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Abstract

This is a review of a mathematical analysis of vortices in the Ginzburg-Landau model:
phase transitions and effective energies that govern optimal patterns formed by the vor-
tices, in particular the Abrikosov lattice, are discussed. Analogies with Coulomb gases
are also mentioned.
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1 The Ginzburg-Landau model of superconductivity

As discovered by Kamerlingh Onnes in 1911, certain metals, when cooled down below a
critical temperature, lose their resistivity, and permanent currents can flow without energy
dissipation. This phenomenon is called superconductivity, and (together with its brother, su-
perfluidity) is one of the most striking macroscopic manifestations of a quantum phenomenon,
see [T, TT, Ann] for a presentation.

A characteristic feature of superconductors is that they exhibit the Meissner effect: they
expel an applied magnetic field (by creation of an opposite magnetic field generated by a
superconducting current) this is responsible for the classic photo of a magnet levitating above
a superconductor. If the magnetic field is too large however, then it destroys the super-
conductivity and penetrates the sample. Superconducting materials are often classified as
type-I or type-II according to their response: type-I superconductors have one critical field
at which the material undergoes a transition from superconducting to normal, while type-II
have two critical fields, between which – as first discovered by Shubnikov — they allow for
a mixed phase with partial penetration of the magnetic field via vortices which are small
regions of normal phase surrounded by a loop of superconducting current. When the field is
large enough, the experiments (dating from the 60’s) show that vortices arrange themselves
in perfect triangular lattices, cf. http://www.fys.uio.no/super/vortex/ or Fig. 2 below.
These are named Abrikosov lattices after the physicist Abrikosov who had predicted, from
the Ginzburg-Landau model, that periodic arrays of vortices should appear [A]. These vor-
tices repel each other like Coulomb charges would, while being confined inside the sample
by the applied magnetic field. Their triangular lattice arrangement is the result of these two
opposing effects.
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Figure 1: Abrikosov lattices, H. F. Hess et al. Phys. Rev. Lett. 62, 214 (1989).

1.1 The model

In the 50’s Landau and Ginzburg introduced their celebrated model on phenomenological
grounds [GL]. Gorkov later showed that it coincides with the quantum Bardeen-Cooper-
Schrieffer (BCS) theory [BCS] near Tc, see also [LV], and for a rigorous derivation of Ginzburg-
Landau from BCS, see [FHSS]. In the Ginzburg-Landau model, the energy of a superconduc-
tor occupying Ω, in the presence of a constant applied field Hex, when the exterior region is
insulating, is

(1) G(ψ,A) = G0 +
∫

R3

|curlA−Hex|2

8π
+
∫

Ω

1
2m∗

∣∣∣∣(~∇− ie∗

c
A

)
ψ

∣∣∣∣2 + α|ψ|2 + β|ψ|4.

Besides the physical constants ~ and c, additional constants m∗ and e∗ are present (see [T]
for an explanation of these constants) as well as two quantities α and β that depend on the
temperature T and on the superconducting material. Near the so-called critical temperature
Tc, it is assumed that β is a positive constant and α is proportional to T − Tc and has the
same sign. The quantity G0 represents the energy of the normal state and does not depend
on ψ or A. From then on, we consider that we are below the critical temperature Tc. After
some nondimensionalizing procedure (described for example in [SS1, Chap. 2]) and reduction
to a two-dimensional domain, the energy functional can be reduced to

(2) Gε(ψ,A) =
1
2

∫
Ω
|(∇− iA)ψ|2 + |curlA− hex|2 +

1
2ε2

(
1− |ψ|2

)2
This is an idealized situation where the sample is assumed to be a three-dimensional

infinitely long cylinder with cross-section Ω, submitted to an external field parallel to the axis
of the cylinder and of intensity hex. It can also be used to describe thin films, such as high-Tc
superconducting compounds for which the Ginzburg-Landau theory has turned out to work
quite well [BFGLV].

In the above energy functional, the parameter ε is a material constant, it is the inverse
of the “Ginzburg-Landau parameter” usually denoted κ. It is also the ratio between the
“coherence length” usually denoted ξ (roughly the vortex-core size) and the “penetration
length” of the magnetic field usually denoted λ. We are interested in the regime of small ε,
corresponding to high-κ, or extreme type-II superconductors, also called the London limit.
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The energy depends on two unknown functions ψ and A. ψ is a complex-valued function,
called order parameter and indicating the local state of the sample: |ψ|2 is the density of
Cooper pairs of superconducting electrons. With our normalization |ψ| ≤ 1, and where
|ψ| ' 1 the material is in the superconducting phase, while where |ψ| = 0, it is in the normal
phase (i.e. behaves like a normal conductor), the two phases being able to coexist in the
sample. A vortex is an object centered at an isolated zero of ψ, around which the phase of ψ
has a nonzero winding number, called the degree of the vortex. A typical vortex centered at
a point x0 is the ansatz ψ = ρei ϕ with ρ(x0) = 0 and ρ(x) = f( |x−x0|

ε ) where f(0) = 0 and f
tends to 1 as r → +∞, i.e. its characteristic core size is ε, and

1
2π

∫
∂B(x0,Rε)

∂ϕ

∂τ
= d ∈ Z

is its degree.
The vector field A is the gauge field or vector potential of the magnetic field. The induced

magnetic field in the sample is deduced by h(x) = ∇× A = curlA = ∂1A2 − ∂2A1, it is thus
a real-valued function in Ω.

Note that the Ginzburg-Landau model is also the simplest gauge-theory with Abelian
gauge U(1). For further details on the model, we refer to [GL, DeG, SST, T, TT, Ann] on
the physics side, [FH, SS1] on the mathematics side.

The Ginzburg-Landau model has led to a large amount of theoretical physics literature,
probably most relevant to us is the book by De Gennes [DeG]. However, a precise mathe-
matical proof of the phase transition at the first critical field, and of the emergence of the
Abrikosov lattice as the ground state for the arrangement of the vortices was still missing. A
series of mathematical works in the 90’s opened the way cf. e.g. [Ch, DGP, BBH].

1.2 Rigorous results on critical fields and vortices

We summarize here the results of joint work with Etienne Sandier [SS1], on the vortices in
ground states of the energy Gε, in other words minimizers of Gε and describe via mathematical
proofs, the values of the critical fields for which vortices appear, the vortex patterns for energy
minimizers, and the limiting energies which govern their interaction, in the limit κ → ∞, or
equivalently ε→ 0.

Recall that a complex-valued map ψ can be written in polar coordinates ψ = ρeiϕ with a
phase ϕ which can be multi-valued. Given a configuration (ψ,A), we define its vorticity by

(3) µ(ψ,A) = curl j + curlA = curl j + h,

where j = 〈iψ,∇Aψ〉 is the superconducting current, with the notation 〈a, b〉 = 1
2(ab+ ab).

When ε is small we have the approximate (formal) relation

(4) µ(ψ,A) ≈ 2π
∑
i

diδai

where ai’s are the vortices of ψ and di’s their degrees, and δp the Dirac mass centered at
a point p. Thus the quantity µ(ψ,A) is appropriate as a proxy for the vortices of ψ (it is
formally like the vorticity for fluids). We also have the following relation between the induced
magnetic field h and the vorticity

(5)
{
−∆h+ h = µ(ψ,A) ≈ 2π

∑
i diδai in Ω

h = hex on ∂Ω.
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which is known as the London equation. Thus the induced magnetic field behaves like a
potential generated by point charges at the vortices, in an electrostatic analogy. The London
equation indicates how the magnetic field penetrates in the sample through the vortices.

In fact, the relation (5) is only approximately true, what gives a more correct picture is
to write

−∆h+ h = 2π
∑
i

diδ
(ε)
ai

where δ(ε)
x denotes the Dirac mass at x smeared out at the scale ε (or in other words a smooth

function of integral 1, with support in a disc of radius ε), characteristic length scale of the
vortices.

1.3 Formal correspondence with a Coulomb gas

It turns out that it is more convenient to express the energy of a configurations (ψ,A) in terms
of the induced magnetic field h, via the London equation (5). Some computations (with the
help of all the mathematical machinery developed to describe vortices), cf. [Se5, Se4, SS5],
lead eventually to the conclusion that everything happens as if the Ginzburg-Landau energy
Gε of a configuration were equal to

(6) Gε(ψ,A) ' 1
2

∫
Ω
|∇h|2 + |h− hex|2

=
1
2

∫∫
Ω×Ω

GΩ(x, y)
(

2π
∑
i

diδ
(ε)
ai − hex

)
(x)
(

2π
∑
i

diδ
(ε)
ai − hex

)
(y),

where GΩ is a type of Green (or Yukawa) kernel, solution to

(7)

{
−∆GΩ +GΩ = δy in Ω
GΩ = 0 on ∂Ω,

and h solves (5). With this way of writing, and in view of the logarithmic nature of GΩ,
one recognizes essentially a pairwise (screened) Coulomb interaction of positive charges in
a constant negative background (−hex), supplemented with the (large but not infinite) self-
interaction of all the charges. This leads to viewing the vortex system essentially as a Coulomb
gas (we will discuss the Coulomb gas subsequently).

1.4 First critical field

One may guess that at the first critical field Hc1 , i.e. the smallest hex for which vortices
appear in energy-minimizers, the induced magnetic field is close to that of configurations
without vortices, which in view of (5) is the solution h0 to

(8)
{
−∆h0 + h0 = 0 in Ω
h0 = 1 on ∂Ω.

In fact the value of Hc1 can be guessed by perturbing h off of h0 and, starting from (6),
expanding Gε in a suitable manner. Letting

(9) λΩ = (2|min(h0 − 1)|)−1
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and Λ = {x ∈ Ω/h0(x) = minh0} we find (see [Se5] for a simple derivation) that vortices first
become favorable at the points of Λ, and when hex ≥ λΩ|log ε|. More precisely we prove (see
[Se1], [SS1, Chap. 11]) that

Hc1 = λΩ|log ε|+ CΩ + o(1) as ε→ 0,

and that below Hc1 there is no vortex, while for hex = Hc1 isolated vortices appear near points
of Λ (with at most one vortex near each isolated point of Λ). This improves on the formal
expansion of [DeG] which gave Hc1 ≈ 1

2 |log ε|, the two expansions actually agree when the
domain Ω becomes very large, because then λΩ → 1

2 .
We assume then on for simplicity that Λ is reduced to only one point, denoted p̄ (this

is the case for example when Ω is convex), and denote Q(x) = 〈D2h0(p̄)x, x〉 its second
order differential, assumed to be definite positive. We are then able to characterize further
transitions: we prove [Se1, SS1] that there exists an increasing sequence of additional critical
fields H2,H3... with

Hn = λΩ|log ε|+ (n− 1)λΩ log
|log ε|
n

+ constant order terms

separated by increments of log |log ε|, for which a second, third, ..., vortex becomes favorable.
Each time the optimal vortices are located close to p̄ as ε→ 0 (cf. Fig. 2) and after blowing-

Figure 2: Minimizers with small number of vortices.

up at the scale
√

hex
n around p̄, they converge as ε→ 0 to configurations which minimize an

effective interaction energy given by

(10) Hn(x1, · · · , xn) = −
∑
i 6=j

log |xi − xj |+ n

n∑
i=1

Q(xi).

Observe that Hn contains a repulsion and a confinement term, it is in fact exactly the
Hamiltonian of a two-dimensional Coulomb gas of n particles in a confining potential Q.
When Q has rotational symmetry, numerical minimization (see Gueron-Shafrir [GS]) yields
very regular shapes (regular polygons for n ≤ 6, regular stars) which look very much like the
birth of a triangular lattice as n becomes large (their density tends to be uniform supported
in a fixed disc of Rn as n→∞), see Fig. 3.

In [Se2] and [SS1, Chap 12], we prove the existence of branches of local minimizers of (2)
(i.e. metastable solutions) of similar type which have arbitrary bounded numbers of vortices,
all of degree +1, and the locations of the vortices in these solutions also minimize (15).
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Figure 3: Numerical minimization of Hn by Gueron-Shafrir [GS], n = 29.

These solutions exist for wide ranges of the parameter hex. All these results are in very good
agreement with experimental observations and theoretical findings [DeG, T, SPS].

When the applied field hex becomes such that hex−Hc1 � log |log ε|, then we show that
the number of vortices in any minimizer diverges as ε→ 0. The distribution of the vortices can
then be described in averaged form, by characterizing the limit of µ(ψ,A) normalized by the
expected number of vortices. We show [SS1, Chap. 9] that for hex−Hc1 � log |log ε|, vortices
of minimizers still concentrate around the point p̄, but when zooming at the appropriate scale
their average distribution is uniform in a subregion near p̄, given as the unique minimizer of

(11) F(µ) = −
∫

R2×R2

log |x− y| dµ(x) dµ(y) +
∫

R2

Q(x) dµ(x).

This is a standard minimization problem in potential theory, known as the capacitor problem
(with external field), first studied by Gauss and solved by Frostman (cf. [ST] for details).
When hex −Hc1 is of the same order as |log ε| then as long as hex � 1

ε2
then we show [SS1,

Chap. 7] that the optimal distribution of vortices is uniform and proportional to hex in a
subregion of ωhex depending on hex and characterized via an obstacle problem. In other words
the normalized vorticity 1

hex
µ(ψ,A) behaves like a multiple of the characteristic function of

ωhex , as ε→ 0. This subregion ωhex is reduced to the point p̄ when hex = Hc1 and then grows
as hex increases. When hex � |log ε|, then ωhex tends to cover the whole domain Ω.

1.5 Next order results

The results mentioned above show that above Hc1 , for λ > λΩ, the number of vortices is
proportional to hex and they are uniformly distributed in a subregion of the domain, but it
is still far from explaining the optimality of the Abrikosov lattice. To (begin to) explain it,
one needs to look at the next order in the energy asymptotics, and at the blown-up of (5) at
the inverse of the intervortex distance scale, which here is simply

√
hex. For simplicity, let us

reduce to the case λ = 1 (or hex � |log ε|) where the limiting optimal measure is µ∗ = 1Ω

and the limiting h ≡ 1.
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Figure 4: Optimal density of vortices according to the obstacle problem.

Once the blow-up by
√
hex is performed and the limit ε→ 0 is taken, (5) becomes

(12) −∆h+ 1 = 2π
∑
a

δa in R2

where the limiting blown-up points a form an infinite configuration in the plane, and these
are now true Dirac masses (one may in fact reduce to the case where all degrees are equal to
+1, other situations being energetically too costly).

One may recognize here essentially a jellium of infinite size, and E = ∇h the electric field
generated by the points (its rotated vector field j = −E⊥ corresponds to the superconducting
current in superconductivity). The jellium model was first introduced by Wigner [Wi2], and
it means an infinite set of point charges with identical charges with Coulomb interaction,
screened by a uniform neutralizing background, here the density −1. It is also called a one-
component plasma. It then remains first to identify and define a limiting interaction energy
for this jellium, and second to derive it from Gε. Of course defining the total Coulomb
interaction of such a system is delicate because several difficulties arise: first, the infinite
number of charges and the lack of local charge neutrality, which lead us to defining the energy
as a thermodynamic limit; second the need to remove the infinite self-interaction created by
each point charge, now that we are dealing with true Dirac masses. Note that h satisfying
(12) has a logarithmic singularity near each a, and thus |∇h|2 is not integrable; however,
when removing small balls of radius η around each a, adding back π log η, and letting η → 0,
this singular energy can be subtracted or “renormalized”, roughly like

(13) W (E) = lim
R→+∞

1
|BR|

(
lim
η→0

∫
B(0,R)\∪aB(a,η)

|E|2 + π(log η)
∑
i

1

)
.

In the particular case where the configuration of points Λ has some periodicity, i.e. if it
can be seen as n points a1, · · · , an living on a torus T of appropriate size, then W can be
expressed much more simply as a function of the points only :

(14) W (a1, · · · , an) =
π

|T|
∑
j 6=k

G(aj − ak) + π lim
x→0

(G(x) + log |x|) ,

where G is the Green’s function of the torus (i.e. solving −∆G = δ0 − 1/|T|). The Green
function of the torus can itself be expressed explicitely in terms of some Eisenstein series and
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the Dedekind Eta function. The definition (13) thus allows to generalize such a formula to
any infinite system, without any periodicity assumption. We show that ground states, once
zoomed in at the scale

√
hex form patterns which tend to minimize W , and we obtain an

expansion of the ground state energy :

minGε = C2hex
2 + C1hex + o(hex)

where C2 is a constant identified via the mean-field limit and C1 is a constant that depends
in a simple way of minW .

The question of central interest to us thus becomes that of understanding the minimum
and minimizers of W . We have the partial minimization result:

Theorem 1 ([SS5]). The minimum of W over perfect lattice configurations (of density 1) is
achieved uniquely, modulo rotations, by the triangular lattice.

By triangular lattice, we mean the lattice Z + Zeiπ/3, properly scaled. The proof relies on
results from number theory about the minimization of the Epstein Zeta function of a lattice.

In view of the experiments showing Abrikosov lattices in superconductors, it is then nat-
ural to formulate the

Conjecture 1. The “Abrikosov” triangular lattice is a global minimizer of W .

This question belongs to the more general family of crystallization problems. If this is
true, then it would justify the emergence of the Abrikosov lattice in the regime of applied
fields considered here hex � hex � Hc2 and in the asymptotics of small ε.

2 The 2D Coulomb gas

The connection with the jellium is what prompted us to examine in [SS6] the consequences
that our study could have for the 2D classical Coulomb gas. More precisely, we are thinking
of a 2D Coulomb gas of n particles xi ∈ R2 in a confining potential Q (growing sufficiently
fast at infinity) with Hamiltonian

(15) Hn(x1, · · · , xn) = −
∑
i 6=j

log |xi − xj |+ n
n∑
i=1

Q(xi),

which we already encountered in (15).
The Gibbs measure for the same Coulomb gas at temperature 1/β is

(16) dPβn(x1, · · · , xn) =
1

Zβn
e−

β
2
Hn(x1,··· ,xn)dx1 · · · dxn

where Zβn is the associated partition function, i.e. a normalization factor that makes dPβn a
probability measure. The study of this Gibbs measure also finds motivation in the Ginibre
ensemble of random matrices [Gin], the connection between Coulomb gases and random ma-
trices was first pointed out by Wigner [Wi1] and Dyson [Dy]. For general background and
references, we refer to [Fo].

The Hamiltonian Hn is easily seen to be connected to (11) in the limit n→∞: in fact one
can prove [ST] that under suitable assumptions on Q, minHn ≈ n2 minF as n→∞ and that
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for sequences of minimizers (x1, . . . , xn) of Hn, we have convergence of the empirical measures
1
n

∑n
i=1 δxi to the equilibrium measure µ0 (minimizer of (11)). This can be called the mean

field limit, and is analogous to the obstacle problem distribution found for Ginzburg-Landau.
Deriving this limit is significantly easier than for Ginzburg-Landau, due to the discrete nature
of the starting energy, and the fact that all charges are +1. As in the Ginzburg-Landau
situation, one can go to the next order in the expansion of minHn. The connection with the
Ginzburg-Landau situation is made by defining analogously the potential generated by the
charge configuration using the mean-field density µ0 as a neutralizing background, this yields
the following equation playing the role of the analogue to (5):

hn = −2π∆−1
( n∑
i=1

δxi − nµ0

)
in R2.

The next step is again to express this in the blown-up coordinates at scale
√
n (analogous to

the
√
hex scale previously) around x0, x′ =

√
n(x− x0), via h′n the solution to

(17) h′n(x′) = −2π∆−1
( n∑
i=1

δx′
i
− µ0(x0 +

x′√
n

)
)
.

When taking n→∞, the limit equation to (17) is

(18) −∆h = 2π
(∑

a

δa − µ0(x0)
)

in R2

analogue of (12), corresponding to another infinite jellium with uniform neutralizing back-
ground µ0(x0).

Expanding the energy to next order is done via a suitable splitting, by analogy with
Ginzburg-Landau. In fact in this setting the splitting procedure is quite simple: it suffices to
write νn :=

∑n
i=1 δxi as nµ0 + (νn − nµ0). Noting that

Hn(x1, · · · , xn) =
∫∫
4c
− log |x− y| dνn(x) dνn(y) +

∫
Q(x) dνn(x)

where 4 denotes the diagonal, inserting the indicated splitting of νn, we eventually find an
exact decomposition, and this leads us to a next order expansion of the ground state energy:

(19) minHn = n2F(µ0)− n

2
log n+ n

(
1

2π
minW − 1

2

∫
µ0 logµ0

)
+ o(n)

where W is the same renormalized energy as in (13). Again if Conjecture 1 was established,
this would indicate that points in zero temperature Coulomb gases should form a crystal
in the shape of an Abrikosov triangular lattice (or perturbations of one with equal average
energy), in agreement with predictions in the literature (cf. [AJ] and references therein).

When (15) is considered for xi ∈ R instead of R2, then it is the Hamiltonian of what is
called a log gas. The corresponding results are proven in [SS7], together with the definition
of an appropriate one-dimensional version of W , for which the minimum is this time shown
to be achieved by the lattice configuration (or “clock distribution”) Z. We also treat the case
of higher dimensional Coulomb gases in [RS].
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The expansion to next order of Hn is valid for arbitrary configurations, not only ground
states. They can thus be inserted into the Gibbs measure, yielding new results on the
next-order asymptotic expansion of the partition function [SS6, RS] (in contrast to the one-
dimensional log gas case where Zβn is known, at least for Q quadratic, for all β by Selberg
integrals), and information about thermal states and how they should crystallize as the tem-
perature tends to 0.

Also, the result relates the computation of Zβn to that of the unknown constant minW ,
so to prove Conjecture 1 it would suffice in principle to know how to compute Zβn for a 2D
Coulomb gas.

Minimizers of Hn are also viewed as weighted Fekete sets in approximation theory [ST],
and our conjecture is equivalent to a conjecture of [BHS] on the order n term in the expansion
of the minimal logarithmic interaction on the 2-sphere, as shown by [Bet].

For other self-contained presentations of these topics, one can refer to [Se4, Se5].
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[BBH] F. Bethuel, H. Brezis, F. Hélein, Ginzburg-Landau Vortices, Progress in Nonlinear
Partial Differential Equations and Their Applications, Birkhäuser, 1994.
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