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Abstract

We study the asymptotic limit of a family of functionals related to the theory
of micromagnetics in two dimensions. We prove a compactness result for families
of uniformly bounded energy. After studying the corresponding one-dimensional
profiles, we exhibit the I'-limit (“wall-energy”) which is a variational problem on the
folding of solutions of the eikonal equation |Vg| = 1. We prove that the minimal
wall-energy is twice the perimeter.

I Introduction

Let © be a magnetic body in R® and u :  — S? its magnetization per unit volume.
Following [HS] (page 148) the energy associated to such a magnetization is given by

(L.1) F(u):w2/9|vu|2+/Rs|Hu|2+Q/Qq>(u)—Q/Qhe-u,

where H, is the demagnetizing field induced by the magnetization u and given by the
following Maxwell equations

(1.2)

div (¢ + H,)=0 in R?
caurl H, =0 in R?



and @ is the extension of w by 0 out of the domain Q. (In fact, H, is defined as
—VA~Ydiv @).) h. is some applied external field that will be zero in the present pa-
per. Finally w? and () are respectively the exchange constant and the quality parameter
that only depend on the material. F(u) can be decomposed as follows : w? [ [Vul?* is
the exchange energy, [o.|H.]? = — J,u - H, the demagnetizing energy, Q [, ®(u) the
anisotropy energy and lastly —2 fQ he - u the interaction energy. The reader is invited to
consult the paper by A. DeSimone, R. Kohn, S. Miiller and F. Otto [DKMO2] for a gen-
eral presentation of the model together with related open mathematical questions. In this
paper we will restrict to the simplified model in which the body is an infinite cylinder and
the magnetization is invariant under translations along the axis of the cylinder so that we
can reduce to the study in the cross section still denoted 2 C R% Then we assume that
there is a very strong planar anisotropy so that u is forced to take values into S'. Although
such materials with strong planar anisotropy do exist (see [HS]), the restriction on u to be
strictly in S, which is mathematically convenient, induces new topology that will generate
perhaps non physically relevant parts in the limiting energy. Nevertheless, we believe that
the local part of the limiting energy that we will exhibit in Theorem 4 below should arise
in the original problem with strong planar anisotropy but with u free to evolve in all of
S?, and thus has some physical relevance. So we are led to study the following family of
energy functionals:

1
(13) Eu(u) = / IVl + / Lap,
Q R2€

depending on the positive parameter . Q C R? is a smooth bounded simply connected
domain, on which we shall make additional assumptions, and F. is defined over H'(, S'),
where S! is the unit circle in C ~ R2 Any u: Q — S! is extended to

. u in )

v { 0 inR2\Q,

and H, is a vector-field that is deduced from u by the equations

(1.4) { div (¢ + H,) =0 in R?

curl H, =0 in R2

We are interested in the special regime ¢ — 0 where the magnetization is allowed to vary
on smaller and smaller scales. This corresponds to the limit w — 0, of an exchange energy
tending to 0. This exchange energy is often completely neglected and set to zero, allowing
real discontinuities of u, which leads to a quite different behavior, only governed by the
competition between the demagnetizing and anisotropy energies (see [JaKi]). However,
here we will see how the exchange energy, though small, balances the demagnetizing en-
ergy in the limiting procedure.

There has been some work on this functional for a fixed &, notably by Gilles Carbou [Cal,
and then by R. Hardt and D. Kinderlehrer [HK], who studied the regularity of minimizers



for © = By(0). Critical points of F. satisfy the following Fuler equation
1
(1.5) —Au —u|Vul]* = 5_2(]_]“ cut)ut,

where - denotes the scalar product in R% and ut = ju. Carbou proved that a critical u. is
continuous in ).

Now, let us explain briefly the expected behavior of minimizers. More generally, we
can consider families u. such that F.(u.) < C. The term € — 0 forces the term fR2 |H.,|?
to tend to 0. In fact, we will prove more here, since we will show that min £, remains
bounded above as ¢ — 0. On the other hand, since |u.| = 1, we can extract a subsequence
converging weakly in 1> to some ug. One of the first questions that arises, and that we
will answer positively, is to know whether the equality

(L6) ol = 1

holds. Then, since H, — 0 in L*(R?), in view of equation (1.2), ug must satisfy, in the
sense of distributions

(1.7) div i =0 in RZ

This is equivalent to

(18) { divug=0 1in

ug-n =0 on 09,

where n is the exterior unit normal to 9. Therefore, the possible limiting fields lie among
all divergence-free (in a weak sense) unit vector fields, tangent to 9€2, which is a very large
class of fields. Since (1.8) holds, there exists a C5"'(Q) real-valued function ¢ such that

Ug = ng

where V+ = (=d,,,,,). Thus, in other words, the limit ¢ — 0 leads to solutions of the
eikonal equation

Vgl =1 a.e. in
(1.9) { g=20 on 0N).

The difficulty is to understand which ones among these solutions can be reached through
this limiting process. Then, we can examine the similarity between this problem and
another problem, first raised by Aviles and Giga (see [AG1]), which has also been studied
independently by L. Ambrosio, C. De Lellis and C. Mantegazza in [ADM], by A. DeSimone,
R. Kohn, S. Miiller and F. Otto in [DKMO1], and more recently by W. Jin and R. Kohn

in [JK], consisting in minimizing the energy functionals

(1.10) FL) = / AV L1 [T,

e



or more generally, in studying sequences such that F.(1.) < C. The question that is ad-
dressed in [ADM, DKMO1], and also in a more recent work by P.E. Jabin and B. Perthame
[JP1, JP2] with a kinetic equation approach, is to prove that for such sequences u. = Vi),
is compact in Ny<oo L2 Here we get a similar result for (I1.3), ensuring that the constraint
|u| = 1 is true in the limit. This type of problem already appeared in the study of the
Ginzburg-Landau energy by F. Bethuel, H. Brezis, and F. Hélein [BBH]. F. can be seen
as a Ginzburg-Landau-type energy for u = V1, but the problem is quite different from
[BBH] in that it is not elliptic in its essence and the singularities are not of vortex-type
because the fields Vi are constrained to be curl-free. Observe that being curl-free is the
same as being divergence-free up to a rotation of 7. On the other hand, while our fields
are constrained to be of unit norm, the fields Vi in (I.10) only tend to be of norm 1 in the
limit e — 0. Hence, in some sense, the limiting processes are reversed. But as we shall see,
there are other important differences between both problems. First, F. is a local funtional
whereas F. contains a nonlocal term [;, [H,[?, and the same is then true for the Euler
equations. Secondly, the expected I'-limits for these functionals are quite different.

It is clear by a degree argument that there are no regular divergence-free unit vector
fields that are tangent to 9€2, for a general simply connected domain. All admissible vector-
fields have line-singularities (except in the case of the ball, where the field %% only has a
point singularity at the origin). In the case of problem (1.10), the limiting fields also have
line singularities. In fact, the conjecture made by Aviles and Giga (see also [AG2, JK]) is

that the energy-functionals F. I'-converge to

(L11) l/ IVt — VP
3 /e,

where ‘H! is the one-dimensional Hausdorff measure, Jy, is the jump set of Vi), expected
to be countably rectifiable, and VT, V™4 are the traces on both sides of the jump set.
Thus, the energy E. is also expected to concentrate on lines, at a scale ¢ around the lines
(because of the scaling in the functional), and the limit ¢ — 0 corresponds to allowing
sharper and sharper jumps. These lines would correspond in three dimensions to jumps
accross surfaces, called “domain walls” in the theory of micromagnetics.

Let us state our main results. For reasons that will appear clearer later, we need to
work on smaller functional spaces involving liftings of u. These definitions can be skipped
in a first reading.

Definition I.1 We call “admissible covering of Q7 a collection U of ((U;)icr, (kij)ijer)
where

1) Card I < oc.

2) U; is open and Q C UierUs, Vi, j € I, U; N U; is diffeomorphic to R2.

3) Vi, 5 €1, kij € Z and they satisfy the cocycle relations k;j = —ky;, kij + kji + ki = 0.
For any admissible U, we define Ay to be the set of u € H' (2, S") such that Vi € I, there
exists [; € [0,27] and ; € H' (U, [l;,1; + 27]) with

4



u=¢e"ionlU, Viel.
,Q)\V/i,jE[, P —; =21k i U; N U;.

We will say that the u € Ay satisfy the “locally bounded-phase condition” or LBP condi-
tion.

Lemma I.1 If u € Ay there exists ¢ € H'(Q,R)N L>(Q,R) such that
u = ew and HS‘QHLOO(Q) S C]/{,
where Cyy is a constant that depends only on U.

This comes from the assumption that € is simply connected and that ¢/ is an admissible
covering, thus our locally constant presheave is globally constant (see [BT] page 141). For
existence of H'-liftings of H'(Q, S'), see [Ca2, BZ].

These definitions mean that we restrict to the set of u which have a H'(), R)-lifting
locally taking its values in an interval of length < 27 of R. This assumption, which is
mainly required in the proof of Theorem 2, is not only there to make our life easier but
seems to have also a fundamental mathematical relevance in our problem : indeed we will
prove later that any solution of the limiting profile equation (1.19) solves the LBP condition
: the smooth lifting has to be locally included in an interval of size 2w. The variational
problem is well-posed in these spaces, ie, for any admissible ¢/, E. admits a minimum in
Ay, that we denote IY.

Theorem 1 If 09 is a finite union of analytic curves, then

limsup min FE. < 2|09,
e=0 HY(Q,S)

where |09 denotes the perimeter of Q.
In addition, there exists an admissible covering U such that

lim sup 14 < 2]09).

e—=0
(We call such a U a “suitable covering of Q7.)

The second result is a compactness result, in the spirit of that of [ADM], together with
a type of I'-convergence result. We start by defining the “micromagnetism domain wall
configuration space” C, which is the suitable limiting configuration-set.

Definition 1.2 C is the class of couples (u, @) such that
1)u:Q— St

2) div @ =0 in D'(R?)

3) o€ LY, R) and u = ¢ a.e. in Q

4) g = div (¢u + ut) is a bounded Radon measure on Q.
We denote by ||ftu|| the total mass of puy : [o |-

5



Note that p, ., does not change if a constant is added to ¢.
We are going to show that the limiting “functional” associated to F. is the following
“domain-wall energy” :

WMMHZLA|&V(¢U+ULN,

defined over C. This energy is a good candidate for making a selection among the solutions
of the eikonal equation (1.9) and this selection should be compared to Conjecture 6.2 of
[DKMO2]. We expect solutions of the eikonal equation belonging to C to satisfy nice
properties (see the comments at the end of the introduction). Our second main result is
the following compactness property.

Theorem 2 (Without assumptions on dS)). LetU be an admissible covering of Q, e, — 0,
and u, € Ay such that E. (u,) < C, for some constant C independent of n, and let o, be
a lifting of w,, given by Lemma 1.1. Then, after extraction of a subsequence, there exists u
and ¢ n Ni<qeoo L such that

u, > u in L) V1< g< .

on = in L1(Q) V1< g < oo

In addition, (u,p) € C and
lim i B, (1) > 2|
n—00

Thus, a sequence whose energy F., is uniformly bounded (which, from Theorem 1, is the
case for a sequence of minimizers) is compact in NL?, and its limits (after extraction) are
necessarily of unit norm. C appears to be the right limiting configuration space. The LBP
assumption is crucial in our proof of compactness.

The proof of the connection between E. and ||f,| at the limit can be sketched in
the following way. Consider ¢, — 0 and u, such that F. (u,) < C, and that u, has a

HY(Q,R?)-lifting ,, in Q (u, = ¢*"). Denoting by H, the demagnetizing fields associated
to u, by (1.2), one has

n

1
C2Bw) = [alVul+ [ S
Q R2 €
1
Z /5n|vun|2+_|Hn|2
Q €n

> 2 [ |Vu,||H,|.

Q
But |Vu,| = |[Ve,| in Q, hence we can write
(1.12) C>E., (u,) > 2/ |V - Hyl.
Q



We thus find a quantity u, = Ve, - H,, which remains bounded in the sense of measures.
This measure has the particular property that it is a divergence : indeed

(1.13) tn =V Hy, ==V, u, + Vo, (u, + H,).
But if w, is regular enough, it is easy to check that
(1.14) curl u, = 0y, (sin ) — Oy, (cos v,) = Vo, - uy,.
On the other hand, from (1.2), div (u, + H,) = 0 in £, hence
(1.15) V- (u, + Hy) = div (en(us + Hy)).
Combining (I.13), (I.14) and (I.15), we have

tn = div (@pun, + ui + @ Hy).

Since in addition I, — 0, @,u, + ul + ¢, H, is the sum of a local term @, u, + u and a
term which vanishes and can be neglected. We have thus reduced a nonlocal problem to
a local one, and in first approximation, we can write in view of (1.12) :

(L16) C> B, (uy) > 2/ ltn]-
Q

Since i, is bounded in measures, it has a weak limit which is a measure p, and we can
expect that

liminf E, (u, >2hm1nf/ |1en >2/ |

n—0oo

with g = div (¢pu + ut) associated to the limit u = € of u,.

Next, we state a result on minimizers of the limiting problem.
Definition 1.3 wu, is the unit vector-field V*(dist(.,090)).
We will prove in Section III that there exists ¢, such that (uy,¢,) belongs to C.

Theorem 3 If 09 is analytic by parts,

in |l = 109).
(min el = 109

The minimum is achieved by (uy, py).

We conjecture that the only minimizers are u, and —u,. We give an heuristic jus-
tification of this fact in the last part of the introduction. These considerations have to
be compared with the recent non-uniqueness result of [JK] for F.. As a consequence of
Theorems 1, 2 and 3, we get the global understanding of minimizers of E. under the LBP
condition.



Theorem 4 Assume 0N is analytic by parts. Let U be a suitable covering of Q (i.e.
lim sup,_,o [¥ < 2|09, then

lm 1% =2 min ||pa.| = 209,
u,p)EC

e—=0 ° (

and a sequence of minimizers u. = €%* of E. over Ay converges strongly in NL? (both u.
and @. converge) to a minimizer (u, ) of ||fu,,|| over C.

To give an idea of the lower bound ||t .|| > |09 for u € C, recall that u-n = 0 on 09,
and assume for instance that v -7 = —1 on 99 where 7 is the unit tangent to 99 (with
positive orientation). Then, integrating by parts, formally we have

/|div(<pu—|—uL)|Z/div(c,ou—l—uL):/ ou-n—u-7 =00
Q Q 1)

The proof needs to be refined when u - 7 changes sign on 9, but the result is still true.

If (u,¢) € C, as already mentioned, u has singularities, and they are expected to be
line singularities. Since, u is divergence-free, its normal component accross such singularity
lines is preserved. Wherever u and ¢ are smooth, one has

L
)

div (¢u) = Ve - u=curl u=—div u

hence g1, , = 0. p,, 1s thus supported on the singularities of u. Unfortunately, the
condition that div (pu + ut) is a measure does not guarantee that ¢ or u is in BV/(Q)
(one can see this from the ideas of the counter-examples of [ADM]) : the class of possible
limits C is quite large. Nevertheless, we may expect the measure 1, , to be carried on a
countably rectifiable set.

We have a more precise result in the case where ¢ € BV(Q) (where ¢ is a lifting of
u given by the definition of C). Then by definition, D¢ is a Radon measure, and it is
standard that Dy can be split into three mutually singular parts

(1.17) Dy =Vopl? + (et - ® nH! |s+D.p

where £? is the Lebesgue measure, H' is the one-dimensional Hausdorff measure, D.p is
the Cantor part of Dy, S is the jump set of ¢, n is the normal to S pointing from S into
the + half-space, and ¢t and ¢~ are the approximate limits of ¢ on both “sides”, + and
— of S (see Section V.2 for more details).

Theorem 5 1) Let (u,p) € C be such that ¢ € BV(Q). Then,
e = div (pu+ut) = (0" —¢7)(u-n) — (" —u7)-nt) H'|s.

Thus
il = / (o — ™) (- n) — (ut — ) -t |dH



—_— = u

im/2
€ u

singular setof U

Figure 1: X is positive when tu is pointing inwards the singular set of v and X is negative
when tu is pointing outwards of the singular set of u

If |pt — 7| < 27 in Q' C Q, we define the angle X € (—m,m) in the following way (see
figure 1):

ot — ¢

X ="y

sgn(X) = —sgn(ut - nt).

Then we have
P r=2(sin X — X cos X)Hl | sma-

The density of p,,, has the sign of X .
2) If (u, ) is a bounded family in BV and u. = €' is such that E.(u.) < C then, up to
extraction, there exists (u,¢) € C such that w and ¢ are in BV, for which ¢. — ¢ in BV,
u. — u in BV, and

ligri)igles(us) > 2|t = 2|09.

Remark 1.1 : Observe that the sign of X and then the sign of the measure div (pu + ut)
is independent of the liftings chosen ™ and ¢~ but only depends on u™ and u~, as long
as we ensure |pT — 7| < 2.

Thus we have a more quantitative description of y, , in terms of the jumps of the phase
of u. Observe that when X varies in [0, 7], sin X — X cos X increases from 0 to 7, and
observe also that for X € [—m, 7], sin X — X cos X has the sign of X. In addition, when
X is small

XS
sin X — X cos X ~ 5



This is reminiscent of the case of (I.10) in [ADM] where the energy cost of the jumps in Vi
is given by (I.11). The two problems should thus have the same qualitative properties for
small jumps (see also the discussion about lower semi-continuity in [ADM]). On the other
hand, there is a major difference since we exhibit a cost of the jumps of ¢ and not only
of u. If ¢ jumps by 27 for example, u remains continuous, but there is a cost in |[gy.,]|-
This can be very well illustrated in the case of Q = B;(0). The limiting field w, = i%
only has a singularity at 0, but its phase must have a line singularity joining 0 to d By, and
this costs 2m = |0B1] in ||ftu, .||, whereas in that case, for F. of [ADM] or [DKMO1], the
limiting energy is 0.

For general domains Q, we prove that for the field w, = V*dist(.,09), [;2(sin X —
X cos X) = |09Q|. Thus, from this physical energy, we are led to a limiting functional which
contains some of the geometric features of the domain, and we are led to unexpected results
on the function dist(.,d). See Section V and Remark V.1.

The sign of X should play a role in the uniqueness result we expect for the minimizer
for ||ftus|| in C (up to a reverse of sign). Following formally the kind of arguments of the
proof of Lemma V.1, we can see that, for a minimizer, u,, , has to be either positive or neg-
ative. Then, X is either positive everywhere, or negative everywhere. Changing u to —u
if necessary, we can assume X to be positive, and u to be V1¢g for some ¢ € CS’I(Q). The
uniqueness of the minimizer can be sketched the following way : starting from any point in
the domain away from the singular set, we may follow the ray given by ut. Because of the
positivity of X, we see that it is not possible to cross the singular set (see figure 1). Then,
the ray reaches the boundary without crossing the singular set. Thus, g = dist(x, 9), and
U = Uy

It is tempting to imagine that there should exist a similar statement as the one of
Theorem 5 for general (u, @) € C (or at least the ones that are limits of bounded sequences
(ue, @) for E.) without the assumption that ¢ € BV(€Q). The main difficulty would be to
prove that the measure div (¢u + u') is supported on some set that has a nice structure,
such as coutable rectifiability (coutable union of smooth curves), in order to be able to
define the notions of 4+ and — side, unit normal...etc. The exemple of [ADM] seems to
indicate that it is too optimistic to expect the jump set to be rectifiable (finite mass). This
comes from the fact that we only control X (see discussion above) and not X for X small.

An adapted object to work with, that gives also another geometric interpretation of
the measure div (pu + ut) for solutions of the eikonal equation, is the following current :
assume (u, @) € C is the L? limit of a bounded sequence (u., ¢.) for F., we introduce the
current T, ,. in  x R? equal to

T

Ue, e —

(2, u-(z),tH,, -€) € QA x R®  where (z,t)€Q x[0,1]
H,, is given by (/.4) and e is the unit oriented by Vu.

This current has a uniformly bounded mass as ¢ — 0. In the case where ¢, is uniformly

10



the set of vertical arrows 1 represent the current Tu,q) over a singular
point x for u in the domain Q They are obtained from the one graphed on
the left side of the picture rotating them perpendicularly to the plane of the
circle, range of u, keeping their attached point fixed on the circle.

Figure 2: The current T, , : a geometric interpretation of div (pu + ut).

bounded in BV it converges to the following rectifiable current

Uy =

(z,e? tsgn(u™-nT)h(0,2)) € A x R*  where (z,4) € S x[0,1] ¢_ <0<,
T =
h(0,z) is the distance between € and the line u™, u~

(see figure 2). It is not difficult to see that

(118) M(T,.,) = / div (ot + )] = [ttus]

In that case where ¢ is BV, we clearly have M(0T,,,) < +oco. Again because of the ex-
ample of [ADM] we do not expect this control of the mass of the boundary of the limit of
T.. . to hold in general, nevertheless we still expect the limit of 7}, ., which has a finite
mass, to be rectifiable, which should imply the countable rectifiability of the jump set of
u on ).

We now sketch the outline of the paper. Section II contains some preliminary results,
and the study of the one-dimensional problem : we expect variations of u., minimizing
E., to be concentrated near S (jump set of u,) at a scale ¢ in the direction perpendicular
to S. Therefore, we are led, after blow-up at the scale ¢, to the one-dimensional ODE

11



corresponding to solutions of (I.3) that depend only on one direction, which we prove to
be solutions of

@' =sinp —sinay

p(+oo) = ay

p(—o0) = o

sinay =sina_, 0 < ap —a_ <27,

(1.19)

This equation is the profile equation for the model. It is interesting to notice that (1.19)
has no solution if the jump a; — a_ > 2m. This is probably related to our assumption
u € Ay for compactness.

In Section III, we prove the upper bound for min F., by constructing a test-configuration:
it is the function w, wherever it is smooth, and we paste the profiles (1.19) at a scale ¢
along its jump set. Then, we have to bound fQ @ from above. This is done through a
“projection lemma” (Lemma I1.2), which permits to bound the non-local term [, |[H|* by
local integrals. The assumption 92 analytic by parts is needed to use a result of Choi,
Choi and Moon [CCM], which asserts that in this case, the singular set of u,, called the
“medial axis” of Q, is also a finite union of analytic curves, while if 9 is only assumed to
be C*°, the medial axis can be very pathological (see [CCM]). Yet, we believe that all the
quantitative results (min F. ~ 2|0€)|) would still be true without this assumption on 9f.

In Section IV, we prove the compactness result. Its proof is inspired from that of [ADM].
We use a convexity-type relation, the div-curl lemma, and Young measures, to prove that
the limiting u must satisfy |u| = 1 a.e., and deduce strong convergence in Ny<o L?, and
the same for its lifting ¢. The result of [JP1, JP2], which appeared after our work was
completed, could allow the improvement of the compactness result for u, but apparently
not for ¢. Section V is devoted to Theorems 3 and 4 using the method that was already
sketched, and to Theorem 5.

Notations : (' is always a positive constant, independent of . M is the space of Radon
measures on ). VY = (=0,,,0,,), ut = tu = (—ug,uy). B.(x) denotes the ball of radius

r centered at x.

II A few preliminary results

II.1 Preliminary results on demagnetizing fields

In this section, we consider a general vector field V on R?, bounded with compact support.
To V is associated the induced demagnetizing field Hy defined by

(IL1) Hy = —VA 'div V,

12



where the operator A™! is defined as the convolution with the kernel 2rlog |z —y|. Clearly,
Hy satisfies

) o 5
(112) { div(Hy +V)=0inR

curl Hy =0 in R?

Lemma II.1 1) Vp < oo, there exists C, depending only on the support of V such that
[Hv [|rz2) < Cp|| V][
2) For any x € R? such that dist(x, Supp V) > 1, |Hy ()| < 5|V, and |[A~ div V(z)| <

||

%HVHLOO, where the constants C' depend only on the support of V.

3)

(11.3) |Hy|* = / (div V)(A™'div V) = —/ V.Hy.

R2 R2 R2
Proof :
1) ¥p < oo, ||V||Le is bounded by a constant that depends only on the support of V. Thus,
standard results on singular integrals give that div V = —div Hy is bounded in W~ and
Hy in LP.

2) We observe, using integration by parts, that for any x such that dist(z, suppV’) > 1,

A~ div V(l‘)‘ =

/ 2rlog |o — y|div V(y)dy‘
R2
= ‘—2#/ V(y).V,log | —y|dy‘
R2
< o [ o,
2 [z —y|

“

2]

(11.4) [V |z~ [suppV],

where |suppV/| is the volume of suppV. Similarly,

(11.5) VA ' div V(z) = / L(z,y)div V(y)dy,

R2

where

L(:z:,y):27r (51?1—91 ffl/’z—y2>7

|z —y[? [z —y|?

and
IVA~!div V(2)| = /R2L(:z;,y)div V(y)dy‘
- |- [y v
(116) < oVl sV

13



As a consequence, Hy is in L*(R?) and assertions 1) and 2) are true. Then, using the
definition of Hy and several integrations by parts,

|Hv|2 == HV . VA_ldiV \%
R2 R2
= / —(div Hy)A N div V
R2
= / (div V)A™div V
R2

= —/ V. VA M iv V
R2

- v
R2

Hence, assertion 3) is proved. U

Remark I1.1 : Applying this lemma, we deduce that for any sequence of unit vector-
fields we, ||Hy. ||zr is uniformly bounded, Vp < oc.

Next we state what we call the “projection lemma”. This lemma allows to estimate in-
tegrals of demagnetizing fields of the type [, |Hv|? knowing V', without having to compute
Hy, and comparing it only with local integrals.

Lemma I1.2 For any V' bounded with compact support, we have

(11.7) |Hy|* = min / |V — Vgl
R2

R2 geH'(R%R)

This lemma is in fact the Hodge-projection theorem in L?. In other words, the result
amounts to the fact that Hy is the L*-orthogonal projection of V on the subspace of
curl-free vector fields.

Of course, these lemmas apply to the test-functions for the problem of minimizing F..
From them, we can deduce a restatement of the original problem. Defining, over H'(R?* R)
the functional

1
(11.8) G.(¢9)= min / e|Vol? —I—/ —|p — Vtg|?,
) Ja R2 €

veH(Q,5!
using comparison arguments, one can check that

min F£. = min G..
H(Q,81) H1(R2,R)
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II.2 Study of the one dimensional problem
I1.2.1 Heuristic derivation of the problem

Consider some family u. of uniformly bounded energy FK.. Its limiting field is a unitary
divergence-free vector field u, and it should have line singularities. Accross such a line,
since u is divergence free, u - n remains continuous. Therefore, the argument of u in the
orthonormal frame relative to the line singularity can only jump from some a4 to some a_,
with sina; = sina_. Returning to the original field u., we rescale it around =z, a point
of singularity of w, and set u.(x) = u.(xo + cx). We expect . to behave like a function u
which depends only on one variable x5, which minimizes

(11.9) /|vu|2 + |H|?,
R
and satisfies
lim Arg u = ay, lim Argu=a_.
zo—++00 Ty——00

The rescaled demagnetizing field H at the limit also depends only on one variable x5, and
is solution of

(11.10)

div(H4+u)=0
curl H = 0.

.. ; . . . d
[ 10, R — ¥

Writing u = €'Y = (cos ¢, sin @), since u depends only on x4, div u = (cos c,o)—dm, hence

must solve

— = —(cosp)—
(IL11) b 0 dz
dry

Thus, we see that

(I1.12) { iy =0

Hy =sinay —singp

is the only solution if we require that H tends to 0 as |2s] — co. We are thus led to the
following one-dimensional problem : minimize

(11.13) / |©'|* + | sin ¢ — sin a |*.
R

We will now consider this problem (I1.13) independently.
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I1.2.2 Study of the ordinary differential equation

In the rest of this section, we consider angles a; and a_ such that

oy = —T — a_
(I1.14) o o
a- € [=F,-5), ap €(=3,35]

We shall write sin o = sin ooy = sin « for simplicity. We consider the energy-functional

(11.15) F(p) = / l’|? + | sin ¢ — sin a?.
R
To this functional is naturally associated the ordinary differential equation :
(11.16) ¢" = (sinp — sina) cos ¢,
and if we add to it the limit conditions we are interested in, we get the problem :

©" = (singp —sina) cos ¢
.17
(ILL7) { o(—00) = a_, p(+00) = ay.

We prove the following

Proposition I1.1 Let oy and a_ satisfy a_ < oy and sinay = sina_.

1) If oy —a_ > 2w, then (I1.17) has no solution of finite energy F.

2) If ay and a_ satisfy (11.14), then (11.17) admits one solution ¢, such that F(p,) < oo
and ¢,(0) = =%. @, has the following properties :

(11.18) @' =sina — sin @,.

There exists a constant C independent from oy and a_ such that

C
lpo — ag] < ﬂ forx >0
x
(IL.19) z
lpa —a_| < —  foraxz <0.

z|

If oy —a_ < 2m, then there exists a constant C,, depending on ay and o_, such that

lpa —ar] < Che ™ fora >0
(I1.20) { lpa —a_| < Cue®  for x <0.
Denoting by X = “57= = =2 —a_, we have 0 < X < 7 and
(11.21) Flea) = /(99;)2 + (sin p, — sina)? = 4(sin X — X cos X).
R
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Proof :
- Step 1 : Equation (I.16) has trivial constant solutions ¢ = ay + 2km, ¢ = a_ + 2km,
k € Z. Consider any nonconstant finite-energy solution ¢ of (I1.16). Necessarily,

|©"| = | sin ¢ — sin af| cos p| < |sinp — sinal,

hence ¢” € L*(R). This implies that ¢’ € CO’%(R) and ¢’ is uniformly continuous on R.
It also implies that ¢'¢” € L'Y(R) and thus (¢')*(z) = [ 2¢'¢" remains bounded. We
can thus assert that (¢')? is uniformly continuous on R, because ¢’ is and it is bounded.
Consequently, since [, |¢']> < oo, we have ¢’ — 0 at oco.

Similarly, (sin ¢ — sin @)? is uniformly continuous and integrable, hence must tend to 0 at
0.

Multiplying (I1.16) on both sides by ¢’ and integrating between = and oo, we are led to

(11.22) (¢")? = (sinp — sina)®.

- Step 2 : We claim that ¢’ does not vanish. Should there exist xg such that ¢'(z¢) = 0,
then from (I1.22), we would have sin () = sina, and thus ¢”(x¢) = 0 from (I1.16).
Then, ¢ = ¢(x0) is a constant solution of (I1.16), which satisfies

Y" = (sint — sin ) cos ¢
(11.23) (o) = (o)
@Z)%l’o) = 0

But ¢ is also a solution of (II.23), and using the Cauchy-Lipschitz theorem on ordinary
differential equations, problem (I1.23) has a unique solution, thus ¢ is the constant solu-
tion, and we are led to a contradiction, since it was assumed to be nonconstant. The claim
is proved.

- Step 3 : We deduce assertion 1) of the proposition. If ay — a_ > 27, and ¢ solves
(I1.17), then @(400) — p(—o0) > 2; therefore, by continuity of ¢, there exists a 29 € R
such that sin ¢(2¢) = sin . But ¢ satisfies (I1.22), hence ¢'(xq) = 0, and this is impossible
from Step 2.

- Step 4 : We prove the existence result. First, we recall that oy and a_ are assumed to

satisfy (11.14). We set

(IL.24) O(t) = / t du

= sina — sinu
2

¢ is defined on (a—, a4 ). When u — oy,

1

(11.25) sinu — sin oy ~ (u — ag ) cos oy — §(u —ay )P sinay,
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hence ® — +o00 as t = ay. Similarly, ® — —o0 as ¢ — a_. Furthermore,
1
(I)/t :%>OOH a_., o
(*) sina — sint (o= av)
thus @ is increasing, and defines a diffeomorphism between (a_, a4 ) and R. We can thus
consider its inverse function ¢(z) = ®~'(x). ¢ is increasing from R to (a_, a1 ) and satisfies

Iim oy =ay, lim p=a_.
r—r—400 T——00

In addition,
1
o —
A= e
Consequently, ¢ solves (I1.17). In addition, from (II.14), ¢ takes the value —7. But, for

(11.26)

= sina — sin ¢(x).
any ¢ € R, ¢(. + ¢) is also a solution of (I1.17), therefore we can find ¢, solution of (11.17)
such that ¢,(0) = —7.

- Step 5 : We prove the stated decay of ¢,. If cosay # 0, then from (11.25), sinu —
sin o ~,, (u — ag)cos oy hence

—1
O~ oy (o — ),
and therefore, ¢, —ay decays exponentially as © — +o0o. The argument is similar near —oo.
If cos ay = 0, then from (IL.25), sinu — sinay ~, —1(u — ag)?sinag with sinay = 1,
hence 5
P~
ap — T

and ¢, — ay decays like 1/z as @ — +o00, and similarly as © — —oo. It thus has a decay
rate in 1/|x| independently from oy and a_. We deduce that (¢/,)* and (sin ¢, — sin a)?
are in L'(R) and F(p,) < oco.

- Step 6 : There remains to calculate F(¢,). From (11.26),

Flea) = /R(c,o’a)2 + (sin ¢, — sina)? = 2 /R(sinoz — sin p, )@,

Performing the change of variables ¢, () = t, we get

ot
Fle,) = 2/ (sina —sint) dt

= 2[cosay —cosa_ + (ay — a_)sina]
= 4cosaq +2(ar —a_)sina.
Using the notation X = “*5°= = ay + 7, we have 0 < X < m, cosay =sin X, sina =
— cos X, and the previous equality becomes

F(ps) =4(sin X — X cos X).

18



III Upper bound for the micromagnetism energy

In this section, we prove Theorem 1, by constructing a suitable test-configuration. This
test-function is obtained by deformation of the field u, = V=*dist(.,99), using the one-
dimensional profiles described in Section 11.2.

II1.1 Studying u,

Here, we mention some important results on u, relying on the paper [CCM] by H.I. Choi,
S.W. Choi and H.P. Moon. u, is obviously divergence-free, tangent to 9§ (hence div i, =
0), and of unit norm wherever dist(., dQ) is differentiable. If p is a point in © that admits
a unique nearest-point projection on 92, then dist(., 912) is differentiable near p and w, is
regular near p. Thus, u, is singular only at points which do not admit a unique nearest-
point projection on 9. In [CCM], they study this set, called the medial axis of Q. They
define it as

_J peQ/Ir>0,B.(p) C Q,and
(IL.1) > = { if B,(q) C Q and B,(p) C B.(q), then B,(p) = B,(q) } :

One can check that ¥ coincides with the set of points which do not admit a nearest-point
projection on Jf2, and is also the set of the centers of maximal disks inscribed in €.

If © is a ball, then ¥ is reduced to the center. If not, and if 9€) is a finite union of analytic
curves (which we shall sum up by “analytic by parts”), then they prove that ¥ is path
connected and is a finite union of real analytic curves of finite length, plus a finite number
of end points or branch points called vertices. We will call ¥V the set of vertices.

Lemma ITIL.1 [f 09 is analytic by parts, there exists o, € BV (Q) smooth except on a finite
union of analytic curves S such that the jump of v, along S is in [0,27], and u, = €',

Proof : If 0 has “corners”, then X is adherent to 9. If 9 is analytic, consider a point p
on 0N} such that the geodesic curvature of 9 at p is positive (such a point always exists),
and the normal to 99 at p. Following this normal direction inside §2, then one crosses ¥.
Let us denote by T' this segment joining p to X. S =T UX is still a finite union of analytic
curves and a finite number of vertices, and is path-connected. Since the topological degree
of uy from 9 to S' is 1, it is possible to define a real-valued ¢, on Q\{p} such that
u, = % on 0N, and that o, is continuous except for a jump of 27 at p. It is then
possible to extend @, to © into a BV function which is regular on Q\(7 U X). We do it
the following way : if # € Q\(7T'U X), then = has a nearest-point projection y on 9, we
set . (2) = @i(y). Then we have

' = u, = VE(dist(.,90)) in Q\S,

and ¢, is C* in Q\S. For example, in the case of the ball, just consider ¢, (r,0) =0 + 7
in polar coordinates, where the argument 6 lies in [0, 27). Then, ¢, is regular everywhere
except on the segment § = 0 and for r = 0. We easily check that u, € C.
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In the general case, the jump of p, on T is exactly 27 by construction. We then consider
x € ¥ and wish to evaluate the discontinuity of ¢, at = across ¥. By definition of ¥, there
exist at least two “rays” coming from 9 crossing at . By “ray”, we mean a segment
with one end point on J€) and the other on X, normal to 9, and included in Q. By
construction, @, is constant on all “rays”. Let then R; and R, be two such rays crossing
at z, and let #; and x5 be their end points on 9Q. We write 3 = (771, 77%) € (0,27). Let
then [ be the connected component of 9Q\{x1, 22} that does not contain p. We thus have
a closed curve, union of [, [z, x;] and [z, z;]. We assume for example, that going from x4
to x5 on [ and then from z5 to x; via the segments, we follow the trigonometric orientation
(see figure 3). We can write that the integral of the geodesic curvature K, along this curve
is equal to 2m:

™ ™
/Kg+—+(7r—ﬁ)+—:27r.
. 2 2

Here, we have used the fact that [z, 2] and [z, 23] are orthogonal to 9. Then,

/ngw—(w—ﬁ):ﬁe((),%r).

l

But this integral is equal to — lfl—; -n where 7 is the unit tangent on [, n the outer unit

normal to [ and s the parametrization with respect to the arc-length on 9. But, u, = —7
on Jf2, hence the previous integral is fl % n= % cut = . % = pu(xg) — pulx1). We

thus have obtained that
(111.2) 0 < pu(r2) — @u(ay) < 27,

In addition the jump of ¢, at x is exactly equal to |py(x2) — @i(x1)] by construction, hence
we have the desired result. O

Definitions of X, oy, a_ for u,.

If 2 € ¥\V then « has exactly two nearest-point projections on €2, 1 and x5 (see[CCM])
and the direction tangent to X separates x; and z5. We can thus choose n to be the unit
normal vector to ¥ at = pointing towards x; i.e. n - x5 > 0. If 7 is the unit tangent to X
such that (7,n) is a direct orthonormal frame, then this means that

(111.3) Uy >0 on (x,xs).

If + € T we orient —7 pointing towards 9€2. By construction of T'; u, is normal to T'
and u, = n = 1+t

Then, at each point zo € S\V, we have defined a unit normal vector n, and we denote
by ¢ and ¢} the values of ¢, for z — xo(m-n > 0) and = — xo(m-n < 0) respectively.

In view of the previous proof, on ¥, we have ¢} = v, (x2), v = @.(x1). Hence,

(111.4) 0 <@f —¢o <om.
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On T, ¢t — @7 = 27, hence (I11.4) is verified H'-a.e. on S. If s still denotes the parameter
with respect to the arc-length on S, we can then choose f(s) such that e=7 = (1,0) and

1
(111.5) -5l +or —m)el-mm).
We distinguish again two cases. If # € T', then there exists k € Z such that o} —0 = Z42kn
and ¢ = @f —2r =04 % 4+ 2(k — 1)m. In view of (IIL5), the only possibility is k = 0.
We set

T _ 3T
04+(3):99j—9:§ 0‘—(5):%—9:—7-
If z € ¥\V, then, since u, is divergence-free, its normal component is preserved accross X,
hence
sin(f — 0) = sin(p; —0),
therefore

dkeZ, of —0=m—(p;, —0)+2kT.

But, from (II1.3), we also have
cos(i — 0) > 0,

and combining this with (I11.4) and (I11.5), the only possibility is £ = —1 and

We set in all cases ay (s) = ¢ —0, a_(s) = 7 —0. They satisfy (I1.14). In addition, a_(s),
ay(s) and 0(s) are C'' on S except on a finite number of points. If some of these excpetional
points are not in ¥V, we add them to V. Denoting X = @r%w*_, we have X € (0,7] and
X =2"= cos X = —sina, sin X = —cosa_.

Remark ITI.1 : We recall that if 02 is not assumed to be a finite union of analytic
curves, but only C'* for example, then it seems more difficult to construct such a lifting of
u, because there exist such {)’s for which ¥ is not of finite length or has an infinite number
of branch points (see [CCM] for counter-examples).

Remark II1.2 : If © is convex, then ¢, takes its values in [/, + 27] for some [ € [0, 27].

ITII.2 Constructing the test-functions

We use the notation of the previous subsection, and the orthonormal frame (7,n) along
the line of singularities S of u,, wherever possible. We choose a 7 such that % <vy<1l We
recall that S is a C'! curve except on a finite set of points V and denote by S. the subset
of S composed of all the points which are at a distance > £” from V. Thus S is locally C'!
near any point of S.. We then define the set B. to be

B. ={x =20+ on,|o| <&, 29 € S., nis the normal to S. at x¢}.
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Figure 3:

For ¢ small enough, B. is thus an &”-tubular neighborhood of S., and each point of B,
can be determined uniquely by coordinates (s,o) where s corresponds to the parameter
with respect to the arc-length on S and o to the distance to S.. We also denote . =
O\ {z/dist(z,5) < e’} and V. = Q\(Q. U B.).

We recall that the argument of ¢, in the local frame is a4(s) as ¢ — 07 and a_(s)
as 0 — 07, with a; and a_ satisfying (II.14). Let us also denote (.(s) the angle of
@y in the orthonormal frame (7,n) at the point (s,£7), and (_(s) the one at (s,—&"),
Bi(8) 1= 0u(8,67) — 0(3), B-(3) := @u(s,—€7) — O(s). Of course, these 3, contrarily to the
a’s, depend on e. Along ¥, since ay — a_ > 0, for € small enough we have 8y > —7/2
and f_ < —m/2. Since T is a ray starting at a point of J2 where the curvature is
positive it is not difficult to see that for e small enough, we also have 5, < 7/2 and
B > —3m /2, although oy = 7/2 and a— = —37/2. Then, from the study of the equation
(I1.16) we know the existence of a*(s) € [-7/2,7/2) and &~ (s) € [-7/2,7/2) such that
©at(s)(e7/e) = B1(s) and @z-(5(c”/e) = B_(s) (a priori there is no reason why &*(s) and
&~ (s) should coincide). Using the C'' behavior of u, in Q\S, it is clear that the following
bound holds

(11L6) os - fe] < O,
and using (I1.19),
(1IL.7) 6% (s) — oy | < C'7

We then define the test-function w. in the local coordinates (s, o), as

(IIL8)
{ u.(o,0) = (Cos(c,o&i(s)(a/e)D T+ (sin(c,o&i(s)(a/g))) n=¢et) for 0 < 4o <e&¥in B.

gy
u. = €% in ),
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In V., we extend the phase of u. in such a way that it remains continuous, and that
[Vu.| < €.

We also define in B.

(111.9)

{ K.(s,0) = (Cos(c,o&i(s)(a/e)D T+ (sin(Be(o/e") +ar(l —o/e7)))n  for 0 < +o <& in B.

K.=wu, 1in Q.

Notice that K. is not unit-valued. We extend K. on V. in the same way as u., with
|K.| < 1. We thus end up with two vector-fields u. and K. which are continuous on ) and
have the following properties :

Lemma II1.2
C
V|| peo@) < -
|div K| < O(1) in Q\V;
1
|div K| < for dist(x,5) < e&”.

sup(e, dist(x,5))

Proof : The upper-bound for Vu is straightforward from the construction. In B., we have,
for 0 < o0 < &7,

div K. = V (cos Pat(s) (0/5)> T+ <COS Pat(s) (0/5)> div 7
+ V(sin(fro/e” + ar(l —o/e"))) - n+sin(fro/e” + ar(l —o/e))div n,

and from this expression, it is clear using (I11.6) that, as ¢ — 0, |div K| = O(1) in Q\V..
0

II1.3 Evaluation of their energy - Proof of Theorem 1

We prove Theorem 1. The proof is divided into several lemmas.

Lemma II1.3

1/Q|u5 — K.|? +5/5 Vu.|* < /54(sinX(5) — X(s)cos X(s))ds 4 o(1).

e

Proof : First, observe that in ., u. = K. = u,, hence

1 1
—/ lue — K.|* = —/ lue — K.|?,
€ Ja € Jo\Q.

and, since |u. — K. <2 on V., and v > %,

1 1 2y
—/ e — K2 < = | Jue— K.} + 0
& Q & B. &
1
(I11.10) < = e — K2+ o(1).
& B.
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From the definitions (I11.8) and (II1.9) of u. and K.,

1
/ lu. — K.|* < Zg/i ‘sin@&i(s)(a/e)—sin&i(s)‘Z
+ 0<to<e”

1
(11.11) +Z—/ | sin &% (s) — sin(feo/e” + ax(l — /"))
+ € 0<to<eY

Using (II1.7) we have

1

ok ) ~ — /e
g/0<ig<ﬂ|smoz (s) —sin(fBro/e” + ax(l [N <

| Q

— Bl [ = 0(e17)
and (I11.11) becomes
(111.12) / lu. — K.|* < Z / sm Yat(s) (0/e) —sin &i(s)‘z + o(1)
<to<eY
On the other hand,
1 At 2
e|Vu)* + ~ ‘smc,oa (s (o)) —sind (3)‘
0<t+o<e™

1 1
= / — ‘vg@&:{:(s) (0/5)‘2 + - ‘sinc,o&i(s) (o/e) — simo?i(s)‘2 ds do
0<to<eY €

(I11.13) + / e
0<to<e”

2 (pax(q(a/e)) = d&ds( ) aw;a (c/¢) remains bounded, since o is C'* on S\ V. Furthermore,

by definition of ¢,

P 2
s <99&i(5)(0/€)> dsdo.

(111.14) Vas)(x) =sina(s) — sing,s)(z).

Inserting this into (111.13), we obtain

/ elVu* + ~ ‘smc,oa (s) (U/@)—Sin&i(s)‘Z
0<t+o<eY

2

= —/ (sin a%(s) — sin Pat(s) (0/5)> Vst (0/e) dsdo 4 o(1),
€ Jo<to<er

where we have used a coarea formula relative to g, the orthogonal projection from B, into
S, and the fact that ||r5ds| —1| < Cge” and that v > 1/2 (where C's involves informations
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on the curvature of S). Performing the change of variable y = o /e,

1
/ e|Vu)? + —
|o|<e €

= 2 // <Sln &Sgn(l/) (S) - Siﬂ S«Q&sgn(y)(s)(y)> VS‘Q&Sig"(O')(y)(y) dy dS —I— 0(1)
s |y|<ev Tt

o 2

Sin S«Q&sgn(o’) (5) <g> — Sin &Sign(cr) (S)

< 2/5 (/_; (sin &sgn(y)(S) — sin %Sgnw)(s)(y)) Vs (s)(Y) dy) ds + o(1)
(I11.15) < /4(SinX(S) — X (s)cos X(s))ds + o(1),

where we have used (I1.21) and the fact that ot + % tend to X = a4 + % as € tends to 0.
Combining (IT1.10), (I11.12), and (I11.15), we get the result. O

Lemma I11.4 Denoting by H,, the magnetic field induced by 1., we have

1
— |H,.
€ Jr2

1
< —/ lu. — K.|* + o(1).
€ Ja

We postpone the proof of this lemma until later, in order to state the last lemma

Lemma II1.5
5/ Vu.l* =0(1) ase— 0.
Q\B.

Proof : First, by definition, u. = u, in €., hence ¢ [, [Vu.|* —= 0.
Secondly, the contribution coming from V. is negligible, because there |Vu.| < Ce™!, and

hence
2y

e | |Vul? < 055—2 =7 = o(1).
€

€

This completes the proof of the lemma. O

If we assume the result of Lemma II[.4 to be true, then in view of Lemmas II[.3 and
[11.5, we have constructed some u. € H'(Q, S*) for which

(111.16)
1
5/ |Vu.|* + —/ |H,.|* < /4(sinX(3) — X(s)cos X(s)) ds+o(1) as ¢ — 0.
Q € Jr2 S

If we assume that [ 4(sin X — X cos X') = 2|0, which shall be proved in Lemma V.2,
then the first part of Theorem 1 is established.

Proof of Lemma I11.4 : The idea relies on the projection lemma, Lemma I1.2.

25



For simplicity, we drop the subscripts . We denote by Hk the magnetic field induced by
the configuration K. (which is K. extended by 0 outside 2. Let g achieving

min |[& Vigl?,
geH(R2R)

then, as seen in Section II, Hx = K — V'g. Furthermore, the projection lemma ensures

that
() = (Ls-s)
B2 B2
< ( |a—[§’|2> +< |I§’—ng|2>
B2 B2
(I11.17) < (/ |u—K|2> +</ |HK|2> .
Q R2

Consequently, the lemma shall be proved if we show that
1 2

(111.18) - |Hg|* — 0.
€ Jr2

We now prove (II1.18). From Lemma I11.2, ||div K|z~ < Ce™', on the other hand div K =
0 in ., hence K satisfies the hypotheses of Lemma II.1. We decompose Q\), as B. U V..
As seen in Lemma II.1,

(A~ div K)(x)|

/ 2rlog |o — y|div K(y)dy‘

Q\Q.

(111.19) < / |27log |x — y|div K (y)dy| + / 127log |x — y|div K(y)dy|.
B. Ve

If we assume for simplicity that B. is a rectangle in cartesian coordinates (a1, x2) of the
form {(x1,22)/|21] < L,|xz| < &7}, then we deduce, using the L™ bounds on div K of

Lemma III.2,
L e
/ |27log |z — y|div K (y)dy| < C / / log |x — y|dy‘
B. ya=—L Jy; =0

(111.20) < Ce"|log €.

The contribution of V. can be bounded as follows :

1
/ |27log |@ — y|div K (y)dy| / / log |z =yl |$ y|| dyy dy,
Va y2——57 Yy1= =0 Sup € yl

(111.21) < &'log £|?.

IA
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Combining (IT1.19)—(111.21), we get the following L* bound :
(111.22) [(A~'div K)(z)] < Ce|log £* in Q\.,

the general case follows easily from a change of coordinates. On the other hand, as seen
in Lemma II.1,

| H|?
R2

/ (div K)(A™ div K)
R2
= / (div K)(A™'div K),
Q.
using the fact that div K =0 in Q.. But, thanks to (111.22),

y/(&vhﬂ@XJ&vkﬂ < CeM||div K|l | AT div K| @ya)

Ce?e™ e log ¢|?

<
< O log e]? = ofe),

since v > 1/2. Similarly, from (II1.22) again,

/(&vaA*&vK)§Cﬁﬂmgd?

€

Since ¥ > 1/2, we conclude that
/ (div K)(A™'div K) = o(¢)
Q\Q.

hence |
- |HK|2 =o(1).
€ Jp2

In order to complete the proof of Theorem 1, there remains to prove the following

Lemma II1.6 There exists an admissible coveringU such that the u. constructed in (111.8)
belong to Ay for e small enough.

Proof : Let us return to the ¢, defined in Lemma IIL.1, so that u, = e*¥*. We recall that,
on ¥, of — ¢y € (0,27), hence if 29 € X, it has an open neighborhood U, such that

sup @, — inf o, < 27,
U.ro U‘TO

We also chose T' to be such that the geodesic curvature of 92 at T'N IS is positive. Thus,
we can make sure that there exists an open neighbourhood Uz of T'in which supy,, ¢, —
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infy,. @, < 2m. It is also obvious that, since ¢, is continuous in Q\5, Q\S can be covered
by open sets U on which sup;; ¢, — infrr o, < 2. We can then extract a finite covering
UserUs of © such that Vi € I, supy, v — infy, o < 27, and such that Vi,5 € I,U; N Uj;
is diffeomorphic to R% This condition guarantees that u, has local liftings ¢; € L>=(U;)
satisfying

w, = eViin U;, afy; € [l;,1; + 2] with [; € [0, 27].

Of course ¢; — 1; is constant on U; N U; connected, and equal to 27k;; for some k;; € Z.
The k;; satisfy the cocycle relations of Definition I.1.
On the other hand w. is defined by (I11.8) hence it has a lifting

we=v+60 1in B,
(111.23) { o = o, O

By monotonicity of ¢, (see (I1.21)), we have G- < @s.gn(0/¢) < 4. By construction of
Y (see (I11.8)), we thus have

sup —infy < sup(fy(s) = f-(s)).
Therefore, on each U; such that U; N S # @, for € small enough,

111.24 sup . — inf . < sup ¢, —inf o, < 27.
¥ ¥ ¥ ¥
U; U; U; U;

(The phase of u. can be extended to V. in such a way that this property also holds.) If U;
does not intersect S, then u. = u, on U; (for € small enough), hence (I11.24) also holds.
This property suffices to ensure that u. € Ay for € small enough. O

Remark II1.3 : If © is convex, then the test-function u. also satisfies the same prop-
erty as @y 1 i € [[,[+27] and  is a “suitable covering”. In the general case, the suitable
covering depends only on u,, hence on ).

IV The compactness result - Proof of Theorem 2

This section is devoted to the proof of Theorem 2. The proof of compactness relies on a
similar method as that developed in [ADM]. We identify a jacobian structure in order to
use the compensated-compactness lemma and combine it with the use of Young measures.
Let us consider a sequence of functions w,, € Ay for some U, such that F.,(u,) remains
bounded, where ¢, is a sequence converging to 0. Let ¢, be the H'(Q) N L= lifting of w,
given by Lemma I.1. As seen in Section 1 (I.12), (1.16), we have

(IV.2) C>E., (u,) > 2/ Vo, H,| > 2/ |div (@ntn + ui + ¢, H,)l
Q Q
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The assumption of boundedness on E. (u,) can be replaced as well by the two condi-
tions H, — 0 in some L? and fQ |V, - H,| bounded, without any change in the proof,
and with the same conclusions.

The quantity to study is
(IV.3) vn = (Hy + wa)pn + uyr,

which is equal to the sum of a local term wu,p, + ul and a non-local term H,, which
tends to 0 in L9, ¢ < co. The hypothesis on v, is

(IV.4) / |div v, < C.
Q

Since |u,| = 1, u, is uniformly bounded in L*>(Q), hence, extracting a subsequence if
necessary, we can assume that it converges weakly in L>°(2) to some u. We are going to
prove that |u| =1 a.e. in Q. This constitutes the compactness result :

Claim : If |u| =1 a.e. in Q, then u, — u strongly in L(Q) (V1 < ¢ < o).

Proof of the claim : If |u| =1 a.e, then

/|un|= |ﬂ|=/|u|'
Q Q

Thus [[un]|z2() = |||l z2(0), while u, — w in L*(Q). Tt is standard that this implies strong
convergence of u, to w in L? and in L? (Vg < 00), from the bound |u,| < 1.

In view of this claim, it suffices to prove |u| =1 a.e. in .

Lemma IV.1 For almost every xo € Q, there exist sequences ul, @y, Hi in B1(0) = By
such that

) lul] =1 a.e. in By

) uy, — u(xo) in L=(By)

IV.7) u), = €'k with @y, € [lg, I + 27) and kli}rgo I, =1
) div (H, +u}) =0 and curl H], =0 in By
) |Hellrsyy — 0, V1I<p<oo

IV.10) i |div (uhl, + (uf) 4+ Hipl)| — 0

Proof : This lemma relies on a blow-up argument.

Let v, be as in (IV.3). From Lemma II.1, (H,) is uniformly bounded in N,L”. Since
un € Ay, ¢n is uniformly bounded in L*(2), and since x is in some U;, 7 € I, we can
assume that ¢, takes its values in [l,,,[, + 27] in a neighborhood of z¢. Therefore, v, is
bounded in L? for example and we can assume that v, — v in L*(Q2). From (IV.4), div v, is
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bounded in M (the space of Radon measures), hence, modulo a subsequence, it converges

weakly to some measure in M and this measure is necessarily div v by uniqueness of the
distribution limit. Thus div v € M and

(IV.11) / |div v| < liminf/ |div v,| < C.

For almost every zq € €2,

1
(IV.12) lim sup—z/ |div v| < oo.
7 J By (o)

r—0

If this was false, we could contradict (IV.11) by a covering argument. From now on, we
consider that zy satisfies this condition and also ¢ is chosen to be a Lebesgue point for
the limit u.

We define the dilated functions, for any r > 0,

(IV.13) "

Observe that

(IV.14) div v}, = rdiv v,(x + ra)
’ div vl = rdiv u,(xo + ra) = —rdiv H,(xo + ra) = —div H,
and
1
(IV.15) |div vl | = —/ |div v,,].
By 7" JBr(x0)

Since div v, — div v in M, we have for a fixed r,

n—oo B r n—oo

1 1
(IV.16) lim |div o | = = lim |div v,| < —/ |div v].
Br(l’o) r B2r(730)
Hence, in view of (IV.12), there exists C' > 0 such that

(IV.17) Vr >0, lim |div vl | < Cr.

n—0oo B1

By assumption, H, — 0 in L*(Q) and it is bounded in all L?, hence converges to 0 in
Np<oo LP. Let p > 2, for fixed r < rg and for r¢ small enough

1 1
(IV.18) |Hy (20 + ra)|P = —= |H, P < = |H, | — 0 as n — oo.
v B, (z0) 7 Bt

B,
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Let us now take any sequence r, — 0. In view of (IV.17) and (IV.18), we may choose a
sequence nj — oo such that

(IV.19) lim |div vl*| = 0.
k— 00 B k
and such that also
: rR|p 1 p_
(IV.20) ]}i}rgo /B1 |Hx P = ]}i}rgo . |Hp, (20 + rrz)[P =0

We could also have chosen nj such that Uk — u(xo). Indeed, let e; be a Hilbert basis for
the L? scalar product on By such that e; € L>. We have

"Rx) — u(zo :L ex/r)us(x) — ulzg
/Blexx)[um (20)] /WO) A/ [un() — u(zo)]

1 1
V.21 = — ei(x/ry)|un(z) — ulz — ej(x/ri)u(x) — u(zo
vy =5 [ G @l [ G - )

Since xg is a Lebesgue point of wu,

1
= e;(x/ri)[u(z) — u(xo)] = 0, ask — co.
Tk J By, (20)

Then, using the weak convergence of u,, to u, we deduce that for a fixed r > 0,

fim [ (el o) — atan)) = % [ _eslalute) = uta)]

n—+oo B,

so that we may find a subsequence n} such that fBl er(z)[u’ (z) — u(zo)] — 0. From ny,
k
we extract a subsequence n? such that the previous affirmation holds for e; and €; and so

on. Then, following the standard diagonal argument, for n; = nf we have
V) < 400 / e](x)[ugz(x) —u(xg)] — 0
B,

Hence, uj} converges weakly in L?(By) to u(xo), as k — co.

Then we define

up = wk
(IV.22) P = Pt
H, = H*,

and we have uj, = ek, In addition, o(@) € [ln,, o, + 2m] for k large and for © € By.
Extracting again if necessary, we can assume that [, converges to some [ € R as & — oo.
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Assertions (IV.5), (IV.6), (IV.7), (IV.8) and (IV.9) of the lemma are verified.
Assertion (IV.10) follows from the definition of H] and from (IV.19). Indeed,

(div ops)(x) = re(div v, )(zo + rez)
= rdiv (@n, s, + uik + ©n, Hp, ) (20 + 1)
= div (ghul + (uh)*t + o Hp)(2),

and in view of (IV.19),

|div (@, + (wi)* + ¢ H)| =0
B,

which is (IV.10).

Under the same hypotheses, we may now find [y such that

(1V.23) lo €[l,14 27],

where [ satisfies (IV.7), and

(IV.24) e ou(zg) = (a,0), a=|u(z)|.
Lemma IV.2 Let (uy, ¢}, H},) be given by Lemma IV.1, and define

Ay = e~ o (u))*
(IV.25) B, = 6_2:1099214 4 e‘”o(uz)L
Cp = 6—21099214“

then, modulo a subsequence, we have

A — (0,a) = A weakly in L>(B)
(1V.26) Cr — (B,7y) weakly in L=(B)
By — (6,74 ) = B weakly in L>(By),

and moreover
(IV.27) l=A,-By—=A-B=a(y+a) inD(B).

Proof :
- Step 1 : From (IV.6) and (IV.24), Ay — (0,a) = A weakly in L>(By).

bounded in L>°(£2) hence converges weakly to some function f, up to extraction. Since

Cr = e~ ul, if 2o is chosen to be a Lebesgue point of f, we can assume exactly as for u
that C}, converges weakly in L>(By) to e=0 f(x) = (8,7). We immediately deduce that

By — (0,74 «) weakly in L(By).

- Step 2 : We prove (IV.27). It is a direct consequence of the compensated-compactness
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lemma of Murat and Tartar (see [Mu2] and [Ta]), which says that if A, — Ain L* By — B
in L?, curl A, and div By, are compact in H™1, then A, - By — A- B. We just need to
check that these hypotheses hold for our Aj and Bj. Their weak convergence in L*(B)
has already been established. Furthermore,

curl Ay = —e7div u}, = e7div H, — 0 in H'(By)
from the fact that || H}| 25,y — 0.
div B, = e "div (@hu} + (u})b)
= e 0div (@l + (ul) T+ L HL) — e 0div (9L HY).

In view of (IV.10), div (pLu}, + () ) + ¢\ H;) — 0 in L'(By). On the other hand this
quantity is bounded in W~=* for all p < oo, hence by a result of Murat (see [Mul]) it is
compact in H~*. Meanwhile div (¢} H}) — 0 in H~'(B,) as previously. Hence, div By, — 0
in H™'(By), and we conclude that A, and By satisfy the desired properties. We have thus
established that Ay - By — A- B in D'(By). O

Lemma IV.3 o =1 and the Young measure generated by ). at 0 is supported in {lo,lo+
21} or {lo — 2m, 1o }.

Proof : We are now in a position to prove that yo + a? = 1 implies that o = 1. Following
the approach of [ADM], since ¢, is uniformly bounded in L*°(By), we can introduce v, the
Young measure it generates at 0. Recall that from (IV.7), ¢} takes values in [lj, [ + 27]
with [, — [. Therefore, v is supported in [[,/+2x]. Thus, in view of (IV.23), v is supported
in [lo — 27,1y + 27]. By definition of Young measures, we have the following relations (in

view of (IV.25)-(IV.26)):

lo-|—27'r
(IV.28) / dv =1
l

027’[‘

(1V.29) /10"'2” cos(y — lo)dv(y) = /27r (cost)dv(t + lo)

0—2m —27

lo+27 27
(1V.30) = / sin(y — lo)dv(y) = / (sint)dv(t + lo)
lo—27 -2
lo+27 27
(IV.31) = / ysin(y — lo)dv(y) = / (tsint)dv(t 4 o).
lo—27 -2

We claim that
(1V.32) Vit € [-2m, 2], tsint+2cost < 2.

This can be checked by looking at the variations of ¢ — t¢sint + 2cost on [—2m,27].
Inserting (I1V.32) into (IV.31), we are led to

27 lo+27 27
v = / (tsint)dv(t +1p) < 2/ dv — 2/ (cost)dv(t + lo)
_ I _

27 0—2m 27

(IV.33) < 2-2a,
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where we have used the fact that v is a probability measure, hence positive. It then suf-
fices to insert this relation into va + a? = 1 to get 1 < 2a — 2a% + o? equivalent to
(1 —a)? < 0. Therefore, a = |u(zg)| = 1. In view of (IV.29), v is necessarily supported in
{lo,lo—27,lo+27}. Since it is also supported in [[, [+ 27], its support is either {lo, lo+27}
or {lo,lo — 2n}. From Lemma IV.1, this is true for almost every z¢ € , thus |u| =1 a.e.
and u, — u strongly in Ny<gcoo L9, O

Let us consider a general u € CY(By, S') and ¢ € CY(B;,R) such that u = . Then, we
define for any [ € R and n > 0, the truncated function

Tp=¢ if pel[l+n,l+42r—n]
(IV.34) T,o=14+n ifo<l+n
Tw=I14+2n—n ite>14+2r—n
We will write
(IV.35) Tou = exp(iT,p).

Lemma IV.4 Let u, € HY(By,SY) and ¢, € H'(By,R) be such that uy = ¢'“* and that
(IV.8)—(1V.10) hold. Then, for any choice of | € R, for anyng > 0, there exists a sequence
M € [370,m0] such that (for a subsequence), T, ¢ converges strongly in Ni<gcoo LY and

Thur — v in Ni<geso LY(B1), with divo =0, |v|=1.

Proof :
- Step 1: Let us denote U} = {x € By/l+n < ¢ <1+ 21 —n}. We claim we can choose
M € [210,m0] such that

(I1V.36) / |Hg-n| — 0 as k — oo.
auk

Indeed, using the coarea formula we have

7o
/ Vot = [Can [l
@k E[l4 5710, 14m0]U[27+1+ F 710,27+ +70] Lno auy!

But the left-hand side tends to zero by (IV.10). Indeed, V- H = div (up + u* + Hep) for
H' functions, because C'* functions are dense in H'(Q, S'). Hence, using the mean-value
theorem on the right-hand side, we get (IV.36).

- Step 2 : We prove that |[div T}, ug|[w-1.4(8,) — 0.
Indeed, let £ € C§°(By). Since T, ) is constant in By \U*,

/ div (T, ur)é = div (ug)é.
B,

i
Uk
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From (IV.8),

/Bl div (T, up)é = _/ng div (H,)¢

(IV?)?) == /Unk Hk . Vf — - f(Hk . n)

Let 115, denote the measure defined by px(€) = [ m E(Hi - n). By (IV.36), g — 0 in the
k

sense of measures, hence it converges to 0 in W~14(B;) for any ¢ < 2. Also, from condition

(1v.9),
Hy - V¢

i
Uk

S 0(1)HV§HL¢1(31), Vq < Q.

Hence, we deduce from (IV.37) that div (7, uz) converges to 0 in W~14(B;) for any q < 2.
Since |T,, ug| = 1, it is also bounded in W~"9(By) for any ¢ < oo, hence it converges to 0
in W=14(By) for any ¢ < oco.

- Step 3 : Let yx be the characteristic function of U and
Dy = Tyeon(Toun + Hy) + (Tyur) ™ + Tyon Hi (1= x3).

We prove that div Dy — 0 in the sense of measures.

Let £ € C5°(By). We have to consider

/ &div Dy, = / f(Vc,ok cuy + div u,f)
B1 Uk

+ meS‘deiV (Tﬁkuk + Hk)
B,

Uy B1\Uy

The first integral of the three identically vanishes since T, uy = exp(iT,, ¢k) and all the
functions involved are regular enough. On the other hand, div (T, ux) = —div Hy in U*
and 0 in B;\U*. Hence, we can rewrite (IV.38) as

fle Dk = —/ ankc,okdlv Hk —|— §V<pk . Hk
B Bi\U® Uy,
[ Taen(VE-
Bi\U*
(TV.39) = —/ (Typr)Hy-n+ | Ve Hy,
auk Uk

35



where we have used the fact that 7}, ¢} is constant in each connected component of By \U}*,
and integration by parts. We observe that first

[ Talen¥e i) < Vel [ (] — 0
B\Uk B

moreover

/ (Tyon) Hi -] = c/ Hy - n| 0
aux

n
ou;k

by (IV.36). On the other hand,

Uy

B,

by (IV.10). Hence, we deduce from (IV.39) that div Dy tends to 0 in the sense of measures.

- Step 4 : Let E, =T, pr Hy (1 — xx). We have div Fx — 0 in H™'(B;). Indeed

1\Wg

B,

- Step 5 : Since Dy in bounded in all L?, div Dy is also bounded in W~4(By) for any
q < oo, and applying again the result of [Mul], we deduce with the previous step that
it converges to 0 strongly in H~'(By). Thus div (D — Ej) converges to 0 strongly in
H~'(By) Denoting Gy = (Tnkuk)L, curl Gy converges to 0 strongly in H~(By) from Step
2. Arguing as in Step 2 of the proof of Lemma IV.2, using the div-curl lemma, we obtain
that G - (D, — Ex) = G- (D — E), where G, D and F are the weak limits of G, Dy and
FEy. Since Gy - (Dy — E) — 1, we deduce G- (D — E) = 1.

- Step 6 : By construction, T, takes its values in [l + $n0,] + 27 — Zn]. Following
the arguments used above, we can deduce that the Young measure it generates at 0 is a
Dirac measure, hence T, ¢} converges strongly in L(2) for all ¢ < co. We deduce that
T, u also converges strongly to some v in MNy<gcoo L?(B1). Necessarily |v| = 1 a.e., and
div v = 0 from Step 1. 0.

We now complete the proof of Theorem 2. Applying Lemma IV.4 to the sequences
uy, ¢, Hy of Lemma IV.1 and to the [ given in (IV.7), we obtain strong convergence of
T, and Ty, uy, for any choice of ny > 0. We may consider that n; converges to some 7.
Denoting again by v the Young measure ¢} generates at 0, the Young measure generated
by T, (¢,) at 0 is Tv. On the other hand, from Lemma IV.3, v is supported, say, in
{lo,lo+ 27}, hence it is t8;, + (1 — )y, 42 for some ¢ € [0, 1]. But by strong convergence of
T, ¢k, Ty is a Dirac mass, hence Tn*(t&o + (1 —t)djy12x) is a Dirac mass, and we conclude
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that ¢ must be 0 or 1, and v is a Dirac mass too. We deduce that ¢} converges a.e. to its
weak limit ¢, hence by Lebesgue’s theorem, it converges in L? for all ¢ < co. Assuming
Proposition V.1, we deduce Theorem 2.

V Study of the I'-limit

V.1 The limiting problem and the energy lower bound

We recall that C was defined in Definition 1.2, it is the natural set of admissible limiting
configurations as explained in the introduction. In particular, it contains u,. Let u : Q —
St satisfying div @ = 0. Then, there exists a Lipschitz-continuous function g € C%'(Q,R)
such that

_ol,
(V.1) {u—Vg in )

g=20 on 0f).

Indeed, div & = 0 means that div v = 0 in  and u - n = 0 on 92, where n is the outer
unit normal to 90 The existence of g satisfying u = V1g in Q is quite standard. g is then
constant on 02, and can be chosen to be 0 on 0.

Lemma V.1 Assume p € L'(Q,R) and u : Q — S' are such that div @ = 0 and div (@u+
ut) € M, then
div (pu+ub)|| > 109,

Notice that for this lemma, u and ¢ are not necessarily related.
Proof : Let us consider

fe(s)=—1 ifs<—¢
(V.2) f(s) =1 ifs>e
Je(s) =2 if —e<s<e.

Since div (pu+ ut) € M and f. € L™, we can consider

(V.3)

[ g (et < i (ot )
Q
Since g = 0 on 92 and f.(0) = 0, we may write, after an integration by parts,
(V.4) [ st (out ) = = [ (1) (@) adou b
Q Q

The right-hand side is well-defined, indeed, since p € L', pu + ut € L', while f/(¢)Vg €
L>. Now, fl(s) = 11_.q and u = V'g, hence (V.4) becomes

-

(v.5) [ rwdiv ety == [ vl
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We may use the co-area formula, and since |Vg| = 1, this can be rewritten as

1 =>4
(V.6) / f-(g)div (pu +ut) = g/ H'({g = s} NN)ds.
Q —e
Then, we claim that
(V.7) liminfl/ H ({lg| = s} N Q) ds > |99.
e=0 g 0

Indeed, let V. be {a € Q/dist(x,0Q) < e}. Since |Vg| =1 a.e, by the mean value theorem

lg| <ein V.. Hence
/ Vgl S/ Vgl
Ve lgl<e

and applying the co-area formula again

1 1 1 /°
-V §—/ Vg:—/ H' ({g=s}NQ)ds.
gl | 5 |gKEI | -/ { }NQ)

Therefore

e—=0 ¢

1 [ 1
liminf—/ H'({g=s}NQ)ds > 1imi0nf <—|V5|> > |09,
. e— £

thus we have (V.7). On the other hand,

(V.8) Ve >0

[ v (ot uﬂ\ < ldiv (pu+ )]

Thus, combining (V.3), (V.6), (V.7), we have
(V.9) |div (pu 4+ ub)|| > |09
O

In particular, inf(, gec || tue|| = [09]. The fact that u, and —u, achieve this minimum
shall be proved in the next subsection, Lemma V.2.

We have the following lower semi-continuity result :

Proposition V.1 Let u. € Ay be such that E.(u.) < C, u. — u in L? (Vg < o), and
v = @ in L1 (Vg < o) where @ is a lifting of u. given by Lemma 1.1, then (u,p) € C
and

ligi}igles(us) > 2|t = 2|09.
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Again here, the hypotheses could be replaced by || H.|[;2 = 0 and [, |Vu.||H.| < C.
Proof : Let ¢. be the H'(Q,R)-lifting of u. € Ay. The hypotheses of the proposition
imply that H. — 0 in L?(Q). Clearly this implies that div (u.) = —div H. — 0 in H™!,
hence div @ = 0. Since u. € Ay, ¢. is uniformly bounded in L, hence, up to extraction,
it converges weakly to some . Again as in (I.11), the boundedness of E.(u.) implies
Jo el < C, where

e = div (pou. +ut + @ H,)

Since u. and . converge strongly in L?, and H. strongly in L?, we have
etle +ul + @ He — pu+ut in D(Q),

hence p. — div (¢u+ut) in D'(2). On the other hand, y. is bounded in M by assumption,
hence it converges weakly in M to div (¢u+ut). Thus div (pu+ut) € M, and (u,¢) € C.
With Lemma V.1,

1
< . LN < i < Z1lim;
|09 < /Q |div (pu +u™)] < hlgri)lonf/g lpe| < 5 hlgri)lgles(us).

We deduce Theorem 4 from Proposition V.1 and Theorem 2.

Remark V.1 : Using similar integration by parts as in (V.3) with the measure p,, .,
we obtain the following isoperimetric-type inequality :

Q| = / dist(z,0Q)div (@euy +ul) < |6Q|mgxdist(.,aﬂ).
Q

V.2 The limiting problem revisited : case of BV functions

In the case of BV functions, the limiting functional u + ||, || can be expressed much
more simply. Suppose ¢ € BV. We use the notations of [ADM], Section 2.
The approximate limit of ¢ at x, denoted by @(x), is, when it exists, the unique z € R

satisfying
.1
g5 [ loly) = <ldy =o.
B, (z)

r—0 1

We denote by S’ the set of approximate discontinuity points, i.e. the set of points where
the approximate limit does not exist. The one-sided approximate limits ¢t (z) and ¢~ ()
are numbers a and b in R such that

g [ foly) — aldy =0 and Ty [ foly) = bldy =0,
r—0 Br_(l’)

r—0 BT (z)

where B* = {y € B,(2)/£ <y —x,n >> 0} are the two half-balls corresponding to some
unit-vector n. We denote by S C 5’ the set of approximate jump points i.e. points of S’
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for which % exist for some unit vector n(z). The Radon measure Dy can be split into
three mutually singular parts :

(V.10) Dp =VeLl?+ Do+ (ot — o) @ nH! s,

where £? is the Lebesgue measure, and D, is the Cantor part of Dy. Also H'(S'\S) = 0.
If D.¢ =0, then ¢ belongs to the subspace SBV(Q) of BV ().

Proof of Theorem 5 :

1) If ¢ € BV, according to Volpert’s chain rule (cf [ADM] Proposition 3.6 for instance),
then cos ¢ and sin ¢ are in BV, hence u € BV. It is then easy to check that if, in addition,
div u=01in Q, div (pu + ut) is automatically a Radon measure with div (¢u) = Dy - u.
Indeed, consider ¢ € C5°(Q),

(V.11) /diiv (pu) = —/g)c,ou-sz—/Qapdiv (Eu).

(Since div w = 0, one can check that V&€ € C5(Q), u.VE = div (fu) in D'(2).) since
Eu € L, by definition of BV,

(V.12) \ [ ediv | < leulos [ 106 < el [ Dol

and

(V.13) _/Q@div (Eu) = /Qg(Dcp-u).

From (V.11) and (V.12), we deduce that div (pu) is a Radon measure on © and from
(V.13), that, in the frame of BV functions

(V.14) div (pu) = Dy - u.

Since u € BV, div (u') is also automatically a Radon measure with div (ut) = Dau; —
Dyuy. From Volpert’s chain rule, we have

D(cos p) = —sin Ve —sin @D p + (cos ot — cos ™) @ nH'| s
(V.15)
D(sin ) = cos oV + cos 9D + (sin ™ — sin ™) @ nH!| 5.

The condition div v = 0 means that Di(cose) + Da(sing) = 0. Since D(cos¢) and
D(sin ) are split into mutually singular measures, we can consider their jump part (which
is supported on ) and deduce that

((cos pt — cos ™ )ny + (sin™ —sing ™ )ny) H'[s= 0
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where n; and ny are the cartesian coordinates of n. In other words, ((u™ — u™) - n)H'|s=
0, or

(V.16) utn=u"n H'ae onS.

t.n =wu"-non S without ambiguity. This means simply

that for a divergence-free vector-field, the normal component is preserved across a jump
line.
Returning to (V.14), we have

Hence, we can write u-n = u

div (pu) = Dp-u=Ve-u+ D.p-tu+ (ot —¢ )(n w)H'|s.
On the other hand, in view of (V.15),

divut = Dyuy — Dyuy = Dycos — Dy sing
= —u-Vo—u-D.p+ ((cospt —cosp™)ny — (sing™ —sing™)ng) H' [
Therefore,
div (pu+ut) = ((¢* =@ )(u-n) + (cos o™ — cos ™ )ny — (sin ™ —sin™)ny) H'[5
(V.17) = (" =) n) + (uF —u”)-nt) Hs.

Hence, p,,, 1s only supported on the jump set S of .
If |t —¢~| < 2w, then necessarily u* # v~ pointwise (otherwise o™ = ¢~ and there would

be no jump), and u™ -nt = —u~ -nt. It is left to the reader that in this case u-n = cos X,

and (ut —u™)-nt =2ut - nt =2sin X, where X = —Lsgn(ut - n')|pt — 7|

2) If ¢. is bounded in BV and FE.(u.) < C where u, = €, u. is also bounded in BV.
Since BV embedds compactly into L7, for all p < 2, we can assume, up to extraction, that
u. — u strongly in L? (p < 2). Since |u.| =1 a.e., we deduce that u. — u in Ny<gcos L.
Similarly, we can assume @. — ¢ weakly in BV and ¢. — ¢ strongly in L* (p < 2). Up to
extraction, ¢. — ¢ almost everywhere, hence €¥* — € a.e., and by Lebesgue’s theorem
u. — €% in L', hence u = €' ae. As in Proposition V.1, we are led to

i nf . (uc) = Timnt [ el > v (g0} = ]

We can then prove
Lemma V.2 For u, = €'+ constructed in Lemma III.1, ¢, € BV and
[uper = 2(sin X — X cos X)H'|s,  where X = L(oF — ;) >0

/“Lu*#ﬂ* Z 0
HIMU*M*H = |6Q|
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Proof : We return to the notations of Lemma III.1. The singular set of p, is made of two
parts : the medial axis ¥ and the ray T'. If € X is not a vertex, then we recall that we

chose n to be the normal to ¥ pointing towards z, ie n. |m| > 0 and thus ¢f > c,o; in the
frame of (V.10) with X 5( T —v5) €]0,7[. On the other hand, from (II1.3), u} - nt <0
and u; -nt = —uf -nt >

(uj —uy ) - nt = 2ut - nt=-9 Cos(c,oj —0)=—2cosay = —2Xsin X,

while
(oF — o) (ux-n) = (g —a_)sina = 2X cos X.

Thus, « + sin x — x cos & being nonnegative on [0, 7],
(¢F =) m) = (uf —uZ) - n®) H[g=2(sin X — X cos X)H'[s> 0
There remains to see that g, ,, > 0 on T. On T, we chose n = u,, ¢} — ¢, =27 and
P 1= (07 = 07 ) (e n)H 7= 20H" | 7= 2(sin X — X cos X)H'[7> 0

with X = L(oF — ¢7) = 7. We conclude that fi,, ,, > 0 since p,, ,, is supported on
S =T U2X. Consequently, arguing as previously,

/ |/uu*7@*| = / qu*y@* = / le (S‘Q*u* —I_ Ui_)
Q Q Q

Since p, € BV, this can be integrated as

/ (c,o*u*—l—uj)-n:/ —uy - T = |09
1) 1)

in view of the definition of u, (u, -7 = —1 on Q). We conclude that

| oo || = 2/ |sin X — X cos X|dH' = |9Q).
S

Theorem 3 is a consequence of Lemma V.1 and Lemma V.2.

Remark V.2 : In Lemma III.1, there was a large possibility of choice of ¢, since T could
be any ray joining ¥ to 9. The results of Lemma V.1 are independent of this choice,
which is interesting in itself : the result iy, o, > 0, pu, o, = [¢28in X — X cos X = [09)] is
true independently of the choice of T'. This is made possible by the fact that, as we change
T, the contribution of T' to the limiting energy (which is 27 times its length) can vary,
but the contribution along X varies also to compensate this change. Indeed, although u*
and u~ are independent of T" along ¥, as we move T', X changes between the two contact
points of the initial and final T'. Observe that the sign of X remains unchanged.
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