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Abstract

We carry on the study of [RS] on the asymptotics of a family of energy-functionals
related to micromagnetics. We prove compactness for families of uniformly bounded
energies releasing the LBP condition we had previously set. Such families converge
to unit-valued divergence-free vector-fields that are tangent to the boundary of the
domain, and we found in [RS] that the energy-functionals I'-converge to a limiting
jump-energy of such configurations. We examine the behavior of certain truncated
fields which serve to construct “entropies”, and to provide an improved lower bound.
We give a kinetic formulation of the problem, and show that the limiting divergence-
free problem is supplemented, in the case of minimizers, with a sign condition which
can in turn, using the kinetic formulation, be interpreted as an entropy condition
that should play a role in uniqueness questions.

key-words: micromagnetics, I'-convergence, compensated-compactness, entropies, kinetic
equations.

I Introduction

In this paper, we carry on the study started in our previous paper [RS], on the following
energy-functional, related to micromagnetics:

1
(I.l) Es(u) :/5|Vu|2—|——/ |Hu|2
Q € Jr2

Here, ) is a bounded simply connected domain of R? u is a unit-valued vector-field (cor-
responding to the magnetization) in H'(Q, S'), and H,, the demagnetizing field created
by « (non-local term in w), is given by

(1.2)

div(u+ H,) =0 in R?
curl H, =0 in R?,

where 1 is the extension of u by 0 in R*\Q. For a general presentation and motivations of
this study, we refer to [RS] and all the references therein.



We are interested in the asymptotics as ¢ — 0 of families of uniformly bounded energy:
E.(u.) < C. For such families, we denote for simplicity by H. the demagnetizing field
associated to u., and we recall that fQ |H.|* < Ce and in fact H. — 0 in Nyco L1(R?).

One of the main questions on this problem was to know whether the condition |u.| =1
passes to the limit i.e. get L? compactness on such u.. We proved such compactness in
[RS] under the LBP condition (“locally bounded phase condition”). Here, we are now able
to release this condition and replace it by a much simpler assumption. More specifically,
u. € HY(Q, SY) has a lifting ¢. € H'(Q,R) (see [BZ]) such that u. = ¢“s a.e. Under the
condition that u. admits such a lifting remaining bounded in L*, we prove L? compactness
of p. and u., by adjusting the arguments we used in [RS] (see Proposition II.1). Then,
denoting by u and ¢ the limits, we recall that passing to the limit in (I.2) yields

{divﬂ:() in R?

(L.3) =1 inQ,

equivalent to

divu=0 inQ
(1.4) vu-vr=0 on 0f)
lu| =1 in Q,

thus the limiting fields lie among unit-valued divergence-free fields tangent to the boundary.
Such fields always have singularities, typically line singularities. For such a u, we can always
find a Lipschitz function ¢ such that

u=Vtg=(-0,9,0:,9) inQ
(1.5) g=0 on 0N
Vgl =1 in Q.

Thus, ¢ is solution of an eikonal equation, and the question was also to understand which
solutions of this eikonal equations are selected through this limiting process.
We also recall one of the main observations of [RS] was that we could write

1
C>FE(u.) = /€|Vu5|2 + - |H5|2
R2

Q &
(16) > 2 [ Ve 22 [ Vo I
Q Q
But thanks to (1.2),
(1.7) Vo.-H. =V, - (H. +u:) — Vo, - u. = div (g (ue + H.) + uj),

where u* denotes (—ug,u1). Hence, the quantity p. = Vi, - H. = div (¢-(u. + H.) + ul)
remains bounded in L'(2) and we proved that it converges weakly in the sense of measures
to the bounded Radon measure f,, , defined by

[l = div (pu +ut).
Thus the limit (u, ) belongs to the class C which we had defined as
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Definition I.1 C is the class of couples (u, @) such that
1)u:Q— St

2) div @ =0 in D'(R?)

3) o€ LY, R) and u = ¢ a.e. in Q

4) g = div (¢u + ut) is a bounded Radon measure on Q.

We denoted by ||ft,,|| its total mass and (u, @) = 2||gy,,|| was the “I'-limit” of the fam-
ily E.. We explained that g, is supported on the singular set of the limiting ¢ (it
is 0 wherever ¢ is C'') and carries a jump cost along the singular lines, and we proved
that the minimum of ||, .|| over C is |09, the perimeter of €, achieved in particular by
u, = Vidist(.,09). Conversely, we proved (see [RS] Theorems 1.3 and 1.7) that we can
construct a sequence u. — wu, such that E.(u.) — 2|0Q| (at least when 9 is a finite
union of analytic curves). We had conjectured that u, and —u, were the only minimizers
of ||ftu|| thus the ones selected by the minimization of F..

In Section II, in addition to improving the compactness result, we introduce the trun-

cated fields, already used in [RS], defined by
18) { T*p:=inf(p,a)

;. a
Ty = 7%,

We prove that, at the limit, not only y, , is a bounded Radon measure, but also div T%u
seen as a function of (z, a) is a bounded Radon measure on Q xR, with p,, , = — fR div Tu da
(see Theorem 1). This condition turns out to be a better one to define a limiting class
than belonging to C. The energy is bounded below as follows :

(1.9) hlgri)lgles(us) > 2/

RxQ

|div Tu|da dz > 2/ | o |5
Q

which is indeed a finer lower bound than 2||y,,||, i.e. the last inequality can be strict. This
can be seen through the BV case : if we have the additional assumption that ¢ (and thus
u) is in BV(9) (p then has a “jump set” ), this lower bound can be expressed explicitely
with the formula

(1.10) / |div Tu| da dx = / w(X)
R xQ s

where X is the half-jump of ¢ along its jump set S, and w is a certain positive function equal
to 2(sin X — X cos X) on [0, 7], and extended explicitely on the whole of R* (see Corollary
1). This result extends the formula obtained in [RS], Theorem 5, which was restricted
to X € [0,7). Also for X > m, we can notice that this lower bound becomes strictly
better than 2||p,.,|| (see Remark I1.2). This already shows one interest of introducing the
quantities div T%u.

In Section III, we give a kinetic interpretation of the problem. This idea was used for
a close problem in [JP] and initially introduced in [LPT]. Setting

X(xv Cl) = ]-ap(x)gav
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we show that y satisfies the “kinetic equation”
(I1.11) div,(x (")) = Vx - ()t = =0, (div T"u).

Here, observe that the truncated fields T%u appear naturally in this formulation, and
also that y(e'®)t corresponds to the “entropies” ®.(u) used in [DKMO]. This kinetic
interpretation, which has the advantage of being very simple for our problem, allows, as
in [JP], to get another proof of the compactness of ¢. and w. (which, this time, relies
on kinetic averaging lemmas) and to get improved Sobolev regularity for the limit ¢ (see
Proposition 111.1). Should one expect BV regularity at the limit? In the similar “Aviles-
Giga problem” which was the one studied by [ADM, DKMO, JK, JP], where the constraint
|u| = 1 is released and replaced by the constraint that u is divergence-free, it was shown
in [ADM] that there exist configurations in the limiting “Aviles-Giga space” which are not
in BV. Yet, they might not be achieved as limits of configurations of bounded energy, or
the question remains open whether the total I'-limit set fills AG.(Q) or not, and whether
or not it is included in BV(2). The question is identical in our case with AG, replaced by
C or by the subclass foQ |div T%u| dx da < co. Let us mention that, after this work was
completed, this kinetic formulation (I.11) was used in [LR] to prove that configurations
with vanishing div T%u are H%, and Lipschitz except at a finite number of points (which
cannot be the case only assuming div (¢u + ut) = 0); also related regularity results were
proved in [JOP].

In Section IV, we give additional properties for almost minimizing sequences i.e. se-
quences such that

E-(us) = 2min ||t = 2|09

Going back to (1.6), this fact implies that the negative (or positive) part of p. tends to 0,
and at the limit p,, > 0 or g, < 0. Thus, changing u to —u if necessary, minimizers
converge to u satisfying the two conditions:

divu=0 in
(1.12) w-v=>_0 on Jf)
fe = div (pu +ut) >0 in Q

The sign condition for the measure can be reinterpreted in the light of the truncated fields
T%u: we prove, using the co-area formula, that

(1.13) Va e R div T <0

which decomposes the sign condition g, , > 0 (see Theorem 2). Now this relation (I1.13)
can be seen as an entropy sign condition for the equation

divu=0
(1.14) { = 1

which itself can be seen as a scalar conservation law, as it was pointed out in [DKMO].
Indeed, if v and ¢ solving (I.14) are regular enough, div T"u vanishes identically for all
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a € R, thus the truncations T'* can be considered as “entropies” in that sense. This entropy
sign condition (I.13) can also be written in integral form:

(1.15) Vf e CY(R)such that f/ > 0and f € L'(RT), div (F(¢),G(¢)) >0,

where F(t) = — /tf(s)SiHSdS G(t) = /t f(s)cossds.

Condition (I.15) or (I.13) thus supplements (I.4) with an entropy-type constraint that could
allow to get uniqueness, as entropies do for scalar conservation laws. Then, u would be
equal to u, = V4dist(.,dQ) the viscosity solution of (I.5), as we conjectured in [RS] (the
conjecture was supported by a heuristical argument that could be made rigorous in the
BV case). This question also arises in the kinetic version: knowing that

V- (e = —0,(div T"u), div T <0

and u being prescribed on 9€), does it imply uniqueness? Looking for it in this formulation
is natural in view of uniqueness results for similar time-dependent scalar conservation laws
proved by B. Perthame in [Pe]. Yet, at this stage of development of this method, the
uniqueness does not seem to follow straightforwardly from the aforementioned result.

Acknowledgments: The authors would like to thank H. Brezis and B. Perthame for their
interest in their work and stimulating discussions.

II Proof of compactness and lower bound

Here we improve the compactness result that we obtained in [RS]: we are able, by using
the ingredients of [RS] (truncations, compensated-compactness and convexity) in a more
efficient way, to give a self-contained proof of compactness, releasing the LBP condition
and replacing it with the only condition that the lifting ¢ is bounded in L*.

Proposition II.1 Let ¢, — 0 and u, € H'(Q, S') with a lifting ¢, € H' (Q,R) i.e. such
that u, = €% a.e., and assume

(I1.1) B, (u,) <C
(I.2) lnllze(@) < N.

Then, up to extraction, there exist u and ¢ in Nycoo LY() such that
©n — @ and u, — u in Ny, L1(N).

Proof: Since u,, and ¢,, are bounded in L, extracting a subsequence if necessary, we can
assume that they converge to u and ¢ weakly-* in L>. Moreover,

(11.3) C>FE. (u,) > 2/ Ve, H,| = 2/ |div (@, (u, + H,) +ul)|.
Q Q



-Step 1: Let p be a fixed integer. As in the proof of Lemma 4.5 of [RS], using the co-area
formula, which applies since ¢, € H(2) C BV(Q), we have

(11.4) / Vo - Hy| z/ dn/ |H, v,
prlon<pr+o 0 {pr4+n=wn}

where v denotes the outer unit-normal. The left-hand side is bounded by (II.3), hence,
using the mean-value theorem,

(11.5) Inpm € [0, E] such that / |H, -v| < C.
4 Hpr+n<en}

Then, we can define as in [RS] the truncated phases

P+ Npn if ¢, < pm+ Mo

(H'6) Topn = (p + 1)7 + Mpt+i,n if v, > (p + 1)7 + Mpt+i,n
©n otherwise

and

1.7 Tou, = e'lren,

( p

Let Uy = {2 € Qpr 4+ mpn < 0 < (p+ )7 + pg1n ). Observe that T, = ¢, in Uy,
and V1,0, =0in QO\U, .

- Step 2: We prove that div T,u, is compact in H~'(Q), as in the proof of Lemma 4.5 of
[RS].
Let £ € C5°(9),

/fdiv (Tou,) = E(div uy,)
Q Upn
(11.8) = —/ &div H, = H, V¢ —/ E(H, - v).
UPv" Up,n 8Up,n
But,
(11.9) Hy, - VE| < |[Hull ol VE] o < o(D)|[VE|lLe Vg < oo,
Upn

and, by construction (IL.5),

(11.10) < Cliélze-

/ | Ev)



In view of (I1.8), div T,u,, which is bounded in W=1¢(Q) for all ¢ < oo, is the sum of
a term which is compact in W=14(Q) for all ¢ < oo and a term which is bounded in the
sense of measures. But, by Murat’s theorem (see [Mu]), something bounded in the sense
of measures and in W=14(Q) for all ¢ is compact in Ny<oo W™H9(Q2). Hence, we deduce the
desired result.

- Step 3: We prove that div (T, (Tyu, + H,) + (T,u,)*) is compact in H~'(2). To
do so, as in the proof of Lemma 4.5 of [RS], set

D, = Typn(Tyun, + H,) + (Tyun)t — Typn Ho(1 — x0),
where vy, denotes the characteristic function of U, ,, and
E, =Ty Hy(1 — x,).

First, using the fact that Tpe, = ¢, in U, and VT, =0 in Q\U, ;, we have
/ &iv D, = E(Vn - uy, + div ui) + / ETyondiv (Tou, + Hy,)
Q Up,n Q
Q A\Up

The first term vanishes identically because div ul = -V, - u, for ¢, € H'(Q). For the
second term, we use div (T,u, + H,) =0 in U,, and div H, in Q\U,,,. Thus

/ &div D, = / Ehpndiv Hy + Ty, NVE- H, + / ENT,p, - H,
Q A\Up Q
= / div (EH,)Tyon + / ENVe, - H,
A\Up Upn

= —/ o Hy, - v+ &V, - H,.
pm

Upyn
Then,
V- Hy| < €]l / Vu Hal < O]l
Upyn Q
and from (H.5)
/ ETypn(H, 1)) = / ETopnH, -] < CJlé]-.
OUp,n {en=pm+np,n I UH{on=((p+1)7+0pt1,n }

where we have used the fact that ¢ is compactly supported in €. Thus, we deduce that
div Dy remains bounded in the sense of measures. Furthermore,

/ &div B,
Q

< Cliéll gl Holl o < o€l g

Q\Up,k
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hence div E, tends to 0 in H™'(Q). As in the previous step, we can conclude that
div (D, + E,) is compact in H~'(Q), which is the desired result.

- Step 4: Let us now consider the truncated field T,u,. Its lifting T, takes its val-
ues in the interval [pr, (p 4 1)m + Z] of length 2F. This is enough to deduce compactness
of Thn in NyeooL? as in [RS]. We will write the argument again.

We can find a measurable lo(x) € [pr, (p + 2)7] such that T,u, converges weakly to some
a(x)e™@ (identifying R? with C) where @ > 0. Then, we denote by (3, 7) the weak limit
of e= T, T,u,. Following [RS], we define

A, = (Tpun)L
(1111) Bn — Tp%‘onTpun + (Tpun)J—
Crn = Ty Tpun
We have
A, — jaetl = A
(11.12) Co = (B 4 iy)e'

By — (B4 i(y + ) = B
Then, we can apply the compensated-compactness lemma of Murat and Tartar: A, — A
in L*(Q), curl A, is compact in H='(Q) by Step 2, B, = Bin L*(Q) and div B, is compact
in H=1(Q) by Step 3, hence
1=A,-B,—~A-B=a(y+a).

- Step 5: Let us now introduce v, the Young measure generated by T},¢,. It is supported in
[p, (p+1)+ 7] hence in [lo — 27, [+ 27]. By definition of Young measures and uniqueness
of the weak limit,

(11.13) /dz/x =1

(I1.14) acosly = / costduy(t) a.e.
(I1.15) asinly = / sintduy(t) a.e.
(I11.16) Bosly — ysinlo = / teostduy(t) a.e.
(I1.17) Bsinly + 7 cos lo = / tsintdig(t) a.e.



It is easy to check that

(11.18) o= /cos(t — lo)dv,(t) = /27r cost dv, (1 + o)

2

(11.19) 0= /sin(t — lo)dv,(t)

27
(11.20) v = /tsin(t — lo)dv,(t) = / tsint dvg(t + lo).

2

In [RS] we pointed out that in [—27, 27|, tsint + 2cost < 2, which implies, integrating
against dv,(. + lo), that v < 2 — 2a a.e. Following [RS] again, this fact combined with
a(y + a) = 1 a.e. implies that o = 1 a.e. and in view of (I.18) that v, is supported in
{lo — 27,1y, lo + 27} a.e. But v, is also supported in an interval of length < 27 hence its
support has to be reduced to a point and v, is a Dirac mass at almost every point of €.
We can conclude that Tj,p, converges a.e. to its weak limit, hence converges strongly in
Ny<oo L1(2) by Lebesgue’s theorem.

- Step 6: We observe that

P P
s P 1 1.n
> Typn = 17 S P
p=—P p=—F
where
a ife<a
Tlo=4 b ifp>b
¢ if v €a,b].

But P being set, E;;_P Np.m is compact (when n — oo) and from the result of Step 5 (which

was true for any p), E;;_P Tpon is compact in Nyeoo LI(), hence Tjir];i;)j—::“’"
compact in Ny<oo L7, If P is chosen large enough compared to N (such that ||¢,||re < N),

then

@y, 1s also

‘v’n, Tirir];-:_;)_-l::+1,n n — ¥n
and we deduce that ¢, is compact in Ny L2(), and wu,, too. O

We conclude by the following convergence and lower bound result.

Theorem 1 Lel ¢, — 0 and u, € H'(Q, S) with a lifting ¢, € H'(Q,R) i.e. u, = e¥n
a.e., and such that

(IL21) E.,(u,) < C
(I1.22) Il < N.



Then, up to extraction, there exists u and @ in Nycoo LI(Q) such that

©n = P in Nyeoo L1(N)
Up —> U N Nyeoo LI(D).

Moreover, (u,p) € C and
(11.23) liminf F., (u,) > 2||pue|] = 2|09,
n—r00

and div T%u is a bounded Radon measure on  x R, with a — div T*u continuous from R

to D'(). In addition,
EE n
/ |div T%u|dx da < liminf/ Vo, - Hy| < limimfM < 00
QxR n—oo  Jo n—00 2
— / div T*uda = p,,, in D'(Q).
R

Proof : The first part was proved in Proposition II.1, (I1.23) was proved in [RS]. We only
need to prove the last assertion.

Let f € C5°(R), £ € C5°(R2), we have

< Nl llEll / V- 1|

1
(11.24) < S By ()|l e e

We then use the co-area formula as we did in (11.4),

[ oo, = [ fa) (/ a(l%-u)f(x)dx)da,
(I1.25) - / fla ( /8{% <a}(Hn-y)§(:z;)dx> da,

because ¢ is compactly supported in €, where v denotes the outer unit-normal to the level-
set {¢n(2) < a}. Thus, integrating by parts and using the relation div H,, = —div wu,, we
are led to

(11.26) /f% 2\, - , /f (/ (gg)sa(—f(:z;)div un—l—Hn-Vf)d:p> da

Let us now introduce
(11.27) Xn(#,a) = 1y, (2)<a-
We observe that

(11.28) Yndiv u, = div T%u,,
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hence

/Q Flen)E(@)Ve, - H, = /R fla) (- /Q £(a)div T, dz + /Q ann-V§d:z;> da
(11.29) = = | TV (T + o) da da.

We deduce from (I1.29) and (I11.24) that div (T"u,, 4+ x»H,) remains bounded by
Jo [V@n - Hy| in the sense of measures in © x R. In fact

(11.30) div (T"up 4+ xnHy) = = (Vo - Hy )0y (2)=a-

But xnH, — 0 in Nycoo L9(Q), hence div (y,H,) — 0 in W=17(Q). On the other hand,
from the compactness result (Proposition I1.1), since u, — u in Ny<oo L2(€2), we also have
(by continuity of T'*) that T%u,, — Tu in Nyceo L4(N), independently of @, thus div T%u —
div T in W=14(Q x R) and we conclude that the weak limit of div (7w, + y.H,) is

div T%u and is a bounded measure on ) x R with

/ / |div Tu| dx da < liminf/ |V - Hyl.

In addition, taking f =1 in (I.29), we find that
Ve, H, =— / div (T%u, + xnHy) da
R
and passing to the limit when n — oo
— / div T"u = im g, = fly -
R n—r00
The proof of the continity of a — div T%u is postponed until the end of Section IV. 0

If we assume in addition that ¢ € BV(Q) (hence u € BV(Q) too by composition), by
the structure theorem of BV functions, Dy is a Radon measure, which can be split into
three mutually singular parts

(11.31) Do =Vl + (¢t — ™) @nH' s, + Dy

where £? is the Lebesgue measure, H' is the one-dimensional Hausdorff measure, D.p is
the Cantor part of Dy, S, is the jump set of ¢, n is the normal to S, pointing from S, into
the + half-space, and ¢t and ¢~ are the approximate limits of ¢ on both “sides”, + and
— of S,. Similarly, v has a jump set S, C S, (but there is not necessarily equality since
@ can jump by an integer multiple of 27, in which case u does not jump), and has traces
uy,u_ on both sides of 5,. Since u is divergence-free, its normal component is preserved
along the jump-set, i.e. uy -n = u_ - n along S,, while along S,\S,, uy = u_, and we
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denote in that case by 6 the geometric angle € [0,7) between v and the normal n. One
can define the half-jump of ¢

(11.32) X = %7@4 along S,.

Pointwise, there exists unique X’ € (0,7) and k € N such that
(11.33) X = X'+ k.

We can then define on R the continuous function w as follows:
(11.34) w(X) = h(X') + kh(X"),

where

h(t) =2(sint —tcost)
h(t) = h(t)+ h(r —1).

(Observe that 4 < h <27 on [0, 7].) As a by-product of Theorem 1, we get

Corollary 1 [f in addition p € BV(Q), then,

/ |div Tu| da|s,= w(X)H'|s,,
R

and,
/ |div Tu| da| s,\s,= kh(O)H 5.\,
R
hence,
Es n 7
(1L.35) lim inf 2oz (tn) / w(X) + / ki (6).
n—00 2 ; S\ Su

Proof: One can show as in [RS], proof of Theorem 5, that in the BV sense,
(11.36) |div T%| = | - n —u_ - n|H'[s,@da|[_ o]

(changing n to —n if necessary, we may assume that p_ < ;). We may also work,

poinwise, in the orthonormal frame (7, n), with 7 = —n', so that the condition u_-n = uyn
along 5, rewrites as sin_ = sin ;. We first consider the case ¢_ € [0, 7]. We have
(11.37) o = p_ +2X' 4 2k7

with

(11.38) o +2X' =71 —¢_.
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We then only need to compute

ot ot
/ |em-n—u_-n|da:/ | sin @ — sin¢_| da.
o o

On S, where we have sin p, = sinp_,

p—+2m

ot T—(p_
/ |sina —sing_|da = (k—l—l)/ (sina—sinc,o_)da—l—k/ (sinp_ —sina)da
o o w

—p_

= (k4+1)(2cosp_ —2X'sinp_) + k((2r —2X")sine_ + 2cosp_),

where we have used the periodicity and (II.38). Then, using again (I1.37) and (11.38), we

have sin ¢_ = cos X’ and cos ¢_ = sin X', hence

+ +

ot ¢
/ |em-n—u_-n|da:/ |sina — sin_|da = 2(k + D)h(X') + kh(m — X') = w(X).
o o

The case where ¢_ ¢ [0, 7] can be treated similarly and yields the same formula. On
S5\ Su, we can consider that ¢ jumps from 5 — 6 to 7 — 6 + 2kn. In that case

et ) %—H—I—ka ‘
/ e n—u_-n|da = / |sina — cos 8| da
o_ L3

Z—0

Z+6 Z-¢

= k/ (sina—cos@)da—l—k/ (cos @ — sina) da
240

= k(h(0) 4+ h(x — 0)) = kh(0).

With (I1.36), we get the conclusions of Corollary 1. O

Observe that h was already introduced in [RS], and is a positive increasing function
from [0, 7] to [0, 27]. The formula (11.35) extends the one proved in [RS] for BV functions,
which relied on computing [, [div (pu + u*)| and was restricted to the case X € [0,7),
i.e. unnecessary turns along the unit circle were excluded. Let us recall that in [RS], we
also proved that there is no profile (solutions of the ODE associated to the minimization
of E.) corresponding to jumps with X > 7, i.e. to more than one turn on the unit circle.

If o denotes the geometric half-angle (o € [0, 7]) between uy and u_ (or shortest way
to jump from wuy to u_), then o = X" if X’ € [0, 7], and 0 = 7 — X" if X' € [, 7], and,
examining the variations of the function h, one always has h(X’) > h(c). Therefore, we
deduce

Corollary 2

n—0oo

EE o3 .
liminf# > / 2(sino — o cos o),
where o is the geometric half-angle between uy and u_.
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This provides a (weaker) lower bound which depends only on the limiting field u, and not
on its lifting.

Remark IT1.1: w(X) > h(X’) and w(X) vanishes if and only if the jump X is 0, hence a
jump in ¢ always carries an energy cost. Additional turns on the unit circle carry additional
costs.

Remark I1.2: Corollary 1 proves that we can have
/ |div T%| da > |div (eu + ub)].
R

Indeed, if ¢ € BV and X > 7, X ¢ 7N,
div (pu + ub)| = 2(sin X — X cos X) = h(X) < w(X).

For example, if X > 0 is a solution of the equation tgX = X, then |div (ou + ut)| = 0
while w(X) > 0.

As we mentioned, this remark proves that the lower bound obtained by inserting the
quantities div T"u is finer in some cases than the lower bound 2||p,|| derived in [RS]
(which answers a question raised in [LR]).

III Kinetic interpretation

In this section, we give a kinetic interpration of the problem inspired from that used by
Jabin and Perthame in [JP]. This allows to give an alternate proof of the compactness
result and get extra Sobolev regularity for the limit. We will use the same notations as in
the previous section.

The result relies on the following simple remarks. Since ¢, € H'(2) C BV(Q) and
Xnlya) = 1,,<q is in BV(Q), we can write, using the chain-rule,

(111.1) Viexn(z,a) = —(0uxn(,a))Viu(x).

VXn is clearly supported on the level-curve {x/p,(x) = a}, and 9,x, too. Therefore,
since u, = €'* on the support of V,y,, we have

(11.2) VX - ur =V, - (e)*.

These relations (I11.1) and (I11.2) can be justified the following way: x.(z,a) = h(¢, — a)
where h is the Heaviside function; one replaces h by an affine approximation h., takes
X5, = ho(p, — a), then passes to the limit ¢ — 0.

On the other hand, we recall that if ¢, and w, are in H'(£2), we can write

(111.3) div u, = Ve, - ut.

14



But, multiplying the relation (IT1.1) by ul, we get
V-t = =Oaxu(w, @)V, - uy
hence in view of (I11.2) and (I11.3), we have
V- (em)L = —0uXndiv tuy, = =0, (\ndiv u,).
Combining this with (I1.28), we get the crucial relation
(111.4) VX - (") = =0, (div Tu,,),

which can be seen as a kinetic equation on y,,, analogue of that obtained in [JP], for which
the kinetic averaging lemmas apply.

Proposition I1I.1 Under the same hypotheses as in Theorem 1, using (I11.4) we find that
up to extraction

©n = P in Nyeoo L1(N)
Xa(@,a) = X(2,0) = 1y@)<a in Ngeoo L(8),
and that at the limit p € W*?(Q), Vs < L,p < 2, with
(111.5) divx(x(em)L) = —d,div T%u in Q x R.
Proof: In view of (I11.30)
V- (em)L = —0,div Tu, = —0,(G, — div (xn H,))
with G, bounded in L*(2 x R), and div (x,H,) — 0 in Nyce W™H9(0). We are thus in a

situation where the kinetic averaging lemma applies, for example as in [LPT] Theorem 3,
using the version of [DLM], and we can conclude that

dp>1, Y e ), /¢(a)xn(a)da is compact in LF(Q).
R

Let U be a primitive of v,
+ oo

/R Hapa(adda= [ pla)da = W(ko0) = W(pa(@)

Choosing ¢» = 1 in [=N, N] where N is such (by hypothesis) that Vn, ¢, € [-N, N|, we
get that ¢, is compact in L? hence in Ny<oo L2(). Next, we can pass to the limit in (I11.4).
Since ¢, — @ in LY(Q), yalz,a) = x(x,a) in NG LY(Q x R). Thus

VaeXn - (em)L = divx(Xn(em)L) — divx(x(em)L)
and at the limit
(11L.6) Vox - (€ = =0, div T .

Then, since div T%u € M( x R) as seen in Section II, we are in the same situation as in
[JP] section 5.1, and we get the Sobolev regularity of ¢ by the theorem of DiPerna, Lions
and Meyer [DLM] . O
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IV  Sign conditions for almost minimizing sequences

In this section, we consider sequences of u,, and ¢, satisfying the same hypotheses as pre-
viously and such that, in addition, F., (u,) — 2|09|.

We recall we know from [RS] that such sequences exist, and that we always have lim inf E,, (u,) >
2|09 (see Theorem 1). Thus, the situation we consider corresponds in particular to mini-
mizers of the energy, but not necessarily: we only assume convergence of the energy to the
minimum of the limiting energy, but not that we have critical points or minimizers of F.

We denote by M(Q) the space of bounded Radon measures on €.

Theorem 2 Lel ¢, — 0 and u,, € H'(Q, S) with a lifting ¢, € H'(Q,R) i.e. u, = e¥n
a.e, and assume

[enllze@) < N
E., (1) — 2|09

(Such a sequence exists, at least if ) is assumed to be analytic by parts). Writing ., =
Vo, H, and p, = pt — p, where b and p,; are the positive and negative parts of fi,,
then up to extraction, either

/ sl =0
(IV.1) — o, weakly in M(L)

/,Luw—dlv (pu +ut) >0

or
] = 0
Q
(IV.2) [ = e weakly in M(Q)
e = div (pu +ut) <0.
(u, @) is a minimizer of ||pu,] over C, ie. ||puoll = |0Q] ; and writing v = V*g with

g€ Wol’oo(ﬂ), we have g > 0 in the first case (respectively g < 0 in the second case).
Changing u, to —u,, if necessary, we can assume that (IV.1) holds and then

Va e R div T <0
i.e. div T%u is a negative measure in . In integral form:

(IV.3) Vf e CYR) such that f >0 and f € L'(RY), div (F(¢),G(¢)) >0,

:/t—f(s)sinsds G(t):/tf(s)cossds.
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Proof: We recall that

(IV.4) E., (u,) > 2/ Vo, - H,|
Q

and

limian/ Vo - Hy| > 2|ty = 2|09.
Q

n—0oo

Thus, if E., (u,) — 2|0Q| we must have
(IV.5) el = [0€].
Lemma IV.1 If ||py,.|| = |0Q] and g is defined by

u=Vtg inQ
g=0 on 05,

then, either
g>0 in
P >0 in Q)

or

g <0 in §)
P <0 in Q.

Proof: We follow exactly the proof of Lemma 5.1 of [RS]. Let f. be defined as follows:

{ fe(s)=—1 ifs < —¢

(IV.6) f(s)=1 ifs>¢

i —e<s<e.

Let V be the level-set {g = 0} and V. = {a € Q,dist(a,V) < e}. On the one hand, since
[fl <1,

(IV.7)

/Q f-(g)div (ou +ut)

< il = 109
On the other hand, integrating by parts and using ¢ = 0 on 0%,

s [ o oty = [ Ve (uraty =1 [ vl

where we have used the definition of f. and u = V1g. Then, since [Vg| = 1, this becomes

(IV.9) [ ftaiv (g ut) = Zvol({lg] < <)

17



Since |Vg| = 1, by the mean-value theorem, |¢g| < ¢ in V., hence

(IV.10) évol({|g| <e}) > évol(Vs).

On the other hand,
1
lim inf —vol(Vz) > H' (V).

e—=0 ¢
Combining this with (IV.7)—(IV.10), we deduce that
HY(V) <109

But ¢ = 0 on 9 hence H'(V) > |09, and there is equality. Consequently H'({g =
0} N Q) =0 and since ¢ is Lipschitz, g cannot change sign in Q hence ¢ > 0 or g < 0.

We suppose we are in the case g > 0, and we write pu,, = uf , — py , where uf and
[tn., are the positive and negative parts of p, ,. What precedes proves that

[ e = 1001 = o),

Hence,

o) (o0l = [t tanez [z [ fowt, 1090+ [ Lo, o)
Q Q Q Q

But, since g > 0, fo(g) > 0, and py , > 0, thus necessarily [, pt = 09| and p;, = 0.
This means that p,,, > 0. The case g <0 is similar. O

/VS‘Qn . Hn /,uu,ap
Q Q

Thus, since F.,(u,) — 2|08, we must have

/IV%-HnI—‘/V%-Hn Z/MZ+M;—‘/MZ—M;
Q Q Q Q

Extracting a subsequence such that [, put — p;; has a constant sign, we get that either
Jorn = 0and gt — pye > 0or [ouf — 0and p; — g, < 0. This proves the first
assertion of the theorem.

Going back to (IV.4)

E., (u,) > 2/ Vo, - H,| > 2 > 2 —o(1) = 2|09 — o(1).
Q

— 0.

Then, we assume that we are in the first situation and we get back to (11.29), apply it
to f>0and £ > 0:

a2 [l =) = = [ g (7 v, dda

QxR

18



But

/Q i Fpa)é(a)

<l el / 0
and

[ ntsteneta) 0
Therefore, passing to the limit in (IV.12) yields

(a)¢(x)div Tu < 0.

QxR

This is true for all f,& >0 in C5°(Q), hence
ae. ina € R, div T <0 in Q,

and since a +— div T"u is continuous, we can replace the a.e. by everywhere.
Next, we prove the integral form (IV.3). We multiply (IIL.5) by f and integrate over
R, we get

(IV.13) dlivgg/Rf(a)x(ac,a)(em)L = —/Rf(a)aa(div T"uw)da.

We can integrate the right-hand side by parts. Observing that div T%u = 0 as soon as
a > ||¢ll= or a < —||¢]||L~, there remains

divx/Rf(a)X(x,a)(em)L:/Rf'(a)div T da.

The left-hand side is equal to

+oo
div fla)(—sina,cosa)da,
z)

o(

and the integral converges because f was assumed to be in L'(R™T). Its value is (F(oco) —

F(e(x)),G(00) — G(p(x))), hence (IV.13) becomes

div (F(¢),G(e)) = — / f(a)div T*uda > 0

R

using div T%u < 0 and f’ > 0. This completes the proof of the theorem. O
Proof of the continuity of a — div T%u:
The proof is inspired from [Pe]. Let ag € R and h. be any family approaching the Heaviside
function h(a) = 1,<4, in L'(R) as e — 0. Let us multiply (IIL.5) by h.(a) and integrate,
as in (IV.13) we obtain

(IV.14) —div (F.(¢),G:(¢)) = /Rh;(a)div T uda,
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where .
F.(t) = / —h.(s)sinsds
t
G.(t) = / he(s)cos sds.
But since h. — h in L'(R), we have
t
F.(t) = F(t) = / —h(s)sinsds

t

G.(1) — G(t) h(s)cos sds,

Il
—

and one can easily check that (F'(t),G(t)) = ¢T™" + cste. Therefore,

div (Fe(p()), Ge(p(z)) —> div T%u  in D'(Q).

e—0

Combining this with (IV.14),

(IV.15) — / Rl (a)div T da — div T*u in D'(Q),
R

e—0

while —h! — §,,. This is true for any h. approaching h in L', hence (IV.15) yields the
continuity of @ — div T%u from R to D'(12). O

Remark IV.1: Using the method of [Pe] on (II1.5) with the sign condition on div T,

and this continuity result, one may establish that if (uy, ¢1) and (uz, p2) such that ¢1 = ¢
on 0 both satisfy (I.12) and (I.13), then min(p1, ¢2) also does (hence is also a minimizer).
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