

is the one-body space of excited particles. We started with a particle-
conserving model and we end up with a theory in Fock space, in which
the number of particles is not fixed. The reason is that we are describing
here the excitations around the reference Hartree state.

For the acquainted reader, we mention that H is indeed nothing but the
second-quantization of (half) the Hessian of the Hartree energy at ug, and
its expression in a second quantized form is

H := / ha x)dr + = // T —y <2u0( )uo( Ja* (x)a(y)
+uo<x>uo<y>a*<x>a*<y>+_uo<m>u_o<y‘>a<x>a<y>)dxdy. (4)

Here a*(x) is the creation operator of an excited particle at z, acting in the
Fock space F, and h is defined in (2)). We will explain the meaning of this
formula later in Section

A result similar to (B]) has recently been obtained for weakly interacting
Bose gases by Seiringer [53] and Grech-Seiringer [24]. They assumed that
w is bounded, decays fast enough and has non-negative Fourier transform.
The operator 1" was T' = —A in a box with periodic boundary conditions
in 53] and T'= —A + V(x) on R? with V(x) — +oc0c at infinity in [24]. Our
method is different from that of [563, 24] and it applies to a larger class of
models.

We give in this paper a list of abstract conditions that a Bose gas should
satisfy in order to get the Bogoliubov result (). These conditions are given
and explained in Section 2.1 below. Loosely speaking, we assume that there
is complete Bose-Finstein condensation on a unique Hartree minimizer wug
which we assume to be non-degenerate. Our message is that, once the Bose-
Einstein condensation is proved, one can get the next order in the expansion
of the energy by Bogoliubov’s theory. No further assumption is needed.

The paper is organized as follows. In the next section, we define our model
by giving the appropriate assumptions on 1" and w, and we properly define
the Bogoliubov Hamiltonian H. We then state our main results, Theorem
and Theorem Bl In Sections Bl and B.2] we apply our abstract result to two
particular examples: bosonic atoms and trapped Coulomb gases. Sections Gl
[0 are devoted to the proof of the main abstract results.



BOGOLIUBOV SPECTRUM OF INTERACTING BOSE GASES 5

Acknowledgement. M.L. and P.T.N. acknowledge financial support from
the European Research Council under the European Community’s Seventh
Framework Programme (FP7/2007-2013 Grant Agreement MNIQS 258023).
S.S. was supported by a EURYI award. J.P.S. was supported by a grant from
the Danish Council for Independent Research | Natural Sciences.

2. MAIN ABSTRACT RESULTS

In this section we state our main result.

2.1. Assumptions. We start by giving the main assumptions on 7" and w,
under which our results apply. Later in Section B we consider two specific
examples, for which all the following assumptions are satisfied.

The first condition concerns the properties of 7' and w which are necessary
to give a proper meaning to the many-body Hamiltonian Hy.

(A1) (One- and two-body operators). The operator T : D(T) — L*(Q) is
a densely defined, bounded from below, self-adjoint operator. The function
w : R? = R is Borel-measurable and w(x) = w(—x). Moreover, there exist
constants C' >0, 1 > a3 > 0 and as > 0 such that

(T +T,+C)<wx—y) <a(Tp + Ty, + C) on L?(Q%).  (5)

Note that, although we keep the one-body operator T abstract, we use a
two-body operator w which is a translation-invariant multiplication operator
in L?(Q?). This is only for convenience. All our results are also valid if
w is an abstract two-body operator on $)? which satisfies an estimate of
the same type as (B)), and if $§ = L?(Q) is an abstract separable Hilbert
space. However, in this case the expressions of the Hartree energy and of the
corresponding nonlinear equations are different (they cannot be expressed
using a convolution). We shall not consider this abstract setting to avoid
any confusion.

Under Assumption (Al), Hy is bounded from below,

N
Hy > (1-a1)) Ti - CN. (6)
i=1
In the paper we always work with the Friedrichs extension [47], still denoted
by Hpy. Note that we do not assume the positivity or boundedness of w
or its Fourier transform, but only that it is relatively form-bounded with
respect to T'.

Our second assumption is about Hartree theory.

(A2) (Hartree theory). The variational problem () has a unique (up to a
phase) minimizer uy in the quadratic form domain Q(T) of T. Moreover,
ug s non-degenerate in the sense that

<h+K1 K5

K3 E+E>Z77H on $HyDHY (7)

for some constant ng > 0, where H, = {ug}*. Here

h:=T + |ug|? * w — py,
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with the Lagrange multiplier py := eH+D_(|u0|2, lug|?)/2 (which ensures that
huy =0), and K1 : H5 — H4 and Ky = H1 — $H4 are operators defined by

(w, Kyv) = /Q /Q W@yo(y)uo (@) u(@w(z — y)drdy,
(u, Ko®) = /Q /Q (@)oo (x)uo(y)w(z — y)dzdy

for all u,v € $H4. The operators K1 and Ko are assumed to be Hilbert-
Schmidt, that is

[ o)l Pute — )* dedy < . ®)

Remark 1. Note that once we have assumed that ug is a minimizer for (),
then we always have the mean-field equation hug = 0 due to a standard
argument (see e.g. [37, Theorem 11.5]). In the whole paper we will for
simplicity use the same notation for the operator h on the full one-body
space §) and for its restriction to the smaller space $H1. For an operator
A on §, the notation A means JAJ with J being the complex conjugate,
namely A(v) = A(v) for every v € H;.

Remark 2. While we shall treat K1 as a one-body operator, we should really
think of Ky as its integral kernel Ko(z,y) = (Q ® Q) (uo @ uow(. —.))(z,y),
which is the two-body function obtained by projecting the symmetric function
ug(z)uo (y)w(z —y) onto H.

In (A2) we are making assumptions about the uniqueness and non-degeneracy
of the Hartree ground state ug. The Hessian of the Hartree energy can easily
be seen to be

—Hess En(up) (v, v)

— (v, o) / / w(z —y <—)UO(96)WU(Z/)+U($)u0($)uo(y)v(y)

T o@uo(@)uo(y)o@) + v<m>u0<m>uo<y>v<y>) da dy

-3(0)- (" 75 0), ., ®

for all v € $H. It turns out that the non-degeneracy of the Hessian,
Hess & (uo) (v, v) > 2nu [|v]|72(q) ,

is equivalent to our assumption (7). When wug is real, as it is in many
applications, then $, = $,, K; = K> and it can be verified (using a test
function of the form (v, —v)) that () implies h > nyg on $H, which means
that there is a gap above the first eigenvalue 0. In general, we however only
know that h + Ky > ny.

The Hilbert-Schmidt assumption (§) on K; and K» will be useful later to
ensure that the Bogoliubov Hamiltonian H is well defined (see Section
below).
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Our last assumption is about the validity of Hartree theory in the limit
N — oo. We assume that the system condensates in the unique Hartree
ground state ug. This assumption will be necessary for the proof of the
lower bound on the spectrum of Hy.

(A3) (Complete Bose-Einstein condensation). For any constant R > 0, there
exists a function eg : N — [0,00) with imy_ 00 er(N) = 0 such that, for
any wave function ¥y € HV satisfying (U, HyWx) < E(N) + R, one has

<u077\I/NUO>

N >1—¢er(N) (10)

where ug is the Hartree minimizer in Assumption (A2).

Here vy is the one-body density matrix of the wave function ¥ € $HV,
which is the trace-class operator on L?*(Q) with kernel

yo(z,y) =N / U(z,zo,....,2N)V(y, 2, ..., xN)d2s...dzN.
QN-1

Note that a Hartree state has the density matrix y,on = Nu(x)u(y). There-
fore (I0) is the same as saying that vy, is in some sense close to vy, e~. For
more explanation about the Bose-Einstein condensation, we refer to the
discussion in [40)].

In many practical situations, the complete Bose-Einstein condensation
(A3) follows from the uniqueness of the Hartree ground state in (A2). This
is discussed in the recent work [32], based on a compactness argument which
does not provide any explicit error estimate.

For Coulomb systems (see Section [3)), a stronger condensation property
with an explicit error estimate will hold true. Namely, we will have a bound
from below valid for all Ux € $”, and not only for those which have a low
energy. We therefore introduce the following stronger assumption, which
obviously implies (A3):

(A3s) (Strong condensation). We have h > ny > 0 on $), and there exists
a constant 0 < gy < 1 such that

N
Hy — Ney > (1—€Q)Zhj—|—0(N).
j=1

Here h is the mean-field operator given in Assumption (A2).

In fact, in practice (A3s) follows from a Lieb-Oxford inequality

1
<\Il, Z Wij \I/> > §D(pq,,pq,) + error

1<i<j<N

where py(z) = yy(x,z). It is for proving estimates of this form that it is
often useful to know that @w > 0 where ~ denotes the Fourier transform. We
will come back to this in Section [Bl where we consider two examples.
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2.2. The Bogoliubov Hamiltonian. Near the Hartree minimizer we have

i (%) = EH(uo)+%Hess En(up)(v,0) +o((v, (T+C)v)) (11)
for any v which is orthogonal to ug, that is, v € $,. The next order in
the expansion of the eigenvalues of the Hamiltonian Hpy will be given by
the Bogoliubov Hamiltonian H, which is obtained by second quantizing the
Hessian in ([IIJ). More precisely, this means replacing v(z) by an operator
a*(z) which creates an excited particle at x, and v(x) by an operator a(x)
which annihilates it. These operators (formally) act on the Fock space of
excited particles

Fr=CaoPRor=Cadpar.

n>1 sym n>1

So the expression of the Bogoliubov Hamiltonian is
H:= / ((h+ K1) a)(z)dz
+ 9 /Q/Q <K2(ﬂc,y)a*(ac)a*(y) +ma(ﬂc)a(y)>dm dy. (12)

In order to make the formula (I2]) more transparent, let us explain how
the Hamiltonian H acts on functions of F. If we have a ¢y, € .6]_“,_, with
k > 2, then we get

k
Hipp =---0® b _o ®0® Zh+K1 Ve DO Pyp ®0---  (13)
—— = ~——
ek g e
enk
where

T,Z)];+2(CC1,... xk+2) \/W Z K2 0(1 Ls(2) )T;Z)k( Lo(3)s o(k+2))a

0€6 40

Up_o(T1y ey o) =\ K(k — 1)/Qd~"3k—1/ﬂdl"k Ko(xp—_1, zk) Yp (1, ..y Tk)-

The link between the formal expression (I2]) and the rigorous formula (I3])
is explained in [31], Sec. 1]. See also (67) in Appendix [A] for another equiv-
alent expression of H using one-body density matrices.

Let us remark that for ¢, to be in L2(Q5+2) for all ¢y, € L*(Q), it
is necessary and sufficient to have Ks(.,.) in L?(€Q?), which is the same as
assuming that Ko is a Hilbert-Schmidt operator, as required in Assumption
(A2).

Since K7 and Ky are Hilbert-Schmidt, the Hamiltonian H is well defined
on states living in truncated Fock spaces and in the domain of h:

M n
U &R om. (14)

M>0n=0 sym
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The following theorem tells us that H is bounded from below and it is a
well-defined self-adjoint operator by the Friedrichs method with the form
domain being the same as that of dI'(1 + k) on F,. Here we have used
the usual notation dI'(A) for the second quantization in Fock space of an
operator A acting on the one-body space :

dI'(4) := EB ZAj = / a*(z)(Aa)(z)de. (15)

m=0 j=1 Q

Remark 3. We shall always denote by C > 0 some (large) constant which
depends only on T and w. Two C’s in the same line may refer to different
constants.

Theorem 1 (Bogoliubov Hamiltonian). If (A1)-(A2) hold true, then the
operator H is symmetric and on the core domain () one has

CldI'(h+1) - C <H<dI'(h+C)+C. (16)

Consequently, the form domain of its Friedrichs extension (still denoted by
H) is the same as that of dT'(1 + h) on Fy:

oo n
PR D((h+1)12). (17)
n=0 sym
Moreover, we have the following spectral properties.
(7) (Ground state and ground state energy). The Hamiltonian H has a
unique ground state in F. The ground state energy of H is strictly negative,
except if w =0, in which case we have inf o(H) = 0 (the ground state being
the vacuum in F, ).

(7i) (Essential spectrum). The essential spectra of h and H are simultane-
ously empty or non empty, and we have in the latter case

Oess(H) = o (H) + 0ess(h).
Consequently, inf oess(H) — inf o(H) = inf oegs(h) > nir > 0.
(ii7) (Lower spectrum). Assume that T =T (in this case ug is a real-valued
function and hence K1 = Kj3). If h+ Ki has infinitely many eigenvalues
below its essential spectrum, then H also has infinitely many eigenvalues
below its essential spectrum.
On the other hand, if T =T, K1 > 0 and h has only finitely many eigen-

values below its essential spectrum, then H also has finitely many eigenvalues
below its essential spectrum.

We refer to Appendix [Alfor a proof of Theorem [l and further discussions.

Remark 4. Note that since h+Ky > nu due to (7)) and K is Hilbert-Schmidt,
we always have inf oess(h) > nr > 0.

Remark 5. The reader should be cautious with the fact that, when w # 0,
even though Ko is a Hilbert-Schmidt operator on the one-body Hilbert space,
the pairing term

%/ﬂ/Q <md*($)a*(y) + Kz(w,y)a(m)a(y)) da dy
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is neither bounded on F,, or relatively compact with respect to dI'(h). In-
deed, when the essential spectrum of h is non empty, we have

inf oegs(H) = inf o (H) + inf 0ess(h) < inf 0ess(h) = inf oess (A (R))
due to Theorem [, and hence H and dT'(h) have different essential spectra.

2.3. Exciting the Hartree state. In this section we explain how to ap-
propriately describe the variations of a many-body wave function ¥ in the
neighborhood of the Hartree state u?N . We will see that the Fock space F
arises naturally. We will also define a unitary operator Uy which will be
essential for our main statements.

For two symmetric functions ¥;, € $¥ and ¥, € $*, we recall that the
symmetric tensor product is defined by

Uy @ Uy(21, -0 ﬂﬁkH)

NATICES k+€ Z (To(1)s -+ Tok) ) Ye(To(hr1)s - To(kte))-

Note that this tensor product satisfies the commutative property ¥, ®,¥, =
U, @5 ¥y and the associative property (Vi @ V) @5V, = Vi Qg (V@5 Y,,)
for all U, € H*, U, € $H¢ and U,,, € H™. Consider now any (real-valued)
orthonormal basis ug, uq, ... of LQ(Q), containing the Hartree minimizer u.
Then, it is known that {u;, ®s - - ®s u;,} is an orthogonal basis of the
symmetric space $, where

1
U] Qg+ Qs UN(T1, ety TN) 1= —F—= Z U (1) (T1) -+ - Ug(ny (TN )
N' ceGyn
So we can write our many-body Hilbert space H” as a direct sum of spaces

N=gle o8y
where £ = span(ug ® - - - ® ug) and

k
ﬁé\f =U® - Qug s ®~6+ = u(;@(Nik) Rs S{)ﬁ—’
—_——
Nk sym

where we recall again that $, = {ug}*t = span{uy,us,...} € L*(Q). In
other words, we can write any wavefunction ¥ € $ as follows

N—

U= oudN +uf NV @ 1 +uf N @ s -+ Yy

where ¢y, € Y)]j_. It is a simple exercise to verify that

(g™ @, v uf N0 @, )

from which we deduce that

= (Y, Vo) g Oke

ﬁN

N
2
1% = ool + > Ivkllg -
k=1
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Therefore we see that the linear map

N
Uv: oV — 7V =Pat (18)
n=0
UV = YY1 @---DYn

is a unitary operator from $V onto the truncated Fock space .FEN. The
latter can always be seen as being embedded in the full Fock space FT of
excited particles and the unitary operator Uy is also a partial isometry from
HY to Ft. We see that, in the limit N — oo, the Fock space F. of excited
particles arises naturally as the limit of the truncated Fock spaces .FEN.

The operator Uy is a mathematical tool which implements what is called
a c-number substitution [41], 40]. In Fock space the usual way to formalize
the c-number substitution is to use the Weyl operator, and here Uy plays
the same role. The difference is that the Weyl operator is defined on the
whole Fock space F with values in F, while with the operator Uy we go
immediately from the N-body space $” to the excitation Fock space F,,
which is a proper subspace of F. We shall give important properties of the
operator Uy in Section [41

One of our main results will be that

Unv(Hy — Nen)Uy — H

in an appropriate (weak) sense.

2.4. Convergence of the excitation spectrum. A convenient way to
describe the lower eigenvalues is to use the min-max principle (see [48]). If
A is a self-adjoint operator, which is bounded from below, on a (separable)
Hilbert space, then we may define the min-max values
AL(A) :=  inf b, AD
L( ) Y si{)lspace glgﬁ}/{ < >
dimY=L [/®[]=1
for L =1,2,.... Tt is known that limy_ o AL(A) = inf 0ess(A), where we use
the convention that inf oess(A) = +00 when the essential spectrum of A is
empty. Moreover, if

AL(A) < inf oegs(A),

then {);(A) ]L:1 are the lowest L eigenvalues of A, counted with multiplicity.

Our main result is the following.

Theorem 2 (Convergence of the excitation spectrum). Assume that (Al)-
(A2)-(A3) hold true.

(i) (Weak convergence to H). For every fized ® and ® in the quadratic form
domain of the Bogoliubov Hamiltonian H, we have

Nli_{noo (®',Un(Hy — Nexn)Uy (I)>]-‘+ = <<I>’,H<1>>f+ (19)

where U is defined in (I8) and by convention U} is extended to 0 outside
of ffN .

(79) (Convergence of eigenvalues). Let A\{(Hy) < Aa(Hpy) < ... and A (H) <
Ao(H) < ... be the min-maz values of Hy in HY and H in F, respectively.
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We have

lim <)\L(HN) - NeH> = \p(H)

N—oo

for every L =1,2,.... Consequently, we have the spectral gap
lim inf(inf Gess (HN) — Al(HN)> > inf Tags (H) — A (H) = inf oess(h) > 0.

N—oo
(791) (Convergence of the ground state). The Hamiltonian H has a unique
ground state @) in F, (up to a phase factor) and Hpy also has a unique
ground state \Ilg\lf) for N large enough. Furthermore (up to a correct choice
of phase for \Ilg\l,)),

lim Uy¥Y = o0 (20)

N—oo

strongly in Fy. The latter convergence is strong in the norm induced by the
quadratic form of H on Fy if (A3s) holds true.

(1v) (Convergence of lower eigenvectors). Assume that A (H) < inf oegs (H)
for some L > 1. Then Ap(H) is the L-th eigenvalue of H and for N large

enough, A\, (Hy) is the L-th eigenvalue of Hy. Furthermore, if (\If%))N>2
1 a sequence of associated eigenvectors, then, up to a subsequence, -

lim Uy®) = o®) (21)

N—oo

strongly in F, where ®L) s an eigenvector of H associated with the eigen-
value Ar,(H). The latter convergence is strong in the norm induced by the
quadratic form of H on Fy if (A3s) holds true.

The proof of Theorem P2lis provided in Section[[.Il Let us now make some
comments on this result.

The weak limit (I9) shows how the Bogoliubov Hamiltonian H arises
from the particle-conserving Hamiltonian Hp. This convergence essentially
implies the upper bounds on the eigenvalues of Hy and this is the easy part
of our proof. In previous results (for instance in [56]) the upper bounds were
more involved because the argument was carried out in the original Fock
space F and the trial state had to be projected on $V. On the contrary
we work in the excited Fock space F, and only need to project the state
on }EM with M < N (in practice 1 < M < N) before applying Uy,
which is much easier. Note that we actually do not need the condensation
assumption (A3) for showing (i) and the upper bound on the eigenvalues.

The difficult part of the proof is the lower bound on the eigenvalues, which
requires (A3) as well as a localization method in the Fock space F, in the
spirit of a previous result of Lieb and Solovej [42, Thm. A.1]. The idea is
to estimate the error made by replacing a vector ® € F by its truncation
on .FEM, in a lower bound. This method is the object of Section [6] where
we prove an IMS-type localization formula.

Even if our simplified statement does not reflect this, we are able to prove
explicit error estimates. For instance, for the convergence of A, (Hy) in (i),
we will prove that

_ CL((?RL(N) +N71/3) < AL(HN) _ NGH _ )\L(H) < CLN*1/3 (22)
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for N large enough, where C, and Ry, only depend on (Ar(H) — A;(H)) and
(AL(Hn) — M(Hn)), and where we recall that ep, is given in Assumption
(A3). Similar estimates can be obtained for the eigenfunctions. Under the
strong condensation assumption (A3s), our proof shows that one can take
er(N) = O(N~1), leading to an overall error of the order O(N~1/3).

In [53] 24], Seiringer and Grech have shown a result similar to Theorem [2
More precisely, in [53] Seiringer treated the case of 2 a cube in any dimen-
sion, T' = —A with periodic boundary conditions, and w a bounded and
positive periodic function such that @ > 0. In [24], the same method was
used to treat the case of Q = R%, T' = —A + Vi with Vi — 0o at infinity,
and w a bounded positive function such that @w > 0. In these two cases, the
properties (A1), (A2) and (A3s) are all satisfied and Theorem 2lapplies. The
proof of strong condensation (A3s) is simple and relies on @w being positive,
see, e.g., [53] Lemma 1].

The speed of convergence ([22]) that we can establish in our abstract setting
is slightly worse than the O(N~1/2) obtained in [53, 24]. The method of
proof is rather different, however. In [53| 24], the authors relate Hy to an N-
dependent Hamiltonian H B8 which is quadratic in the effective annihilation
operators b; = ajaj/v/ N — 1. These operators only satisfy the commutation
relations in the limit N — oo. The effective Bogoliubov Hamiltonian HB°8
can be diagonalized by a unitary transform, up to an error. The unitary is
constructed by inserting the effective b;’s in the formula of the Bogoliubov
rotation which diagonalizes the true Hamiltonian H.

In the present paper, by applying the unitary Uy, we settle the problem in
the excited Fock space F, in which the true Bogoliubov Hamiltonian H acts.
The main advantage of our approach is that 7, and H are now independent
of N, which makes the comparison with UxyH Uy clearer, in our opinion.
The effective operators b;’s were also used in previous works [42], 43| 40] on
the one- and two-component Bose gases, for which our approach could be
useful as well.

Let us remark that the convergence (20) in the Fock space F can be
rewritten in the original N-body space $HV as

N N—oo

-], o~ -3

where (1) = gb(()l) <) gbgl) @ - € Fy. In particular, when w # 0, we see that

the many-body ground state \I’E\I,) is never close to the Hartree state u?N in
the norm of $V. This is because the vacuum in F, is never an eigenvector
of the Bogoliubov Hamiltonian H, except when w = 0. A similar property

holds for the lower excited states \I/%').

Although the wavefunction \I’%) is in general not close to the Hartree
state U?N in the norm of $H”, its density matrices are close to that of u?N .
Indeed, if (A1)-(A2)-(A3s) hold, then the convergence of eigenvectors in (iv)

implies the following convergence of the one-body density matrices

i Tr Qg1 @ — Yem | =0
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and

li T‘P P—(N—-N®& -
Aim Ty | Py P~ ( + )luo){uol| =0

where P = |ug)(up| = 1 — @ and NJ(FL) = Trvygw). In particular, by simply

controlling the cross term P’y](\f)Q by the Cauchy-Schwarz inequality, we
immediately obtain the complete Bose-Einstein condensation

Tr

N~y = luo)uol| < OVTY2).

More generally, we can show that if ¥ is a wave function in $V satisfying
(Un, HyU ) < E(N) + O(1), then we have

T PG, — Ju )| < ov172) (23)

where k£ € N is fixed, and Fgc])v is the operator on $3* with kernel

k
PEI/])V('%'M e Ty Y1, 7yk)

= /‘I’N(ﬂfl, o N)YN (Y1, - YN ) dTp g1 dny Ay dyn.

Note that, by looking at the first order of the density matrices in (23]), the
excited states cannot be distinguished from the ground state. A slightly
weaker version of (23]), namely that Fgl\;) (x1,...,xg; T1, ..., T;) converges to
lug(z1)|%...|up(x1)|? weakly in $*, was proved recently by Kiessling for the
ground state of bosonic atoms [30]. In fact, the convergence of reduced
density matrices in (23)) is well understood in the time-dependent setting [58,
20, [T, 2, (50, 14], and in this case there has been recent interest in corrections
to the Hartree equation [25] 26] [6], where our method might also apply.

Remark 6. In the convergence in (iii), the sequence of ground states {\I’E\lf)}N
can be replaced by any sequence of approximate ground states. More pre-
cisely, if for every N we take a wave function U’y € 9N such that

Tim <<HN>% - Al(HN)) —0,

N—oo

then we still have UN\IIQV — ®W) 4n the same sense as in Theorem 2.

Remark 7. If we perturbate the factor 1/(N — 1) in front of the interaction
term in the Hamiltonian Hy by a term of O(N~2) order, then our results
in Theorem [2 remain valid, with the modification that the eigenvalues are
shifted by an extra term of order O(1). More precisely, if ky = (N —
™' + kN2 4+ o(N72) with k € R fized, then the min-max values of the
Hamiltonian

N
Hy, = ZTZ + KN Z w(x; — x5)
i=1 1<i<j<N
satisfy
)\L(HN,,Q) = Neng + k(pmu — eH) + )\L(H) + 0(1).
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2.5. Positive temperature. At a positive temperature 31 > 0, the free
energy of the system is given by

Fy(N):=  inf { Te[HNT] — 5—15(F)} = — B log Trgn e BHN
Trg, ~(D)=1
where S(I') := — Tr[I"log I'| stands for the von Neumann entropy. Our goal

is to establish the convergence
lim (F3(N) — Nen) = - 'log Trz, {eiﬁH} .
N—oo
For this we need two new conditions. At positive temperature the stability
of the system does not follow from the simple relative boundedness assump-
tions (A1) on w. So we need the following

(A4) (Stability). There exists fo > 0 such that Fgy(N) > —CN for all N
and Trg, [efﬁoH] < 00.

Our second new assumption is a modified version of the zero-temperature
condensation (A3), which we now only assume to hold for the Gibbs state
at temperature =1 for simplicity.

(A3’) (Bose-Einstein condensation at positive temperature). For any f~! <
By L one has
lim (uo,v8,NU0)
N—o00 N
where y3, n 15 the one-body density matriz of the Gibbs state I'g n 1= e PHN
/ Tr [efﬁHN] , namely, in terms of kernels,

=1 (24)

va.N(z,y) =N / L n(z,22,..., N Y, T2, ..., TN )dx2...da .

QN-1

Let us remark that if the strong condensation assumption (A3s) holds true
for some 9 € (0,1) and Trx, [6—(1—50)50 H] < oo for some fy, then we can
prove (A3’) and (A4) for the corresponding ;. We of course always assume
that (A1) and (A2) hold true. Moreover, if h > ng and K; = Ky > 0, then

dI'(h+C)+C>H>dI'(h —¢) — C:
(see ([6Y) in Appendix[A]), and hence the condition Trz, [6_(1_60)60]}]1] < 00
is equivalent to Tr [e*(lfeo)ﬁoh] < 00. The latter holds true if we have
Tr [6—(1—50)(1—a1)60T] < 00, because h > (1 —aq)T — C, where ag € (0,1) is
given in Assumption (Al).

Our main result is the following

Theorem 3 (Positive temperature case). Assume that (Al)-(A2)-(A3)-
(A4) hold true. Then for every f~! < ﬁal, we have

lim Trz, Une PHN=New) s _ e’BH‘ =0.
n—o0

This implies the convergence of the corresponding Gibbs states and of the
free energy:

lim (F3(N) — Nen) = - 'log Trz, {eiﬁH} .
N—o0
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Theorem [Bis proved using the same argument as that of the proof of The-
orem 2] together with a well-known localization inequality for the entropy,
see Section

3. APPLICATIONS

It is easy to verify that the model considered by Seiringer in [53] and by
Grech-Seiringer in [24] satisfy our assumptions (A1), (A2) and (A3s). So
our approach applies and we are able to recover their results.

In the rest of this section, we consider two Coulomb systems for which we
are able to apply our main results.

3.1. Bosonic atoms. For a bosonic atom we mean a system including a
classical nucleus at the origin in R? of charge Z > 0 and N “bosonic quantum
electrons” of charge —1. The system is described by the Hamiltonian

L) Dt

i=1 1<i<j<N 7

acting on the symmetric space 7V = ®é\;m L?(R?). For simplicity of writing,
we only consider spinless electrons. We shall study the asymptotics of Hy, z
when N — oo and (N —1)/Z is fixed.

By using the unitary Dy : HV — HY defined by (D¥)(z1,...,2x5) =
NG (0, ..., lzy) with £ = N — 1, we can rescale the Hamiltonian to

n=3 (<o) ey X
BN Pt ) TN =1 |z — ;]

i=1 1<i<j<N ™"

where t := (N —1)/Z. The Hamiltonian H; ny has the same form as in the
previous section, with Q = R3, T'= —A — 1/(t|z|) and w(z —y) = |z —y| L.
The eigenvalues of the original Hamiltonian are then proportional to (N —1)2
times the eigenvalues of H; n.
Note that Assumption (A1) holds due to Kato’s inequality
1

1
< e, + — L%(R3). 25
|$|_ € x+4€ on ( ) ( )

and the fact that H; y is self-adjoint on ®é\;m H?(R?). Note also that the
first eigenvalue of H; n, when it exists, is always non-degenerate. In the

following we shall denote by <I>§1J)V the corresponding unique positive ground
state.

It was already proved by Benguria and Lieb [7] that for every ¢ > 0, the
leading term of the ground state energy of H; y is given by Hartree’s energy,

that is

info(Hy n) = Nen(t) + o(N) (26)

as N — oo, where

ul\xr 2
en(t) = inf ){/R ]Vu(x)\de—%/RS| Tx‘” dm—l—%D(!u\Q,\uP)}.(W)
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]

R3xR3

Here, again

Note that D(f,f) > 0 because the Coulomb potential |z|~! has positive
Fourier transform.

The fact that the next order in the expansion of the ground state energy of
bosonic atoms is given by Bogoliubov’s theory was first conjectured in [45].
In the following, by applying Theorem [2] we shall establish not only this
conjecture but also many other properties of the system.

By a convexity argument, it can be shown (see [35]) that the Hartree
minimization problem (27)) has a minimizer u; if and only if ¢t < ¢., for some
critical number t. € (1,2) (it was numerically computed in [5] that ¢, ~
1.21). In the case of existence, the minimizer is unique, positive, radially-
symmetric. Moreover it decays exponentially and it solves the mean-field
equation

hy uy =0,

with the Lagrange multiplier ,uH( ) < 0. Moreover, if t < t., then up(t) <0
and there is a constant 7 (t) > 0 such that

he > nu(t) >0 on $4 = {u}t. (28)

The critical binding number ¢, in Hartree’s theory also plays an important
role for the original quantum problem. In fact, it was shown in [7, 55l [3] that
for every N there are two numbers b(N) < b'(N) satisfying that H; ; always
has a ground state if ¢ < b(NN) and H; 7z has no ground states if ¢ > b'(N),
and that

lim b(N) = lim V(N) = t..
Ngnoo ( ) Ngnoo ( ) ¢

In the following we shall always assume that ¢ is fixed strictly below ..

In this case, Assumption (A2) holds true. In fact, due to Hardy’s inequality

! <
Al =

—A, on L*(R?), (29)

the function K;(z,y) := us(x)|z — y| us(y) belongs to L2((R?)?). Hence,
Ki(x,y) is the integral kernel of a Hilbert-Schmidt operator, still denoted
by K;. Note that K; > 0 because |z — y|~! is a positive kernel. Thus the
spectral gap (28]) implies the non-degeneracy of the Hessian, namely

hy + K3 K;
( Kt ht"'Kt ) > nH(t) on '6+ 69'6+

The condensation in Assumption (A3) is implicitly contained in the proof
of the asymptotic formula (26) by Benguria and Lieb. In fact, the upper
bound in (28) can be seen easily by using the Hartree state ul?N . The
lower bound is more involved and it follows from the Lieb-Oxford inequality
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[34] 38] which says that for every wave function ¥ € $%,

1 1 4/3
E - P —1. _
<\I’, Pp—— \I’> 2D(p\p, pw) — 1.68 /R3 pw(z)*°dz. (30)

1<i<j<N
The following is a quantitative version of the strong condensation (A3s).

Lemma 4 (Strong condensation of bosonic atoms). If t < t., then

N
Hyn = New > (1= N72%) 3" (k) - ON'2. (31)
i=1
Remark 8. In particular, from (31) it follows that if (Hy n)w < Nen + R,
then (ug, ywuo) > N — CNY3 which is (A3). When t < t., by Theorem 2
we can improve the estimate to (ug, ygug) > N — C. The latter was shown
by Bach, Lewis, Lieb and Siedentop in [4] using a different method.

Proof. We start by estimating the terms on the right side of the Lieb-Oxford
inequality ([B0). First, from the positivity D(f, f) > 0, we have

1 1
sD(pw,pw) = D(PW7N\Ut’2)—§D(N\ut’27N’ut\2)

2
— ND(pwJul) + N2(en(t) — pua(t).  (32)

On the other hand, using the Hoffmann-Ostenhof inequality [29] and Sobolev’s
inequality [37, Theorem 8.3] we can estimate

al A A A L\
<‘I’<Z;— i>\P>=Tr[— 7o) > (Vpw, - mmc(/RSpW) .

Therefore, by Holder inequality, we find that

1/6 5/6 N5/3
/pﬁf/gé (/p%) </pw> < eTr[-Ay]+CO—

Thus using the Lieb-Oxford inequality (30]), the estimate (B2) and h; >
—A/2 - C we get

2
(Hyn)w > Nen(t) + (1 — N’5> Tr[heve] — 2Ce — Ce ' N?/3

for all € > 0. Replacing ¢ by N'/3/2, we obtain (BI)). O

All this shows that if ¢ < t., then Assumptions (A1)-(A2)-(A3s) hold
true, and we may apply Theorem [2lto show that the lower spectrum of H; z
converges to the lower spectrum of the Bogoliubov Hamiltonian

H, = /Q a* (@) ((he + K1) a) (2) do
w5 [ Ko (@0 )+ ot asay,

which acts on the Fock space Fi = P, @y, H+- Beside some basic
properties of H already given in Theorem[I], we have the following additional
information.
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Proposition 5 (Bogoliubov Hamiltonian of bosonic atoms). For every t €
(0,t.) one has

Oess(Hy) = [inf o (H;) — pp(t), 00) .
Moreover, ift < 1, then H; has infinitely many eigenvalues below its essential
spectrum. On the other hand, if t > 1, then Hy only has finitely many
etgenvalues below its essential spectrum.

Proof. First, since hy = —A+Vi(x)—pun(t), where Vy(x) := (Juo|?*|.| 1) (z)—
t=1|z|~! is relatively compact with respect to —A, we obtain oes(hi) =
[—pm(t),00). Thus oess(Hy) = [inf o(H;) — pp(t),00) by (ii) in Theorem [II
The other statements follow from (iii) in Theorem [land the fact that h; has
infinitely many eigenvalues below its essential spectrum if and only if ¢ < 1.
In fact, if t < 1, then V;(z) = my x || 7! where the measure
my = IUQIQ — t_150

has negative mass ['m < 0, and we can follow [44, Lemma IL.1].
On the other hand, if ¢ > 1, then by applying Newton’s Theorem for the
radially symmetric function |ug(z)[?, we can write

e [ WP L f e (Lo L
i) [ = 0 (5 ) o

Because us(z) decays exponentially, we obtain that [V (x)]_ also decays ex-
ponentially and hence belongs to L3/2(R3). Therefore, by the CLR bound
(see e.g. [39, Theorem 4.1]), we conclude that h; has finitely many eigenval-
ues below —pu(t). O

By the celebrated HVZ Theorem [48], one has

Uess(Ht,N) = [Et,Na OO)

where ¥ y is the ground state energy of the (N — 1)-body Hamiltonian

N—-1
1 1 1
A — -
Z( ' t|90z‘|>+N—1 2 |z — 2]

i—1 1<i<j<N-1

An asymptotic formula for ¥; ; can be obtained by the same method as
that of Theorem [ (see Remark [ in the end of Sec. [24]), namely

YN = Nep(t) — pu(t) +inf o(Hy) 4+ o(1) = Nen(t) + inf oess(Hy) + o(1).

It thus turns out that the essential spectrum of H; y — Neg(t) converges to
the essential spectrum of H;.

Thus, by combining the HVZ Theorem and Theorem [2 we obtain the
convergence of the whole spectrum of H; n as follows.

Theorem 6 (Spectrum of bosonic atoms). If t € (0,t.) is fized, then we
have the following statements in the limit N — oo.

(1) (Essential spectrum). The essential spectra of Hyn and Hy are
Uess(Ht,N) = [Et,N7 00)7 Uess(Ht) = [infU(Ht) - MH(t)a OO)
and we have the convergence

]\;gnoo (Et,N - NeH(t)) = infU(Ht) - IU,H(t)
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(73) (Ground state energy and ground state). We have
lim (info(Hyn) — Nen(t)) = inf o(H;) < 0.
N—o0

For N large enough, Hy Ny has a ground state \I’SJ)\, (which is then unique
and can be assumed positive) and

. 1 1
Jim Uy = )
) S ]:+ 18

the unique ground state of H such that <<I>§1), M r. >0, Q being the vacuum
state in F.

strongly in the norm induced by the kinetic energy in Fy, where q)gl

(7i1) (Lower eigenvalues and eigenstates). Assume that H; has L eigenvalues
below its essential spectrum, for some L > 1. Then for N large enough, H; n
also has L eigenvalues below its essential spectrum, and the L-th eigenvalue
of (Hyn — Nen(t)) converges to the L-th eigenvalue of H; as N — oo.

Moreover, if \IIIEL]\)[ 1 a corresponding eigenvector, then up to a subsequence,
UN\IlgLA), converges to an eigenvector of the L-th eigenvalue of Hy as N — oo.
3.2. Trapped Coulomb gases. We consider a two- or three- dimensional

system of N bosons trapped by an external potential and interacting via the
Coulomb potential. The system is described by the Hamiltonian

N
1
Hy = (Ko, + V(z:)) + T > wlw — )
i=1 1<i<j<N

acting on the symmetric space $V = ®é\§[1m L?(R%) for d = 2 or d = 3, where
K=—-Aor K=+1-A —1is the kinetic energy operator.

Our study in this section was motivated by a recent work of Sandier and
Serfaty [52, 51]. They proved in [51] that for the classical 2D Coulomb

systems, the ground state energy behaves like
1
Ney — ZlogN—{—c—l— o(1)

where ey is the Hartree ground state energy when X = 0 and ¢ is the ground
state energy of an infinite system of point charges in the plane, interacting
through the Coulomb potential and with a neutralizing jellium background.
The log N term is due to some local scaling invariance (think of replacing
V by a constant in a small box and shrinking the system about the center
of this box). We shall see that, when the kinetic energy is introduced, since
the local scaling invariance is broken and shrinking the particles has a too
large cost, the logarithmic term disappears and the next term is of order
O(1), given by Bogoliubov’s theory. In order to make this vague statement
rigorous, we need some natural assumptions on T'= K + V and on w.

Assumptions. Ifd =2, thenw(z) = —log|z|, K is either —A or/—A + 1—
1, and V € L2 (R2 R) satisfying that

loc
lim inf Viz)

5.
2|00 [log |z]]?



BOGOLIUBOV SPECTRUM OF INTERACTING BOSE GASES 21

If d = 3, then w(x) = |z|~t, K is either —A or V=A+1—1, and V €
L3 (R3 R) satisfying that V(z) — oo as |z| — oco.

loc

Let us show that under these conditions, Assumptions (A1)-(A2)-(A3s)
in Theorem [ hold true. First, note that I + V is bounded from below on
L*(RY) (see [3T, Sec. 11.3]). When d = 3, if K = v/1 — A — 1, then the
relative bound (Bl in (A1) follows from the relativistic Hardy inequality [39]
Lemma 8.2]

2
ﬁ S —AS \/1—A on LQ(Rg),
|x
while if L = —A, then we even have the stronger bound

lw(z —y)* < ColKy + Ky +V(2) + V(y)] + C on L*((R%)?) (33)
due to Hardy’s inequality ([29). When d = 2, then (B3] also holds true, due
to the estimates K +V > C~log(1 + |z])]? — C and

lw(z —y)* <2 [ + [log(1 + |=])]* + [log(1 + lyl)ﬂ +C

L
|z =y
for some C' > 0. Thus (Al) holds true. On the other hand, Assumption
(A2) follows from the following

Proposition 7 (Hartree theory). Under the previous assumptions, the vari-
ational problem

) 1
ewim nt L v+ g [ [Pt - pu)P ) 6o
[Jull=1

has a unique minimizer ug which satisfies that ug(z) > 0 for a.e. x € R4
and solves the mean-field equation

huOZO,
hi=K+V+|uol?*w — um,

for some Lagrange multiplier pyy € R. The operator h has only discrete
spectrum A1(h) < Aa2(h) < A3(h) < ... with lim;_yoo \j(h) = co0. Moreover,
the operator K with kernel K(x,y) = uo(x)w(x —y)ug(y) is Hilbert-Schmidt
on L?(RY) and it is positive on $y. Finally, ug is non-degenerate in the

sense of ().

Before proving Proposition [ let us mention that in 2D, the Coulomb
potential w(z) = —log|z| does not have positive Fourier transform. More
precisely, @ = pv |- |71, the principal value of |- |~!. Although w is not
a positive type kernel, we still have the following restricted positivity (see
[13)).

Proposition 8 (Coulomb log kernel). For any function f € L'(R?) N
LY*e(R?) for some ¢ > 0 with

/ log(2 + |z])|f(z)| dz < oo and f=0,
R2 R2
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we have

0<D(f.f) = — / / F@) log [z — 1 (y) dz dy < oo.
R2 xRR2

We can now provide the

Proof of Proposition [7]. By using the relative bound (fl), Sobolev’s embed-
ding [37, Theorem 8.4] and the fact that V(z) — oo as |z|] — oo, it is
straightforward to show that there is a minimizer ug for ey in ([84]) such that

ug € D(K'Y?) and
/ V (x)]uo(x)]2dz < oo.
R4

Since (u, Ku) > (|ul, Clu|) [37, Theorems 7.8 and 7.13], we may assume that
ug > 0. Moreover, the Hartree equation huy = 0 implies that ug(z) > 0 for
a.e. € R? and ug is then the unique ground state of h. Moreover, because
V(z) + (Jup|? * w)(xz) — oo as |z| — oo, the operator h (on $,) has only
discrete spectrum A (h) < A2(h) < ... with A\;(h) > 0 and lim;_, o Ai(h) = o0
(see [48], Theorem XIII.16]).

For any normalized function u € §, we have [(Ju|?—|uo|?) = 0 and hence
D(|ul|? = |ug|?, |u|? — |ug|?) > 0 by Proposition Bl Using this and a convexity
argument we can show that ug is the unique minimizer of ey in (34]) .

The operator K with kernel K(z,y) = ug(z)w(x — y)ug(y) is Hilbert-
Schmidt in L2((R%)?). When d = 2, or d = 3 and K = —A, this fact
holds true due to (B33)). When d = 3 and K = /1 — A — 1, the Hilbert-
Schmidt property follows from the Hardy-Littlewood-Sobolev inequality [37,
Theorem 4.3] and the Sobolev’s embedding HY/?(R3) ¢ L3(R?).

Finally, the operator K is positive on $); because (v, Kv) = D(vug, vug) >
0 for every v € $1. The latter inequality follows from Proposition [§and the
fact that [(vup) = 0. We then deduce from h > Ao(h) — A1 (h) := nu > 0
that up is non-degenerate in the sense of (7). O

We have shown that (A1) and (A2) hold true. Therefore, we may consider
the Bogoliubov Hamiltonian

H= [« @)+ Kla@) o + 5 [ | Ko (@0 @) + afe)aw) dedy,

which acts on the Fock space 7 = @,y @y 9+ From Theorem [ and
the spectral property of h, the following can easily be proved.

Proposition 9 (Bogoliubov Hamiltonian of trapped Coulomb gases). Un-
der the above assumptions on K, V and w, the Bogoliubov Hamiltonian H is
bounded from below. Its spectrum is purely discrete, consisting of a sequence
of eigenvalues A\ (H) < Aa(H) < A3(H) < --- with limj_,o A;(H) = co.

Now we consider Assumption (A3s). In three dimensions, the condensa-
tion can be obtained by following the proof of Lemmal[dl In two dimensions,
we have the following result.
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Lemma 10 (Strong condensation of 2D Coulomb gases). Under the above
assumptions on K, V and w, we have

N
_ logN C
Hy—Nexy > (1-N"Y) hi— -—.
; ‘ 4N N

This condensation can be proved by using the same argument as in the
proof of Lemma [ and the following Lieb-Oxford type inequality, whose
proof can be found in Appendix [C|

Proposition 11 (Logarithmic Lieb-Oxford inequality). For any wave func-

tion U € @Y L*(R?) such that |¥|? is symmetric and py € L' N L't for
some 0 < e <1 and [5.1og(2+ |z|)pw(z) dz < oo, we have

1 1
<\If7 > —logla; — \I'> > 5D (pw. p) - Z/Rz pu log py

1<i<j<N
C 1+¢
_C qu——</ pq;)/ ( Py ) . (35)
R2 g R2 R2 ngp\p

The estimate (B5) is probably not optimal but it is sufficient for our
purpose. In particular we do not know if the error term involving & can
be removed. By applying Theorem 2] and Theorem [3] we get the following
results.

Theorem 12 (Spectrum of trapped Coulomb gases). Assume that K, V
and w satisfy the above assumptions.

(1) (Eigenvalues). The Hamiltonian Hn has only discrete spectrum A\ (Hy) <
X(Hy) < M(Hpy) < ... with im0 AL,(Hy) = 00. For every L = 1,2, ...
we have the following convergence

lim ()\L(HN) - NGH) = )\L(H)
N—o00
where A\, (H) is the L-th eigenvalue of the Bogoliubov Hamiltonian H.
(ii) (Eigenvectors). If \I’E\%) is an eigenvector of the L-th eigenvalue of Hy,

then up to a subsequence, UN\I/%) converges (strongly in the norm induced
by K+ V) to an eigenvector of the L-th eigenvalue of H; as N — oo, where
Uy is defined in (I8).

(#ii) (Positive temperature). If we assume furthermore that Tre Po+V) <
oo for some By > 0, then for every 0 < B! < 50_1 we obtain the convergence

lim Trr, |Uye BEN-Newps — e_ﬁH‘ —0.
N—o00
In particular, we have the convergence of the free energy

lim ( — B og Trgw e PN — N eH> = B llogTrr, e . (36)
N—oo
We have a couple of remarks on Theorem
First, we note that the condition Tr e Po(X+V) < o is satisfied if V' grows
fast enough at infinity. For example, if X = —A, d =2 or d = 3, and
Vv d
lim inf (z) —,
] =00 log ] = o
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then one has the Golden-Thompson-Symanzik inequality [23] [64) 62] (see
also [I8] for an elementary proof)

Tre P K+V) < (47T,80)d/2/ e PV d g < oo,
RN

Moreover, if X =+v/—-A+1—-1,d=2or d =3, and

lim inf Viz)

2|00 ||

> 0,

then Tre Po+V) < oo for all By > 0, due to [I8, Theorem 1] and the
operator inequality v—A + || > \/—A +|z]2 in L?(R%). The latter is a
consequence of the operator monotonicity of the square root and the fact
that v —Alz| + |z|v/—A > 0 in L?(R?), see [28, Theorem 1].

Second, in [51l Theorem 1] the authors provided upper and lower bounds
on the classical free energy at nonzero temperatures, which coincide when
B! — 0. In the quantum case we are able to identify precisely the limit (3G))
even when 37! > 0, which is given by the Bogoliubov Hamiltonian.

4. OPERATORS ON FOCK SPACES

In this preliminary section, we introduce some useful operators on Fock
spaces and we consider the unitary Uy defined in (I8)]) in detail.

For any vector f € $), we may define the annihilation operator a(f) and
the creation operator a*(f) on the Fock space F = @F_, H” by the follow-
ing actions

a(f) | D fo) @ @ fony | =VN D Fs fo))fr@) @ o @ Fo(ny),(37)

ceGN 0€B N

1

a*(fn) Z fo1) ® - @ fon—1) :\/N

oceEGN_1

> Fo)) @ ® forny (38)

ceG N

for all f, f1,...,fnv in H, and all N =0,1,2,.... These operators satisfy the
canonical commutation relations

[a(f),a(9)] =0, [a*(f),a"(9)] =0, [a(f),a*(9)] = (fr9)n-  (39)

Note that when f € $, then a(f) and a*(f) leave Fy invariant, and
hence we use the same notations for annihilation and creation operators on
F+. The operator-valued distributions a(z) and a*(z) we have used in (I2)
can be defined so that for all f € 4,

olf) = [ Faat@ids and a*(1) = [ j@)a(a)da.
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To simplify the notation, let us denote a,, = a(u,) and a; = a*(u,), where
{un }2°, is an orthonormal basis for L?(€2) such that ug is the Hartree min-
imizer and u, € D(h) for every n = 1,2,.... Then the Bogoliubov Hamil-
tonian defined in (I2]) can be rewritten as

N 1
H = m%; (um, (h + K1)un) 12(q) Gmn + 5 (um ® un, K2) 12(g2) may

1
+§ <K27 Um & un>L2(QQ> QO - (40)

The sums here are not convergent in the operator sense. They are well de-
fined as quadratic forms on the domain given in (I4]). Since the so-obtained
operator is bounded from below (by Theorem [II), it can then be properly
defined as a self-adjoint operator by the Friedrichs extension.

It is also useful to lift operators on N to the Fock space F. The following
identities are well-known; their proofs are elementary and can be found, e.g.,
in [§] and [57, Lemmas 7.8 and 7.12].

Lemma 13 (Second quantizations of one- and two-body operators). Let
A be a symmetric operator on $ such that u, € D(A) for alln > 0, and
let w be a symmetric operator on $ ® §H such that uy, @ u, € D(w) and
(U, @ Up, WUy @ Ug) = (Up @ Uy, WUy @ Ug) for all m,n,p,q > 0. Then

oo N
dT(A) =0 P Y Aj = > (um, Aun)g ajan
N=1 j=1 m,n>0
and
s 1
0 0® GB Z wij = 5 Z (U @ Up, W Up @ Ug) 2 Ay Gy, Oplyg
N=21<i<j<N m,n,p,q=0

as quadratic forms on the domain

U B & (span{ug,us,..}) € F.

M=0 N=0 sym

The same identities also hold for operators on the Fock space F,, where
we can use the orthonormal basis {u, }7° ; for $;. In particular, the particle
number operator N' = dT'(1) = 3 22 jls; on F can be rewritten as N =
Y ome G an, and the particle number operator on Fi is Ny =3 > a nan

By using the second quantization, we can write Hy : Y — HV as

Hy = Z Tnar,an + Z WonnpqQim G Qg . (41)

m,n>0 m,n,p,q>0 |5:JN

Here Ty, = (upm, Tuy,) and

Winnpq 1= //QxQ Uy (2)un () w(x — y)up(x)ug(y)dedy.

Since Hy and H live in different Hilbert spaces, to compare them we
need to use the unitary transformation Uy : H§Y — F +N defined before in
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(I8). The action of Uy on annihilation and creation operators is given in
the following lemma, whose proof is elementary and is left to the reader.

Proposition 14 (Properties of Uy). The operator Uy defined in ([I8]) can
be equivalently written as

N N—j
Un(¥) = P Q% (C;voiﬂ sz) (42)

J=0

for all ¥ € HN, and where Q =1 — |ug)(ug|. Similarly we have
bo) 5
Un ¢ = ——=0; (43)
§=0 j=0 (N —j)!

for all ¢; € ﬁi, 7 =0,..., N. These operators satisfy the following identities
on ]—"EN:

UNaSaOU}:, = N—N+,
Uya*(flagUly = a*(f)\/N— Ny,

Unaga(f)UN = /N —Nia(f),
Una*(fla(g) Uy = a*(f)alg),

forall f g € $Hy.

Note that the previous properties are purely algebraic. They do not
depend on any special choice of the reference one-body function uyg € $.
Roughly speaking, the unitary transformation Un(-)UR, leaves any aj, or
am, invariant when m > 1, and it replaces each ag, and af, by VN — N,.
The latter is essentially the number /N if A7, is small in comparison with
N, on the considered sequence of states.

By using these identities and the commutation relations (39]), we can com-
pute easily Uy AU where A is any operator on $V which is a (particle-
conserving) polynomial in the creation and annihilation operators. For ex-
ample,

Un(agapaman) Uy = Un(agam)Uxn Un(agan)Ux

— \/N—j\/_,_am\/N—N_,_an.

Using that a(f)/N — Ny =N =N —T1a(f) for all f € H,, we obtain

Un(agayaman) Uk = /(N = N (N — Ny — 1) apman.
A tedious but straightforward computation shows that

4
UvHNUy — Neg =Y A; (44)
=0
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where
LN - D)
A = —W PR N ——
0 5 V000077
N-N_ -1
A = Z (TOm +WooomN7_+1> VN - Nian
m>1
Y /NN (T + Wingo 2t =L
mO m000 N _1 )
m>1
As = Z <uma(T_MH) un> a;knan
m,n>1
. N-N
+ Z (um, (]u0\2 *w—+ K1) up) amanﬁ
m,n>1

VN - NN - N, - 1)
N -1

1 * *
—{—5 Z (U, @ Up, Ko)ayar,

m,n>1

VIN NN =Ny - 1)

1
+§ Z <K27um X un>

amana
N-1
m,n>1
Az = 1 w, *ak N — N.
3 = N_1 mnp0 Gy, Ay Ap — IV
m7n7p21
*
E Wopnm V' N — Nyapanam,
m,n,p>1
Ay = E WonnpqQom, G, GpQg-
mn,pq>1

Here recall that egq = Tyg + (1/2)W0000 and pp = Too + Woooo-
In the next section, we shall carefully estimate all the terms of the right

side of (44]) to show that
UvHnUy — Neg =~ H
in the regime N, < N.

5. BOUND ON TRUNCATED FOCK SPACE

The main result in this section is the following bound.

Proposition 15 (Preliminary bound on truncated Fock space). Assume
that (A1) and (A2) hold true. For any vector ® in the quadratic form domain

of H such that ® € fEM for some 1 < M < N, we have

(Un(Hy — Nem)U3)g — ‘ < c\/ﬁ (H+ Oy .

Here for a self adjoint operator A and an element a in a Hilbert space,
we write (A), instead of (a, Aa) for short. Recall that the quadratic form
domain of H is the same as that of dI'(h 4 1), on which the quadratic form
Un(Hny—Nen)Uy is well-defined. As an easy consequence of Proposition [I3],
we can prove the weak convergence in the first statement of Theorem
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Corollary 16 (Weak convergence towards H). Assume that (A1) and (A2)
hold true. Then we have for all fired ®,®’ in the quadratic form domain of
the Bogoliubov Hamiltonian H,

lim (@', Un(Hy — Nen)Uy @), = (¢, H®) (45)

N—o0
where by convention Uy is extended to 0 outside of ]:_EN.

Proof of Corollary [I@. 1t suffices to show the statement for ® = ®. Note
that the quadratic form domain of H is the same as that of dI'(h+1) because
of ({I8), and dI'(h + 1) preserves all the subspaces $'"'’s. Therefore, if we

denote by ®j; the projection of ® onto ]:_EM, then
lim (H)s,, = (H)s and lim lim (H+ C)e,y—s,, =0.
M—o0

M—o00 N—oo

If we denote Hy := Un(Hn — Nen)Uy, then from Proposition we
have

M = Hjeay =0 and im0 () —0u =0

The latter convergence still holds true with Hy replaced by a non-negative
operator Hy := Hy + Co(H+ Cp), where Cjy > 0 is chosen large enough. By
using the Cauchy-Schwarz inequality for the operator HY;, we deduce that

lim lim <ﬁN>q> - <ﬁN><I>M =0.

M—o00 N—oo

We then can conclude that (Hy)e — (H)p as N — co. O

The rest of the section is devoted to the proof of Proposition We shall
need the following technical result.

Lemma 17. If (A1)-(A2) hold true, then we have the operator inequalities
on Fyi:

1

dl(QTQ) < T a H+CN,. +C,
— U]

Ar(Qlu  [w)Q) < O‘Qa H+ CN, + C,
— U]

where 1 > aq > 0 and ag > 0 are given in the relative bound (3) in Assump-
tion (Al).

Proof. Using () we get |ug|?*w > —ay (T +C) and |ug|? * |w| < (T + C).
Consequently, T < (1 — a1) " th + C and |ug|? * |w| < ag(1 —ag)"th + C.
The desired estimates follows from the lower bound H > dT'(h) — CNy — C
(see Remark [I0in Appendix [A]). O

Now we give the

Proof of Proposition [I3. Let ® be a normalized vector in the quadratic form
domain of H such that & € ]:_EM for some 1 < M < N. Starting from
the identity (44]), we shall compare (As)s with (H)g, and show that the
remaining part is negligible.
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Step 1. Main part of the Hamiltonian.
Lemma 18 (Bound on Ay — H). We have

(Ag)e — <H><I>‘ < M < 22 (H)gp + C(Ny + 1><1>> )

N-—-1 1-— a1
Proof. From ({0) and (44]) we have
Ny —1
(o~ (Eha = = (ar (@uof* +w)Q+ 1) T )
- (]
+R Z (um @ un, K2) (ap,0,X) g (46)
m,n>1

where X := /(N = N )(N - N, —1)/(N —1) — 1.
Since dI" (Q(|uo|* * w)Q + K1) commutes with N, we have
Ne—1 _ M

N _1 S N — 1dP (Q(‘UOP *w)Q +K1)

0 < dI' (Q(|uol* * w)Q + K7)

on .FEM. By using Lemma [I7] and the boundedness of K, we can bound
the first term of the right side of (46 as

‘<dr (Qluol * w)Q + K1) Az@—_ll >q>

N -1 1—0[1

The second term of the right side of (@) can be estimated using the
Cauchy-Schwarz inequality

D (@, Ka) (a5,05.X) |

gi( @ <H>¢+0<N+>q>+c>. (47)

m,n>1
1/2 1/2
< X e ® e, K 2 S (@haianan)y | (X))
m,n>1 m,n>1
1/2 AN, +1)2 1/2
< Ko (x, 2dmd> N7 1/2<+7>
([ [ 1atwmPazay) o (S
CM

Here we have used the fact that the operator Ky is Hilbert-Schmidt and the
inequality (X —1)? < 4(N; +1)2/(N — 1)? and the estimate N\ < M on
J:EM. From (46]), (7) and ({@8)), the bound in Lemma [I§] follows. O

Step 2. Unimportant parts of the Hamiltonian. Now we estimate the other
terms of the right side of (@d]). First at all, by using N? < MAN, on ffM
we get

NNy —1))o| _ CM

A = <
|{(Ao0)a| = [Woooo N1 <5

Ni)e. (49)

The terms (A1), (A4)p and (A3)g are treated in the next lemmas.
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Lemma 19 (Bound on A;). We have

[(An)e] < c\/¥</\/+>¢.

Proof. By using Hartree’s equation (T + |ug|? * w — ,uH) ug = 0 we obtain
Trno = (s Tug) = — (tm, (Juo|? * w)ug) = —Winooo

for all m > 1. Therefore,

(A)e = 20> va/’”_oof <a;‘n\/N —J\/+J\/+>q).

m>1

By using the CauchySchwarz inequality we get
1/2 1/2

[(A1)e| < % > [ Winoool” D (amam)e (NF(N = Ni)),

m>1 m>1

< C\/¥<N+>q>-

Here in the last estimate we have used the bound

> Wl = 30| [ [ wm(ohutmun(ohuoy)ute - )dody

2

m>1 m>1
< [ uola) o) Pt ) dady < o
and the inequality N7 (N — N;) < MNN; on F2M. O

Lemma 20 (Bound on A4). We have

|M@¢VEN¥1<1TZﬁHﬁ+4NNM¢+C>-

Proof. From Assumption (Al) we have
QOQ(w(Ty +Ty+C)—wr-y)Q®Q >0

on H%, where Q@ = 1 — |ug){ug|. By taking the second quantization (see
Lemma [I3)) of this two-body operator, we can bound A4 from above by

1
Y Z (Um @ Up, 2(T @1+ 1T 4 Cuy, ® ug) ay,ay,apag
2AN-1) |

= 2 _4rQTQ)(WN. —1)+LN N —1)

T N-1 * 2N — 1) P

By using Lemma [T and the fact that dT'(QT'Q) commutes with ANy, we
obtain the operator inequality

M [(6%) <M
< .
A4_N—1<1—0¢1H+CN++C> OH]:.Jr

Employing this argument with w replaced by —w, we obtain the same upper
bound with A4 replaced by —Ay4, and the bound in Lemma 20 follows. [
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Lemma 21 (Bound on As). We have

|(A3)s| < % <1 (—12011 (H) + C(Ny)e + C'> )

Proof. Let us write w = w; — w_ where wy = max{w,0} and w_ =
max{—w,0}. By taking the second quantization (see Lemma [I3)) of the
non-negative two-body operator

(Q®Q-ePuQ@ (@ —<P) +(Q - P)® Qui(Q —cP) & Q)

+(Q 2 (Q+eP)w_-Q® (Q +¢eP) + (Q +eP) ® Qu_(Q + £P) ®Q>

where Q = 1— P =1—|up)(up| and € > 0, we obtain the following Cauchy-
Schwarz inequality

g (U, @ Up, WUy @ UG )ay, Cy, ApQo

m7n7p21
+ E (U0 ® Up, Wity @ Up,) AHA,ARAM,
mnp>1
—1 *
< ¢€ E (tm @ un, [wlup @ ug)ay, a,apaq
m,n,p,q=>1

+e Z (U ® ug, W, @ ug)ay,asanap.
m,n>1

After performing the unitary transformation Uy (-)U%; we find that

1
Az < 6(]\77—1 Z (U, @ Up, |w|up & uq>afna,*1apaq
m,n,p,q>1
9
@+ QY ~ A (50

for every € > 0.
On the other hand, by the same proof of Lemma [20] we have

1

N1 Z (Um @ un, [wlup ® ug)(ay,a,apaqg)e (51)
m,n,p,q>1
M Q
< N1 (1 —2a1 <H>¢+C<N+><I>+C> . (52)

Moreover, by using Lemma [I7 we get

dD(Q(luo* * [w) Q)N = Ny) < (N — 1)AT(Q(Juo|* * [w])Q)

and

<dF(Q(|uo|2 « |w])Q)

LM> (0@ @)y (53)

N -1

a2

< ( (Hyo + CN o + c) |
1-— aq
From (B0), (BI) and (B3]), we can deduce that

(Aa)e < 1/ 21 <

a2

M Hyo + CN)a +c>.

1—0&1



32 M. LEWIN, P. T. NAM, S. SERFATY, AND J. P. SOLOVEJ

By repeating the above proof with w replaced by —w, we obtain the same
upper bound on —(A3)g and then finish the proof of Lemma 211 O

Step 8. Conclusion. Using Lemmas [I8] [[9] 20] 2] and (49]), we can conclude
from (44]) that

(Un(Hy = NewUi)a — (] /5 (12

N -1 1-— aq
where oy and ay are the constants appearing in the relative bound in (A1).
Since N < C(H+C) due to (I8]), the estimate in Proposition[I5lfollows. [J

mm+cm&+wg

6. LOCALIZATION IN FOCK SPACE

From Proposition [[5], we have

lim (UvHnUY — Neg — H)g =0
N—oo

for every ® € .FEM with M fixed. In the next step, we want to localize a

state in }EN into the smaller truncated Fock space ]:_EM with M < N,
without changing the energy too much. The following result is an adaption
of the localization method used by Lieb and Solovej in [42, Theorem A.1].

Proposition 22 (Localization of band operators in F). Let A be a non-
negative operator on F such that P;D(A) C D(A) and P,AP; = 0 when
li — j| is larger than some constant o, where Pj is the projection onto .V)Zr.
Let 0 < f,g < 1 be smooth, real functions such that f> +g*> =1, f(x) =
for |x| <1/2 and f(x) =0 for |z| > 1 and let far and gpr be the localization
operators on F defined by

fu = fNy /M) = ZfJ/M o and gy = g(N /M) = ZgJ/M

(1) We have

e Cio®
f" Ao < A= farAfar — garAgar < =L A (54)

where Ay = ZP]AP] is the diagonal part of A and Cy = 4(||f'||sc +19'||o0)-

(ii) Let Y be a finite-dimensional subspace of D(A) such that ||gy®||* <
(dimY) ™! for every normalized vector ® € Y, then dim(fpY) = dimY.

The reader should really think of the discrete Laplacian (¢ = 1) in which
case the inequality (54)) is nothing but a discrete version of the IMS formula
[16, Theorem 3.2]. The statement on the dimension of the localized space
favY will be useful to control eigenvalues via the min-max formula. A proof
of Proposition 22 can be found in Appendix[Bl In the following we have two
applications of this result in our particular situation.

Our first application is a localization for H.

Lemma 23 (Localization for H). For every 1 < M < N we have

e C
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Proof. We can apply Proposition 22] with A = H — A\ (H) and o = 2. Note
that the diagonal part of H is nothing but dI'(h+ K1) which can be bounded
from above by C(H + C), due to (I8]). O

Now we turn to a localization for Hy := Un(Hy — Nen)Uy.

Lemma 24 (Localization for Hy). For every 1 < M < N we have

C
— 25 (L) pen + € = M(H) ) < Hy = farHyfar = garHga <
<

C ~

2 ‘J__EN—FC—)\l(HN)).
Proof. We apply Proposition 22 with A = Hy — )\1(}~IN) and o0 = 2. From
the inequality Hy < C(H + C) due to Proposition [I5, we see that the
diagonal part of Hy can be bounded from above by CdI'(h), .<xv + C. O

<CdF(h)

|Fy
Remark 9. The error term dr(h)‘]_-<N in Lemma[2]] can be further replaced

by C(H+ C) due to (ﬂﬂ) or replaced by C(HN + CN) due to the stability

Hy > (1—o) ZT CN> Zh—CN on H

where a and vy are given in Assumption (A1). The bound dI'(h) < C(Hn+
CN) on .F_EN also implies that A\ (Hy) > —CN, although it is not optimal
(we shall see that A (Hy) is of order O(1)).

7. PROOF OF MAIN THEOREMS
We recall that we have introduced the notation Hy := Un(Hv—Nen)Uy.

7.1. Proof of Theorem [2l The first statement of Theorem 2] was already
proved in Corollary [I6l above. We now turn to the proof of the other state-
ments, using the localization method.

Step 1. Convergence of min-max values.
Upper bound. By applying Lemma 23] and Proposition I3, we have, for every
normalized vector ® € D(H) and for every 1 < M < N,

—1
> fu (1—1—6’\/%) fIN—C\/% Y
C
F(H) G~ 25 (H 4 O) (55)

Now fix an arbitrary L € N. For every § > 0 small, we can find an
L-dimensional subspace Y C D(H) C F, such that

H)p < Ar(H) + 0.
pernX | (g < Ar(H) +

By using the inequality g3, < 2N} /M and Ny < C(H+ C), which is due to
(@6), we get ||gn®||?> < C/M for every normalized vector ® € Y. Here Cf,
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is a constant depending only on Ay (H) — A (H). Therefore, if M > LCp,
then dim(fy/Y) = L by Proposition 2] (ii). Consequently, by the min-max
principle,
(fu®, Hx fu®)
seviiel=1  [[fu 2|

> A\ (Hy).

Thus from (55) we obtain, for M large enough,

A > (1 &L 10\/M1)\f{f o M|
o= (1= ) | (e ey ) M- oy -G

By choosing M = N'/3 we get the upper bound
)\L(HN)—NGH:)\L(I:'VIN) S)\L(H)—FCLN_U?’. (56)

Lower bound. By applying Lemma and Proposition [I5] for every 1 <
M < N we have the operator inequalities on .FEN :

Hy > fuHyfu+guHygy — %(Cdr(h)‘;gv +C - Al(ﬁN)>
> fur [(1—0 %)H—C\/% i)
~ C -
M1 () gk = 375 (CAD(R) v +C = M (Hy)) (57)

We first show that A (Hy) > A (H)+o(1). For every § > 0 small, we can

find a normalized vector ® € D(Hy) C ]:_EN such that

(Hn)oy < M(Hy) +90.
From Assumption (A3) we have
2N ey < 2Ner(N)
M - M
where ep is as in (A3). We can choose R = 1. In particular, if we choose
M > Neg(N), then ||gp®n||> — 0 as N — oo independently of § and the

choice of ®y. Thus from (57) and the simple bound dr(h)u:SN —\(Hy) <
+

C(Hy + CN) (see Remark [ after Lemma P4 we can conclude that

A(Hy)+6 > ||fM¢N||2[<1—C\/¥> AL(H) - C %

A (HN)lgn @ |* = =7

lgar®l? <

By choosing M such that max{Ner(N),v/ N} < M < N, then taking
§ — 0, we obtain the lower bound A;(Hy) > A;(H) + o(1).

By adapting the above argument, we can show that A (Hy) > Ap(H) +
o(1) for an arbitrary L € N. In fact, for every 6 > 0 small, we can find an
L-dimensional subspace Y C D(f[ N) C .FEN such that

max (fIN>cp < )\L(ﬁlN) + 9.
PeY,||®[|=1
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From Assumption (A3) and the upper bound Az (Hy) — A1 (Hy) < Ap(H) —
A1(H) + o(1), we have
2(N)g _ Nen(N)

M - M
for every normalized vector ® € Y, where g is as in (A3). We can choose
R = Ap(H) — A1 (H) + 1. In particular, if M > Negr(N), then |[ga®||> — 0
as N — oo independently of € and the choice of ® in Y. Consequently, when
N is large enough we have dim(fy;Y) = L by Proposition (i), and by
the min-max principle, we get

lgnr@|f* <

(fa®, Hfr®)
el a2

v —M(Hy) < C(Hy+CN)

Thus from (57)) and the simple bound dl“(h)| F<
+

(see Remark [ after Lemma 24)) we get
. M [ Neg(N) N
> 104/ = o2 e M LA A S
AL(Hy) > (1 C N) Ar(H) - C ~ Cr A CLM2 (58)

By choosing M such that max{Negr(N),VN} < M < N, we obtain
)\L(HN) > )\L(H) + 0(1).

Remark on the convergence rate. The error obtained in the lower bound (58]
is not better than ¢/er(N) + N —1/5. However, it can be improved by the
following bootstrap argument. First, from (57]) with M = rN for some
small fixed number r» > 0, and the simple bound dF(h)lng — M (Hy) <
+
C(Hn + CN) (see Remark [0 after Lemma [24]), we obtain
frnHfrn < C(Hy +C). (59)

Next, by projecting the inequality (57), with 1 < M < N, onto the sub-
space frnF4+ and using the refined bound dI'(h), .<xv — A\ (Hy) < C(H+C)

P
(see Remark [)), we get

fnHNfN > fu [(1—0 %)H—C\/%

PN NGy~ 2 x4 O o (60)

Here we have used the fact that fysfrn = fair when M < rN/2. Finally, we

can use Lemma 24] with M = rN, then estimate f,xyHpy f.n by (60), and
employ the inequality g3, < 2N} /M < C(H + C)/M and (59). We have

- M M C
Hy > fMKl—C N)H—C,/N Ny

fu— C=F — —(Hy +C)
when 1 < M <« N. Consequently,

N M
Ap(Hy) > A (H) — Cp (\/%—i— % + ER(N)>

Iy
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In the latter bound, by choosing M = N3 we get
AL(Hy) > AL(H) — C(eg(N) + N~1/3),
Spectral gap. By (i) one has for every L = 1,2, ...,
liminf (AL (Hy) = Ai(Hy)) = AL(H) — A (H)
Taking the limit as L — oo we obtain the spectral gap
lim inf (inf gess (Hx) — A1 (Hy)) 2 inf gess(H) — A1 (H).

Step 2. Convergence of lower eigenvectors. First we consider the conver-
gence of ground states. If Wy is a ground state of Hy, then ®y := UnyVU
is a ground state of Hy = Un(Hy — Nen)Ujp on }EN. From the proof in
Step 1, if max{Negr(N),V/N} < M < N, then we have ||gy;®y||?> — 0 and

lim (fy®y, Hfy®y) = Ay (H) = <<I><1>,Hq><1>>
N—oo

where ®(1) is the unique ground state of H on F,.
To prove ®n — &) it suffices to show that fi;®x — &1, Let us write

fM®n =an +by
where ay € Span({®M}) and by L &M, Then
(fu®y Hfy®y) = (an,Hay) + (b, Hoy) > M (H)l[an]]* + A2 (H)|[ox]?

= |Ifar®@xIPAc(H) + (A2(H) — As (HD))|lox .

Since (fy®n, Hfv®n)g, — Ifpu@n|*A1(H) — 0 and Ao (H) > Ai(H), we
conclude that by — 0 as N — oo. Therefore, fi;&n — <I>(1), and hence
by — <1>(1), as N — oo.
Remark on the convergence in quadratic domain. We can show that if (A3s)

holds true, then we have the strong convergence &y — ®) in the norm in-
duced by the quadratic form of H on F, namely (@, H®y) — <<I>(1) ) H¢(1)> .
In fact, from the above proof we already had

(frr®x B ®x) = (00, HOW) and (g, Hyguy ) = 0.

On the other hand, from (A3s) and (I8), we get Hy > co(H +Ny) + g(N)
on f_fN, where ¢g > 0 and g(N) — 0 as N — oo. By choosing M such that
max{g(N), Ner(N),VN} < M < N, we obtain

g HNgy > co(H+ M)+ g(N) > coH.

It implies that (gar®n, Hgy®n) — 0. By using the localization for H in
Proposition 23] we can conclude that (®n, H®x) — <<I>(1),H<I>(1)> .

The convergence of excited states of Hy can be proved by using the above
argument and the following abstract result.

Lemma 25 (Convergence of approximate eigenvectors). Assume that A is
a self-adjoint operator, which is bounded from below, on a (separable) Hilbert

space, with the min-maz values A\ (A) < ... < AL(A) < inf oess(A). If the

normalized vectors {xﬁf)}ﬁgle satisfy, for all i,7 € {1,2,..., L},

lim (2, 20)) = 6;; and  lim (2, Az()) = X;(A),
n—oo

n— o0
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then there exists a subsequence {ngk)}ky which converges, in the norm in-
duced by the quadratic form of A, to an eigenvector of A with the eigenvalue
AL(A).

The proof of Lemma[25]is elementary, using the same argument of proving
the convergence of ground states, and an induction process. The proof of

Theorem [2] is finished. O
7.2. Proof of Theorem 3l

Step 1. Convergence of the free energy. We need to show that
lim (F3(N) — Ney) = =8 log Trz, [e~PH].
N—o0

We can rewrite

Fﬁ(N)—NeH:F>O irifN(F {Tx[HNT] — B715(T)}

where Hy = Un(Hy — Nen)Ujy, and
B og Trz, [e™ "] = Tr[HT] — 871 S(T)
where T := Zle P with Z = Tr [e’ﬁH].

Upper bound. Let us write I' = > 20, ¢; |<I>(i)><<I>(i)| where {®()12 is an
orthonormal family in Fy and t; >t > ... >0, > ¢; = 1. Then

[e.e]

Trr, [HT] — 87'S(T) =) (t:i(H)gw + B tilogts) . (61)

i=1
Fix L € N. By using Lemma 23] and the fact that H is bounded from
below, we can find for every M > 1 a family of normalized states {<I>( NI ., C

}'EM such that hmM%o(@g\i}, ‘I)E\ZI)> = d;; and

lim Sup(H>¢5&) < (H) g0 (62)

M—o0

for all 4,j € {1,2,...,L}. Denote 61, = ZiLzl t; and

T = ig—L o)) ().

Then it is easy to see that I'y, s > 0 and Tr[l L, M) = 1. Moreover, because

limMHOO@)g\?, @%{}) = J;; we get

L
t;

Choosing M = N'/3 and applying Proposition [[5] we obtain
TI“]_.SN[?INFL,M] — Tl“]:+ [HFL,M] — 0 (64)
¥
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when N — oco. From (62)), ([63]) and (64]), we find that
limsup (Fg(N) — Nen) < limsup (Tr]_-SN[ﬁNPL7M] - ﬁflS(FL,M))
+

N—oo N—oo

L/, t; t;
Z <é<H>¢<i> + ﬂ_la log <5>> :

i=1

IN

Finally, taking L — oo and noting that 67, — 1, we obtain from (61]) that
limsup (F3(N) — Ney) < -3 log Trz, {e_BH} .

N—oo
Lower bound. Let us denote I'y := UnI'g NUy = e*BﬁN/Tr [efﬁﬁN}. Us-
ing Tr[HyTn] — B71S(I'y) < 0 and the stability
Te[HyTn] — B3 1S(Tn) > Fs,(N) > —CN

with Bal > 71, we obtain Tr[ITINI’N] < CN. Therefore, by using Lemma
24 the simple bound H < C(Hy + C'N), and Proposition [I5 we find that
CN

M?

[M I - CN M

with FJS\,M = fpI'nfy and FJ>\,M = guI'ngar. On the other hand, using
f3, + g3, =1 and the Brown-Kosaki inequality [10], we have

S(Tn) < STFY) + STRM).
If we choose M = N3/5_ then the above estimates imply that
Fg(N) — Neny = (Tr[ﬁNFN] - ﬁflS(FN)>
> (1 - CN—1/5> Te[HCM] — g1 S(M)
+ Te[HND M) - g8y — oN~1/5.

Te[HyTn] > Te[HNTRM] + Te[HNTRM] -

Y

By using

M M
PRSI P Iy - B7ls Iy
N1/5 TI‘FSM TI“F]SVM

N
> B og Tre #UI-CNT1O)H

and
Ay
Tr |H —pls > F3(N) — Ney,
' NTrF]>VM p TrF]>VM Z Fs(N) H

we can conclude that
Fs(N) = Ney + ——— > —3 " log Tr e #1-CN""/*)H
Tr F]_V

Ter3M
L % log(Tr T3M).

riy

+8 Mog(Tr M) + 5~
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Assumption (A3’) implies that Tr T3 — 0 and TrT5Y — 1 as N — oo.
Therefore,

lim inf (F3(N) — Ney) > liminf (—ﬁ—l1ogTre—ﬂ<1—cN-1/5>H)

N—oo N—oo

= —B llogTre P,

Here in the later equality we have employed the Dominated Convergence
Theorem using Tre™ %" < oo for fy < B in (A4).

Step 2. Convergence of Gibbs states. From the above proof, we have

lim (Tr[HfN] - ﬁ*ls(fN)) = Ty[HT) — 8~S(T)

N—oo

where
= _ _Jful'nfu
N T fu T ]

We have proved that Trz, [UNe*B(HN*NeH)UJ’([] — Trr, e P as N — oo,
and we will now show that 'y — T in the Hilbert-Schmidt norm. It is
well known that a sequence of non-negative operators Ay with Tr(Ay) = 1,

which converges weakly-* to an operator A, converges in the trace norm if
and only if Tr(A) =1 (see, e.g., [17], [49, Cor. 1] and [54, Add. H]). Using

this fact, we will get the result. Moreover, by using Tr[(T'x —'x)?] — 0 due

to the condensation (A3’), it remains to show that Tr[(T'y — T')?] — 0. The
latter convergence follows from the equality

with M = N3/%,

Tr[HL §] — 871S(Tw) — (Tr[HT) - B~1S(T)) =B ' Tr {I’N(log Ty — logf)]

and the following entropy estimate, which is inspired from [27, Theorem 1].
The proof of Theorem [3 is finished. O

Lemma 26 (Relative entropy inequality). If A and B are two trace class
operators on a Hilbert space and 0 < A<1,0< B <1—¢ for somee >0,
then there exists Ce > 0 such that

Tr[A(log A — log B)] > C: Tr[(A — B)?] + Tr(A — B).
Proof. A straightforward computation shows that for all x,y € [0, 1],

z(logz —logy) — (v —y) > g(y)(z — y)* with g(y) = %

Since the function y — g(y) is decreasing, we have g(y) > g(1 —¢) > 0 for
all y € [0,1 — €]. Therefore, By Klein’s inequality [63] p. 330], one has

Tr[A(log A — log B)] > g(1 — &) Tr[(A — B)?] + Tr(A — B).

The proof of Lemma 2¢] is finished. O
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Remark on stability and condensation. We prove the remark that if (A3s)
holds true for some gy € (0,1) and Trx, [6—(1—50)50]141] < oo for some [y,
then (A3’) and (A4) hold true.

In fact, using H < dI'(h 4+ C) + C and Trz, [6—(1—50)50H] < oo we obtain
that Trz, [67(1750)60d1‘(h+0)] < oo. Note that for every positive operator A
in 4, we have Trz, e~ ') < oo if and only if Trg, e~ < co. Therefore,
we can conclude that Tre~(1=€0)foh < o and Trz, e~ (1=20)fodl'(h) 0.
From the latter bound and the inequality Hy > (1 — &) Zf\il hi +o(N) in
(A3s), the stability follows:

Fﬁo(N)_NeH

—Bal log TI‘]_.EN [e_ﬁOﬁN}

v

_50_1 log TI']_-EN [e—(l—ao)ﬁo Z;v:l hj} + O(N)

v

—By log Trz, [67(1760)60&1@)} +o(N) > —C + o(N).
Next, using Hy > coN+ + o(N) on ]—"EN and the stability

Tr[HnTgn] — By 'S(Tpn) = Fpy(N) — Nex = o(N)
with f@N = UnT'g nUpy, we find that

0 > Fg(N)— Neg=Tr[HyTpn] - B71S(Tsn)

= (1 — %) TI‘[ITINfg,N] + % [Tr[ﬁNf@N] — Bo_ls(f@]v)

> <1 — %) co Tr[./\/:lrfﬁ’N] + o(N).

Therefore, Tr[N T 5] = Tr[N Ts.n] = o(N).

APPENDIX A. BOGOLIUBOV HAMILTONIAN

In this appendix we prove some general properties of quadratic Hamilto-
nians in bosonic Fock spaces, which includes the results in Theorem [Il Most
results of this section are well known [§]. In some parts of the discussion we
shall refer to [57, 45] for more details.

Let H be an arbitrary (separable) one-particle Hilbert space. We can
identify H with its dual space H* by the conjugate linear unitary operator
J 1 H — H* defined as (Jf)(g) = (f,g)n for all f,g € H. If H is a subspace
of L?(€2), then J is simply the complex conjugate.

For any vector f € H, we may define the annihilation operator a(f) and
the creation operator a*(f) on the Fock space F(H) = Py, ®£§m H as in
@B7) and (B8) in Section @ For any state ® in the Fock space F(H), the
one-body density matrices (¢, ) are operators on H defined by

(f;729) = (@ (9)a(f))e, (fraalg) = (a(g)a(f))e forall f,ge€H.

We will be particularly interested in states ®’s with finite particle expec-
tation, namely Trvp < oo. In this case, (v, ap) belongs to the set G, which
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contains all pairs of operators (v, ) on H such that 7 is trace class, « is
Hilbert-Schmidt, o = o and

<o7* @ >200n7—[@7—[*.

1+ JvyJ*
Let us denote by Gy the set of all pairs (v, a) € G which satisfy
ac* =1+ JyJ*) and ~ya=aJyJ . (65)

The significance of Gy is that for any (v,a) € Gy, there exists a unique
quasi-free pure state ® € F(H) such that

(77 Oé) - (’Y@? O“I))'
Any element in G is also associated with a unique state, but the latter is a
mixed state.

The one-body density matrices offer a simple way to define quadratic
Hamiltonians. More precisely, let H be a self-adjoint operator on H and let
K be a Hilbert-Schmidt operator on H such that K = K7 and such that
the following inequality holds true

H K ¥
.A::<K* JHJ*>Z77>O on HOH". (66)
We shall consider the quadratic Hamiltonian H on F(#) defined by
(H)g = q(va,as) = Tr[Hvs] + RTr[Kos] (67)

for every state ® living in the truncated Fock spaces and in the domain of

H:
M n
U & o). (68)

M>0n=0 sym
It can be verified that the so-defined operator H is exactly the Bogoliubov
Hamiltonian given in (I2]).
The main properties of the quadratic Hamiltonian H are given in the
following

Theorem 27 (Bogoliubov Hamiltonian). Let H be defined by (67) and as-
sume that [60) holds true. Then we have the following statements.

(7) (Form domain). We have the quadratic-form inequalities
C M (H)-C<H<dI'(H+C)+C (69)

As a consequence, the form domain of the Friedrichs extension of H (still
denoted by H) is the same as that of dT'(H) on F.

(#4) (Variational principle). For any (v,a) € G, we can find (',a/) € Gy
such that q(v', ') < q(v, ) and the inequality is strict expect when (v, a) €
Go. As a consequence, the ground state energy of H is

inf o (H) = (%lél)fe ;1) = (%10512 goq(%a)-

(797) (Ground state and ground state energy). The Hamiltonian H has a
unique ground state in F(H), which is a pure quasi-free state. Moreover,
we always have inf o(H) < 0 except when K = 0 in which case inf o(H) =0
with the vacuum being the corresponding ground state.



42 M. LEWIN, P. T. NAM, S. SERFATY, AND J. P. SOLOVEJ

(iv) (Spectrum). We have 0ess(H) = o(H) + 0ess(H) and

o(H) = inf o(H an)\ | \i € 0(SA)NRT n; € {0} UN and Zn, < 00
i>1

where

(v) (Lower spectrum). If JKJ = K, JHJ* = H and H has infinitely many
etgenvalues below its essential spectrum, then H also has infinitely many
etgenvalues below its essential spectrum.

On the other hand, if JKJ = K > 0, JHJ* = H and H — K has
only finitely many eigenvalues below its essential spectrum, then H also has
finitely many eigenvalues below its essential spectrum.

Remark 10. Theorem [ follows from Theorem [27, with H = h + K; and
K = Ks. In particular, ({I8) follows from (69) because C~1(h +1) < h +
Ky < C(h+1). Moreover, by following the proof of (€9) we also have H >
dI'(h — C) = C; and if K1 = Ky > 0, then H > dI'(h — &) — C. for every
e>0.

Proof. 1. The variational principle is well-known (see, e.g., [45, Theorem
1.7 p. 101] for a proof). If K =0, then from and the inequality H > 7 > 0,
we see that inf o(H) = 0 and the vacuum is the unique ground state of H
(which corresponds to 7¢ = 0 and ag = 0). On the other hand, if K # 0,
then by taking a normalized vector v € H such that (Jv, Kv) > 0 and then
choosing the trial operators

Y= Ao) (], ax = =/ A1+ N)|o)(Jo|

with A > 0 small, we can see that inf o(H) < 0.
Now we show that H is bounded from below. If (v, a) € Gy, then we can
find an orthonormal family {u,}n>1 for H such that

Z)\nun U ( Z\/ (14 \p)up(z

n>1 n>1

where A\, > 0 and Y 2, A, = Try < co. Thus we can rewrite

i( (tUp, Hup) +m§)‘% un,Kun).

n=1
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The inequality (66 implies that (u,, Huy,) > | (Un, Kuy) | +n for all n > 1.
Therefore,

ara) = Ty + Y (A= Vol + M) | (T, Kun) |
n=1

v

NTry = > /Al (T, Kun) |
n=1

0o 0o
> UFFTV‘— ZE:An Z{:|<ﬂﬁ}f€un>P
n=1 n=1

> n'Try = vTryl|K|[ns, (70)

where || K ||gs is the Hilbert-Schmidt norm of K. Thus H > —C.
2. Next, we show that C~1dTI'(H)—C < H < dT'(H+C)+C. In fact, from
the above result, we see that the quadratic Hamiltonian with A replaced by

H—n/2 K
( K*  JHJ /2 > > n/2

is also bounded from below. Therefore,
(H),, = (n/2) Telya] + Te[(H — 7/2)70] + RTe{Kag] > (n/2) Trlya] - C.
Similarly, for a constant Cy > 0 large enough, one has
Tr[Cove] + RTr[Kag] > —C and Tr[Coye] — RTr[Kag) > —C.

These estimates yield the desired inequalities.
3. Now we show that H has a ground state. Let a sequence { (v, )02, C
Go such that

lim ¢(vp, ) = inf o(H).

n—o0
The inequality (70) implies that Tr-, is bounded, and hence Tr(a,) is
also bounded. Thus up to a subsequence, we may assume that there exists
(70, o) € G such that «,, — ag and v, — o weakly in the Hilbert-Schmidt
norm. Consequently, lim,, ,~ Tr[Kay,] = Tr[K o] and lim inf,,_, o Tr[H~,] >
Tr[H~o] by Fatou’s lemma since H > 0. Thus (70, ) is a minimizer of
q(v, @) on G. Due to (i), this minimizer (9, o) belongs to Go.

4. To understand the structure of one-body densities matrices and the
spectrum of the quadratic Hamiltonian, let us introduce Bogoliubov transfor-
mations. A Bogoliubov transformation V is a linear bounded isomorphism
on ‘H @ H* such that (VV* — 1) is trace class (Stinespring condition) and

0 J* 0 J* . e (10
v<J 0>_(J O)v,v&;_s_(O_J).

Since (9, ) € Go, there exists a Bogoliubov transformation Vy on H®H*
which diagonalizes the one-body density matrices (79, ), namely

7o Qo « (00
W25 e )i (01)

(see, e.g., [67, [45]). Then by employing the fact that (vyo,p) is a mini-
mizer for ¢(y,a) on G, we can show (see [45, Theorem 1.7 p. 101] for a
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detailed proof) that the Bogoliubov transformation V := SVS diagonalizes
A, namely

« § 0
VAV :<0 Jgj*> (71)

for some operator £ on H. From (66) and (71)), we deduce that £ > n > 0.

Using the Bogoliubov transformation V, we can find a unitary transfor-
mation Uy on the Fock space F(H), called the Bogoliubov unitary (see e.g.
[57, [45]), such that

co N
UyHU}, — inf o (H) = dL'(¢) == P > &

N=0 1=

This implies that H has a unique ground state and o(H) = inf o (H) +dI'(£).
5. Next, from (1) and the assumption VSV* = S, it follows that

& 0 _ £y _ .
S(O JSJ*>—)\—SVAV —A=S8VS(SA - \)V*.
Thus

a(g):c;(S(g J;J* >>mR+:a(SA)mR+

because V is an isomorphism on H & H*. Consequently,

o(H) = inf o(H)+ Zni)\i | \i € 0(SA)NRT n; € {0} UN and an < oo
i>1
6. Now we prove that oess(§) = 0ess(H). From (), it follows that

(&) = a(VAV*). On the other hand, since K is a compact operator on H,
one has 0ess(A) = 0ess(H). On the other hand, by using the identity

VAV* — A= V(A - V' + AWV — 1)

and the fact that (VV* — 1) is compact (indeed it is trace class), we obtain
Oess VAVY) = 0ess(A). Thus 0ess(§) = 0ess(H). Consequently, from o(H) =
inf o(H) 4 o(dI'(€)) we obtain

Uess(H) = infU(H) + Uess(dr(g)) = J(H) + Uess(H)'

7. From now on, we assume that JKJ = K and JHJ* = H. In this
case, (66]) implies that H + K > n > 0 and H — K > n > 0. Before going
further, let us give a simple characterization of the spectrum of H. We only
deal with eigenvalues for simplicity.

Assume that t > 0 is an eigenvalue of £. Then from the above proof, we
see that ¢ is an eigenvalue of SA. Using the equation

0=(SA—1t) (Z) = ( 5{ _ﬁu* > (:j) _A<Z>

we find that
(H + K)x = ty,
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where £ = u + v and y = u — v. Thus

2
H+ K — =0.
< + H—K>x 0

Note that x # 0 if u & v # 0. Therefore, 0 is an eigenvalue of

t2

X, =H+K— .
t + H_-K

In fact, using Weyl sequences and arguing similarly, we also obtain
teo(§)=0(SA) < 0¢€a(X). (72)

8. We show that the number of eigenvalues (with multiplicity) of £ below
o := inf 0ess(€) is equal to the number of negative eigenvalues of X),.

Note that the mapping t +— X} is strictly decreasing. As a consequence, for
every j = 1,2, ..., the min-max value \;(&}) is a continuous and decreasing
function on ¢ > 0. More precisely, if 0 < ¢; < o, then A\j(A;) > Aj(AL,)
and the inequality is strict if A\;j(A},) is an eigenvalue of &;,. Moreover,

info(Xy) =info(H+K)>n>0
and, for every t € (0, ),
inf oess(Xy) > inf oess (X)) = 0.
Therefore, by using (72]), we obtain a one-to-one correspondence
(&) N (=00, p) < o(&,) N (=00,0). (73)
9. From the inequality p?(H — K)™' + H — K > 2u we get

12

X, =H+ K- <2(H—p).

Moreover, note that inf ess (X)) = inf oess(H — 1) = 0. Therefore, the num-
ber of negative eigenvalues (with multiplicity) of &), is not less than the
number of negative eigenvalues (with multiplicity) of (H — p) .

In particular, if (H — p) has infinitely many negative eigenvalues, then
X, has infinitely many negative eigenvalues. By (73), we see that £ has
infinitely many eigenvalues below its essential spectrum. Consequently, H
has infinitely many eigenvalues below its essential spectrum.

10. Now we assume furthermore that K > 0. Then we get the inequality

2 2

. sg_g-_H*
H_K H_-K

X,=H+K—

Moreover, note that

2

inerss(Xﬂ) = inf g <H - K — H'u_ K) =0.

Thus, if H — K has finitely many eigenvalues below p, then X; also has
finitely many negative eigenvalues. By (73]), £ has finitely many eigenvalues
below its essential spectrum. Consequently, H has the same property. [
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APPENDIX B. LOCALIZATION OF BAND OPERATORS ON JF

In this appendix we prove the localization in Proposition

Proof of Proposition [23. Using the IMS—identity
A= fuAfm + guAgu + 5 ([fMa [far, Al + (g, [9ar, Al])

we can write, with ® = §72,®; € S72 Of_)J Fi,
(2, A®) = (fu®, Afm®) + (gu®, Agrr ®)
Y [ ) = P (D + (91 6) — gar ()] @1, A;).

1<li—j|<o
Since f and g are smooth, we have

(-3

(Far (0) = far () + (g1 (D) = gar () < ([1F 110 + 19l 0) “5 73

Moreover, using the assumption that A > 0 we get
Yo @A) < D (9, ADy) + (), AD;))
1<]i—j|<o 1<li—jl<o

46 (04, AD;) = 40 (B, Ag®) .

IN

Therefore, we obtain the operator inequality (54).
Finally, let us show that if

§ :=sup{|lgn®|*: @ €Y, [|®|| = 1} < (dimY) ",

then dim(fyY) = dimY. In fact, assume that dimY = L and let an
orthonormal basis {®;}£ , for Y. For all {a;}£ , € CF\{0}, we have

L

> aifu®; >Zra,r IFu®ill* =2 > feioy] - [(far®i, ;)]
i=1 1<i<j<L

L
=S lalP(1=lgw@il?) =2 D" e [gn®i, ga ;)]

i=1 1<i<j<L

L L

2 2
Z|a@| = >l +leyl)s = (1= L6) Y |eif* > 0.
i=1 1<i<j<L i=1

Therefore, the subset { fM<I>j}f:1 C fmY is linearly independent, which
implies that dim(fy/Y) > L = dimY. On the other hand, dim(fyY) <
dimY because fys is linear. Thus dim(fyY) = dimY'. O

APPENDIX C. LOGARITHMIC LIEB-OXFORD INEQUALITY

We provide a proof of Proposition [[Il We follow ideas from [34], 38, [39].
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Proof of Proposition[I1] . Let us write for simplicity p := py. Note that for
any fiz; > 0 which is radially symmetric about z; and such that [ p,, = 1,
we have

1 N N
0< §D (p— Zua;i,p— Zm)
i=1 i=1
N N

= %D(p, P+ Y Dl i) + % > Dty i) = > D(p, pray)-

1<i<j<N i=1 i=1

We have used here Proposition B together with the fact that [p. (P_Z@']i | Hay) =
0. By Newton’s theorem, (ug, * w)(xz) < w(x) a.e., and therefore

for any i # j. We arrive at the following Onsager-type estimate [46]

N N
1 1
E w(xi_xj) > —§D(p,p)+ E D(p7/1'$i)_§ § D(lu$i7/’[’1'i)' (74)
1<i<j<N i=1 i=1

Writing D(p, pz;) = (p*w)(zi) + D(p, ptz, — 0z,) and taking the expectation
value against ¥, we get

< > w(xi—xj)> > %D(,o,p)wt/]R2 p(x) D(p, iy — 6;) dz
v

1<i<j<N

=5 L) Dl i)
Now we choose
= R(z)™2 gz an x) = M
ial) = RG@) 2 (o5 ) and Rl) =25,

where y = 7 1x(Jz| < 1) is the (normalized) characteristic function of the
unit ball. We will choose the function A\(x) at the very end.
We start by computing

D(pas pra) = —/W/R2 p(y)u(2)log (R(z)|y—z|)dy dz = %log

which gives

1 1 1 1
——/ p(x)D(ux,ux)dw=——/ plogp——D(u,u)/ p+—/ plog \.
2 RQ 4 RQ 2 RQ 4 RQ

Hence we have proved that

< > w(xi—xj)> > %D(p,p)—%/RQplogp—%D(mu)/RQp
v

1<i<j<N

p(x)
Az)

+D(p, 1)

1
+—/ plogAJr/ p(z) D(p, pre — ;) do
4 Jp2 R2

and it remains to bound the last term.



48 M. LEWIN, P. T. NAM, S. SERFATY, AND J. P. SOLOVEJ

Let vg = (7R)"2x(|z| < R) be the (normalized) characteristic function

of the disk of radius R. We have
1 2 2
(s w)(e) = wie) — 5 (~tog b+ BE 1) (el < )

and thus
(v < 0)) = (o) > log (1) x(lel < .

By scaling we find that

D(p. iz — b2) = D(p(- — 7). V(e — 60) > /
ly|<R(x)

p(y — x)log < Bl?;) dy

and therefore

/R2 p(x) D(p, iy — 0) d > /]R2 dz p(z) /yISR(x) dy p(y — ) log (g%)

The following is similar to [34, Lemma 2].

Lemma 28. Let f € L'(R?,R") and let

1
My :=sup —
r TT ly|<r

f(y)dy. (75)

Then we have for any R > 0
—/ dy f(y) log <|y|> < ZM; R, (76)
WI<R LV

Proof of Lemma[28. Let f fo (r cos(6),r sin(@)) df be the spherical
average of f. Then we have

_/ylsz%dyf( )10g<|]z{2|> _/ORTf(r) log (%) dr
:/ORUOTsf(S)ds) %dr

R T )
S?TMf TdT:§MfR.
0

In the previous estimate we have first integrated by parts, and then used

forsf(s)ds:fBrfSWTQMf. O

Using the previous estimate (78) with z € R? fixed and recalling our
choice R(z) = \/A(z)/p(z), we get

—x) lo lul _T " xQZ_W)\(IE) .
/lng(x) dy p(y )1g<R(x)> > —5 Mp() R(x) M ()

where

1
M,(x) :=sup —5 ply —x)dy
P( ) ” T2 lyl<r ( )

is the Hardy-Littlewood maximal function of p. This gives the estimate

| m
dz p(x / dyply — = log( > —— AM
/R? (=) ly|<R(x) ) R(x) 2 g2 "
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and our final bound is

1 1 1
> wlw—ay) Z—D(p,p)——/ plogp——D(M,u)/ p
2 4 Jgo 2 2

1<i<j<N o
1
+—/ plog)\—z/ AM,.
4 R2 2 R2

Here the optimal choice is A = p/(2rM,) but the term [z, plog M, is
then not easy to control. At least we can take A = (p/ [ p)¢ and we find an
error term of the form

g
€ p P
- plog———/ <—> M
4/]1@2 fo 2Jee\[p) °

which we can also write as

(o) i fomes =5 [} wmees =g

Now we use that eflog f < f(1+ f°) and that f < My to get an error of

the form
1 14e 7T/ 1+e
—= - = M .
(Lor) (55 [rre=5 [0

Using now [59]
E/ M}Jre < g/ f1+€
2 R2 g Jr2

we end up with a total error of the form

(o) Lo (L) LG55)
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