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Abstract. The main purpose of this paper is to approximate several non-local
evolution equations by zero-sum repeated games in the spirit of the previous works
of Kohn and the second author (2006 and 2009): general fully non-linear parabolic
integro-differential equations on the one hand, and the integral curvature flow of
an on the other hand. In order to do so, we start by constructing such a game for
eikonal equations whose speed has a non-constant sign. This provides a (discrete)
deterministic control interpretation of these evolution equations.

In all our games, two players choose positions successively, and their final payoff
is determined by their positions and additional parameters of choice. Because of the
non-locality of the problems approximated, by contrast with local problems, their
choices have to “collect” information far from their current position. For parabolic
integro-differential equations, players choose smooth functions on the whole space.
For integral curvature flows, players choose hypersurfaces in the whole space and
positions on these hypersurfaces.

1. General introduction

Kohn and the second author gave in [20] a deterministic control interpretation for
motion by mean curvature and some other geometric laws. In particular, given an
initial set Ω0 ⊂ RN , they prove that the repeated game invented by Joel Spencer
(originally called “pusher-chooser” game, now sometimes known as the “Paul-Carol”
game) [27] converges towards the mean curvature motion of ∂Ω0. In a second paper
[21], they construct analogous approximations of general fully non-linear parabolic
and elliptic equations.

This paper is concerned with extending this approach to several non-local evolu-
tions, for which we construct zero-sum repeated games with two players.

Our main motivation for constructing such games is to show that viscosity solutions
of an even wider class of equations have a deterministic control representation; while
previously this was known to be true only for first order Hamilton-Jacobi equations,
and then since [20, 21] for general local second order PDE’s. Seen differently, it shows
that a wide class of non-local evolutions have a minimax formulation.
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Parabolic Integro-Differential Equations. The first natural class to consider is that of
general parabolic integro-differential equations (in short parabolic PIDE). The study
of non-linear PIDE has attracted a lot of attention; as far as parabolic or elliptic
fully non-linear PIDE equations are concerned, the viscosity theory has been well
developed since the seminal paper by Soner [25]. Without giving an exhaustive list
of references, it is natural to quote works by Sayah [24], Jakobsen and Karlsen [19],
Barles and the first author [3] and the series of papers by Caffarelli and Silvestre
about regularity, e.g. [7]. The interested reader is referred to the introduction of [1]
where numerous additional references are given.

The solution to finding a deterministic control approach in that case turns out
to be a natural generalization of that of [21] for the case of (local) fully non-linear
parabolic equations. In the game of [21] for second order local problems, the choices
of one of the players serve as proxies for the first and second order derivatives of the
value function at the current point. In contrast, in the case of nonlocal problems, the
players’s choices have to “collect” information far from their current position: they
will choose smooth functions on the whole space.

In the case where the equation happens to be local, only the first and second deriva-
tives of that function at the current location matter, so in effect it really amounts to
the game of [21].
Integral curvature flows. Secondly, we consider a class of nonlocal geometric evolu-
tions: the integral curvature flows. Such evolutions were originally introduced to
describe dislocation dynamics in [2]. This type of motion also appears in [8] where
threshold dynamics associated with kernels decaying slowly at infinity are considered,
and in [18, 6]. It was recently reformulated by the first author [17] in order to deal
with singular interacting potentials. For more details on these flows, we refer to the
introduction of [17].

The specificity of the integral curvature flow is that it is non-local in the sense that
its normal speed at a boundary point x not only depends on the front close to x (such
as the outer normal unit vector or the curvature tensor) but also on the whole curve.
Indeed, the integral curvature is a singular integral operator.

In order to construct the game for integral curvature flows, we start with the
simpler guiding case of the eikonal equation associated with a changing sign velocity,
for which we give a game approximation. We are guided by the ideas of Evans and
Souganidis [14]; they proved in particular that the solution of the eikonal equation can
be represented by the value function of a differential game. Our first task is thus to
give a discrete version of such a representation. The way we treat the change of sign
of the velocity is analogous to a splitting method. There are two steps at each turn
of the game: the first step retains the positive part of the velocity and is controlled
by one of the players, the second step retains its negative part and is controlled by
the other player.

In the case of the integral curvature equation, we thus split the integral curva-
ture into two pieces (its positive and its negative parts) that are treated separately.
Because the equation is non-local, proving that this splitting method permits to re-
cover the full integral curvature equation is one of the many technical difficulties to
overcome.
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Technical framework. The framework of viscosity solutions [12, 11] and the level-
set approach [23, 9, 15] are used in order to define properly the various geometric
motions. We recall that the level-set approach consists in representing the initial
interface as the 0-level set of a (Lipschitz) continuous function u0, looking for the
evolving interface under the same form, proving that the function u(t, x) solves a
partial differential equation and finally proving that the 0-level set of the function
u(t, ·) only depends on the 0-level set of u0. The proofs of convergence follow the
method of Barles-Souganidis [5] i.e. use the stability, monotonicity and consistency
of the schemes provided by our games.
Open problems. The game we present for integral curvature flow, even though this is
a geometric evolution, is much more complicated that the Paul-Carol game studied
in [20]. It would be very nice to find a game whose rules are simpler and which would
be a natural generalization of the Paul-Carol game. However, we do not know at this
stage whether this is possible.
Organization of the article. The paper is organized as follows: In Section 2, we present
the various equations that we study, state the definitions, present the games and give
the main convergence results: first for parabolic PIDE, second for eikonal equations,
and third for integral curvature flows. In Section 3, we return to these theorems in
order and give their proofs.
Notation. The unit ball of RN is denoted by B. A ball of radius r centered at x is
denoted by Br(x). The function 1A(z) is defined as follows: 1A(z) = 1 if z ∈ A and 0
if not. The unit sphere of RN is denoted by SN−1. The set of symmetric real N ×N
matrices is denoted by SN .

Given two real numbers a, b, a ∧ b denotes min(a, b) and a ∨ b denotes max(a, b).
Moreover, a+ denotes max(0, a) and a− = max(0,−a).

The time derivative, space gradient and Hessian matrix of a function φ are respec-
tively denoted by ∂tφ, Dφ and D2φ.
C2
b (RN) denotes the space of C2 bounded functions such that their first and second

derivatives are also bounded.
Acknowledgements. The first author was partially supported by the ANR project
MICA from the French Ministry of Research, the second by an EURYI award.

2. Main Results

This section is devoted to the description of the games we introduce to approximate
the various geometric motions or solutions of parabolic PIDE.

Following [20, 21], in each game there are two opposing players Paul and Carol (or
sometimes Helen and Mark). Paul starts at point x at time t > 0 with zero score. At
each step n, the position xn and time tn are updated by using a small parameter ε > 0:
(tn, xn) = (tn(ε), xn(ε)). The game continues until the running time tN is larger than
a given final time T . At the end of the game, Paul’s final score is uT (xN) where uT
is a given continuous function uT defined on RN , and xN is the final position. Paul’s
objective is to maximize his final score and Carol’s is to obstruct him.

We define the value function uε of the game starting at x at time t as

(2.1) uε(t, x) = max (final score for Paul starting from (t, x)) .
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The main results of this paper assert that the value functions associated with the
games described in the next subsections converge to solutions of the corresponding
evolution equations. As it is natural for control problems, the framework to use is
that of viscosity solutions.

We present the games in increasing order of complexity, so we start by presenting
the results for parabolic PIDE.

2.1. General Parabolic Integro-Differential Equations. The parabolic non-linear
integro-differential equations at stake in this paper are of the following form

(2.2) −∂tu+ F (t, x,Du,D2u, I[x, u]) = 0 in (0, T ]× RN

where T > 0 is a final time, F is a continuous non-linearity satisfying a proper
ellipticity condition (see below) and I[x, U ] is a singular integral term defined for
U : RN → R as follows

(2.3) I[x, U ] =

∫
[U(x+ z)− U(x)−DU(x) · z1B(z)]ν(dz)

where we recall B is the unit ball, 1B(z) = 1 if |z| < 1 and 0 if not, and ν is a
non-negative singular measure satisfying

(2.4)

∫
B

|z|2ν(dz) < +∞,
∫

RN\B
ν(dz) < +∞ .

We also assume for simplicity that ν(dz) = ν(−dz) but this is not a restriction.
Such measures are referred to as (symmetric) Lévy measures and associated integral
operators I[x, U ] as Lévy operators. Such equations appear in the context of math-
ematical finance for models driven by jump processes; see for instance [10]. Because
of the games we construct, a terminal condition is associated with such a parabolic
PIDE. Given a final time T > 0, the solution u of (2.2) is submitted to the additional
condition

(2.5) u(T, x) = uT (x)

where uT : RN → R is the terminal datum. The equation is called parabolic when
the following ellipticity condition is fulfilled

(2.6) A ≤ B, l ≤ m⇒ F (t, x, p, A, l) ≥ F (t, x, p, B,m) ,

where A ≤ B is meant with respect to the order on symmetric matrices. Under this
condition, the equation with terminal condition (2.5) is well-posed in (0, T ]× RN .

We start with stating precisely the rules of our game, then we recall the definition
of viscosity solutions in that context, and finally state the main convergence theorem.

2.1.1. The game for parabolic PIDE. We are given positive parameters ε, R > 0.
A truncated integral operator IR[x,Φ] is defined by replacing in (2.3) ν(dz) with
1BR(z)ν(dz). We also consider a positive real number α ∈ (0, (max(1, k1, k2))−1)
where the constants k1, k2 appear in Assumption (A1). In this setting, for the sake
of consistency with [21] where a financial interpretation was given, the players should
be Helen (standing for hedger) and Mark (standing for market), with Helen trying to
maximize her final score under the opposition of Mark.
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Game 1 (Parabolic PIDE). At time t ∈ (0, T ), the game starts at x and Helen has
a zero score. Her objective is to get the highest final score.

(1) Helen chooses a function Φ ∈ C2
b (RN) such that ‖Φ‖∞ ≤ ε−α, |DΦ(x)| ≤ ε−α

and |D2Φ(x)| ≤ ε−α.
(2) Mark chooses the new position y ∈ BR(x).
(3) Helen’s score is increased by

Φ(x)− Φ(y)− εF (t, x,DΦ(x), D2Φ(x), IR[x,Φ]) .

Time is reset to t + ε. Then we repeat the previous steps until time is larger
than T . At that time, Helen collects the bonus uT (x), where x is the current
position of the game.

As in [21], the value function uε(t, x) associated to the game is defined as the max-
imal final score for Helen (under the best opposition of Mark) when the game starts
from position x at time t. It is characterized by the one-step dynamic programming
principle:

(2.7) uε(t, x) = sup
Φ∈C2(RN )

‖Φ‖∞,|DΦ(x)|,|D2Φ(x)|≤ε−α

inf
y∈BR(x)

{
uε(t+ ε, y)

+ Φ(x)− Φ(y)− εF (t, x,DΦ(x), D2Φ(x), IR[x,Φ])

}
.

2.1.2. Viscosity solutions for PIDE. In this section, we recall the definition and frame-
work of viscosity solutions for (2.2). Since the pioneering paper by Soner [25], many
references are devoted to the question of the well-posedness of fully non-linear integro-
differential equations in the viscosity solution framework. There are many equivalent
definitions (see for instance [24, 3]), many sets of assumptions to ensure uniqueness
(see for instance [19]) or to study regularity (see for instance [7]).

Since we will work with bounded viscosity solutions, we give a definition in this
framework.

Definition 1 (Viscosity solutions for PIDE). Consider u : (0, T ) × RN → R, a
bounded function.

(1) It is a viscosity sub-solution of (2.2) if it is upper semi-continuous and if for
every bounded test-function φ ∈ C2 such that u− φ admits a global maximum
0 at (t, x) ∈ (0, T )× RN , we have

(2.8) −∂tφ(t, x) + F (t, x,Dφ(x), D2φ(x), I[x, φ]) ≤ 0 .

(2) It is a viscosity super-solution of (2.16) if it is lower semi-continuous and
if for every bounded test-function φ ∈ C2 such that u − φ admits a global
minimum 0 at (t, x) ∈ (0, T )× RN , we have

(2.9) −∂tφ(t, x) + F (t, x,Dφ(x), D2φ(x), I[x, φ]) ≥ 0 .

(3) A continuous function u is a viscosity solution of (2.2) if it is both a sub and
super-solution.
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Remark 2.1. If the mesure ν is supported in BR, then the global maximum/minimum
0 of u−φ at (t, x) can be replaced with a strict maximum/minimum 0 in (0, T )×BR′(x)
for any R′ ≥ R. Indeed, changing φ outside BR(x) does not change the value of I[x, φ]
in this case.

On the one hand, in order for the value of the repeated game we are going to
construct to be finite, we need to make some growth assumption on the nonlinearity
F . On the other hand, in order to get the convergence of the value of the repeated
game, the comparison principle for (2.2) has to hold. For these reasons we assume
that F satisfies the ellipticity condition given above together with the following set
of assumptions (see [3]):

Assumptions (A).

• (A0) F is continuous on R× RN × RN × SN × R.
• (A1) There exist constants k1 > 0, k2 > 0 and C > 0 such that for all

(t, x, p, A) ∈ R× RN × RN × RN × SN , we have

|F (t, x, p, A, 0)| ≤ C(1 + |p|k1 + |X|k2) .

• (A2-1) For all R > 0, there exist moduli of continuity ω, ωR such that, for all
|x|, |y| ≤ R, |v| ≤ R, l ∈ R and for all X, Y ∈ SN satisfying

(2.10)

[
X 0
0 −Y

]
≤ 1

ε

[
I −I
−I I

]
+ r(β)

[
I 0
0 I

]
for some ε > 0 and r(β)→ 0 as β → 0 (in the sense of matrices in S2N), then,
if s(β)→ 0 as β → 0, we have

(2.11) F (t, y, v, ε−1(x− y), Y, l)− F (t, x, v, ε−1(x− y) + s(β), X, l)

≤ ω(β) + ωR(|x− y|+ ε−1|x− y|2)

or
• (A2-2) For all R > 0, F is uniformly continuous on [−R,R]×Rn×BR×DR×R

where DR := {X ∈ SN ; |X| ≤ R} and there exist a modulus of continuity ωR
such that, for all x, y ∈ RN , |v| ≤ R, l ∈ R and for all X, Y ∈ SN satisfying
(2.10) and ε > 0, we have

(2.12) F (t, y, v, ε−1(x− y), Y, l)− F (t, x, v, ε−1(x− y), X, l)

≤ ωR(|x− y|+ ε−1|x− y|2) .

• (A3) F (t, x, u, p,X, l) is Lipschitz continuous in l, uniformly with respect to
all the other variables.

Assumptions (A0)-(A1) are all we need to show that the relaxed semi-limits of our
value functions are viscosity sub- (resp. super-)solutions to (2.2). Assumptions (A2)-
(A3) are meant to ensure that a comparison principle holds for (2.2), i.e. that viscosity
sub-solutions are smaller than viscosity super-solutions, which guarantees the final
convergence.



GAMES FOR INTEGRAL CURVATURE FLOWS 7

2.1.3. Theorem and comments. It is possible to construct a repeated game that ap-
proximates a parabolic PIDE where F also depends on u itself, but its formulation
is a bit more complicated. This is important from the point of view of applications
but since, with the previous game at hand, ideas from [21] can be applied readily, we
prefer to present it in this simpler framework.

As usual in such control problems, the convergence of uε to u stated below relies
heavily on (2.7). We will present right after the statement of the theorem an easy
formal argument that allows to predict this convergence.

Theorem 1. Assume that F is elliptic and satisfies (A0) and (A1). Assume also
that uT ∈ W 2,∞(RN). Then the upper (resp. lower) relaxed semi-limit u (resp. u) of
(uε)ε>0 is a sub-solution (resp. super-solution) of (2.2) and

u(T, x) ≤ uT (x) ≤ u(T, x) .

In particular, if F also satisfies (A2), (A3), then uε converges locally uniformly in
R × RN towards the viscosity solution u of (2.2), (2.5) as ε → 0 and R → +∞
successively.

Remark 2.2. As we mentioned, the second statement follows from the fact that (A2)–
(A3) together with (A0) imply that the comparison principle for (2.2) holds true in
the class of bounded functions.

Remark 2.3. We are in fact going to prove that under the same assumptions, uε

converges locally uniformly in R × RN as ε → 0 towards the viscosity solution of
(2.2), (2.5) where I is replaced with the truncated integral operator. Theorem 1 is
then a direct consequence of this fact by using stability results such as the ones proved
in [3].

Remark 2.4. We assume that uT lies in W 2,∞(RN) for simplicity but one can con-
sider terminal data that are much less regular, for instance bounded and uniformly
continuous. However, this implies further technicalities that we prefer to avoid here.

Formal argument for Theorem 1. Arguing formally, through an expansion in time of
uε(t, x), the result reduces to showing that the following equality holds true

(2.13) uε(t, x) = uε(t+ ε, x)

− εF (t, x,Duε(t+ ε, x), D2uε(t+ ε, x), I[x, uε(t+ ε, ·)]) + o(ε).

Indeed, after rearranging terms, dividing by ε and passing to the limit, we get

−∂tu(t, x) + F (t, x,Du(t, x), D2u(t, x), I[x, u(t, ·)]) = 0 .

It is easy to see that if Helen chooses Φ = uε(t+ ε, ·), Mark cannot change the score
by acting on y. Indeed, the dynamic programming principle implies that uε(t, x) is
larger than the right-hand side of (2.13).

It turns out that it is optimal for Helen to choose Φ = uε(t + ε, ·). In other
words, the converse inequality holds true (and thus (2.13) holds true too). To see
this, the dynamic programming principle tells us that it is enough to prove that, for
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Φ ∈ C2(RN) fixed (with proper bounds), we have

inf
y∈B(x,R)

{uε(t+ ε, y) + Φ(x)− Φ(y)− εF (t, x,DΦ(x), D2Φ(x), I[x,Φ])}

≤ uε(t+ ε, x)− εF (t, x,Duε(t+ ε, x), D2uε(t+ ε, x), I[x, uε(t+ ε, ·)]) + o(ε).

The following crucial lemma permits to conclude. We recall that we assume that the
singular measure is supported in B(0, R) for some R > 0.

Lemma 2.1 (Crucial lemma for PIDE). Let F be continuous and Φ, ψ ∈ C2(RN)
be two bounded functions. Let K be a compact subset of RN and let x ∈ K. For all
ε > 0, there exists y = yε ∈ BR(x) such that

(2.14) ψ(y) + Φ(x)− Φ(y)− εF (t, x,DΦ(x), D2Φ(x), IR[x,Φ])

≤ ψ(x)− εF (t, x,Dψ(x), D2ψ(x), IR[x, ψ]) + o(ε)

where the o(ε) depends on F, ψ,Φ and K but not on t, x, y.

The rigourous proof of this lemma is postponed until Subsection 3.1. However, we
can motivate this result by giving a (formal) sketch of its proof. Assume that the
conclusion of the lemma is false. Then there exists η > 0 and we have for all y ∈ K

ψ(y)− ψ(x) > Φ(y)− Φ(x) + ε(F (. . . )− F (. . . )) + ηε.

In particular, ψ(y)− ψ(x) > Φ(y)− Φ(x) +O(ε). This implies (at least formally)

Dψ(x) = DΦ(x) + o(1)

D2ψ(x) ≤ D2Φ(x) + o(1)

I[x, ψ] ≤ I[x,Φ] + o(1).

Then the ellipticity of F implies that F (. . . )−F (. . . ) ≥ o(1) and we get the following
contradiction: 0 ≥ ηo(1) + ηε. �

One can observe that this very simple game is a natural generalization of the
game constructed in [21] for fully non-linear parabolic equations. Indeed, if F does
not depend on I[Φ], then all is needed is proxies for DΦ(x), D2Φ(x). So instead of
choosing a whole function Φ, Helen only needs to choose a vector p (proxy for DΦ(x))
and a symmetric matrix Γ (proxy for D2Φ(x)), and replace Φ(y)− Φ(x) in the score
updating by its quadratic approximation

p · (y − x) +
1

2
〈Γ(y − x), (y − x)〉.

One then recovers the game of [21] (except there y is constrained to Bε1−α(x)). Of
course it is natural that for a non-local equation, local information at x does not
suffice and information in the whole space needs to be collected at each step.

2.2. Level-set approach to geometric motions. Before stating our results for the
geometric flows (eikonal equations and integral curvature flow), we recall the level set
framework for such geometric evolutions.

The level-set approach [23, 9, 15] consists in defining properly motions of interfaces
associated with geometric laws. More precisely, given an initial interface Γ0, i.e. the
boundary of a bounded open set Ω0, their time evolutions {Γt}t>0 and {Ωt}t>0 are
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defined by prescribing the velocity V of Ωt at x ∈ Γt along its normal direction n(x)
as a function of time t, position x, normal direction n(x), curvature tensor Dn(x), or
even the whole set Ωt at time t. The geometrical law thus writes

(2.15) V = G(t, x, n(x), Dn(x),Ωt) .

The level-set approach consists in describing Γ0 and {Γt}t>0 as zero-level sets of conti-
nous functions u0 (such as the signed distance function to Γ0) and u(t, ·) respectively

Γ0 = {x ∈ RN : u0(x) = 0} and Ω0 = {x ∈ RN : u0(x) > 0}
Γt = {x ∈ RN : u(t, x) = 0} and Ωt = {x ∈ RN : u(t, x) > 0} .

The geometric law (2.15) translates into a fully non-linear parabolic equation for u:

(2.16) ∂tu = G(t, x, D̂u, (I − D̂u⊗ D̂u)D2u,Ωt)|Du| := −F (t, x,Du,D2u,Ωt)

(where p̂ = |p|−1p for p ∈ RN , p 6= 0) supplemented with the initial condition u(0, x) =
u0(x). If proper assumptions are made on the nonlinearity F , the level-set approach
is consistent in the sense that, for two different initial conditions u0 and v0 with the
same 0-level set, the associated (viscosity) solutions u and v have the same zero-level
sets at all times as well. The interested reader is referred to [23, 9, 15] for fundamental
results, [4] for extensions and [26] for a survey paper.

In the present paper, we deal with terminal conditions instead of initial conditions.
This is the reason why, for a given terminal time T > 0, we consider the equation
−∂tu+ F = 0 supplemented with the terminal condition (2.5). We will consider two
special cases of (2.16)

• the eikonal equation

(2.17) −∂tu− v(x)|Du| = 0

• and the integral curvature equation

(2.18) −∂tu− κ[x, u]|Du| = 0

where κ[x, u] is the integral curvature of u at x (see below for a definition).

2.3. Eikonal equation. The first geometric law (2.15) we are interested in is the
simple case where V = v(x) and

v : RN → R is a Lipschitz continuous function

and we do not assume that it has a constant sign. In this case, the geometric equa-
tion (2.16) reduces to the standard eikonal equation (2.17).

The solution of an eikonal equation can be represented as the value function of a
deterministic control problem when v has a constant sign [22]. If v changes sign, it
can be represented as the value function of a deterministic differential game problem,
i.e., loosely speaking, a control problem with two opposing players [14].
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2.3.1. The game for the eikonal equation. The idea of the game consists in using the
time counter to control the velocity of the motion (note that in previous games, the
timesteps were always fixed and constant). The desired motion of the level set is with
prescribed normal velocity equal to v(x). Instead of moving of length |v(x)|ε in a
time step ε, the players will move by ε in time ε/|v(x)|. The direction of the motion,
following the sign of v, will be controlled by the rule that determines which player
chooses the next move. More precisely, we have two players Paul and Carol, and we
want, starting from x at time t:

• if v(x) > 0, Paul chooses the next point in B(x, ε), and time gets reset to
t+ ε/|v(x)|;
• if v(x) < 0, Carol chooses the next point in B(x, ε), and time gets reset to
t+ ε/|v(x)|;
• at final time T the final score is uT (x).

One can check that formally, this leads to the desired evolution for the value func-
tion equal to the maximal final score for Paul. This game needs to be slightly modified
to handle the cases where v gets close to 0. We use cut-off functions to truncate pos-
sibly too large or too small time-increments: for ε > 0 and r > 0, we define

(2.19) Cε(r) = (r ∨ ε
3
2 ) ∧ ε

1
2 =


ε

3
2 if 0 < r < ε

3
2 ,

r if ε
3
2 < r < ε

1
2 ,

ε
1
2 if r > ε

1
2 .

This function is non-decreasing and for every r we have ε
3
2 ≤ Cε(r) ≤ ε

1
2 . We may

now state the rigorous game that we will study.

Game 2 (Eikonal equation). At time t ∈ (0, T ), Paul starts at x with zero score. His
objective is to get the highest final score.

(1) Either Bε(x) ∩ {v > 0} 6= ∅, then Paul chooses a point xP ∈ Bε(x) ∩ {v > 0}
and time gets reset to tP = t+ Cε[ε(v+(xP ))−1].
Or Bε(x) ∩ {v > 0} = ∅, then Paul stays at xP = x and time gets reset to
tP = t+ ε2.

(2) Either Bε(xP )∩{v < 0} 6= ∅, then Carol chooses a point xC ∈ Bε(xP )∩{v <
0} and time gets reset to tC = tP + Cε[ε(v−(xC))−1].
Or Bε(xP ) ∩ {v < 0} = ∅, then Paul stays at xC = xP and time gets reset to
tC = tP + ε2.

(3) The players repeat the two previous steps until tC ≥ T . Paul’s final score is
uT (xC) where xC s the final position of the game.

As previously, the value function uε(t, x) for the game, when starting from x at
time t, is defined as Paul’s maximal possible final score under the best opposition of
Carol, and is characterized by the one-step dynamic programming principle: let for
short E+ and E− denote the sets

(2.20) E±(x) =

{
Bε(x) ∩ {±v > 0} if Bε(x) ∩ {±v > 0} 6= ∅
{x} if not.
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Recall also that (·)+ denotes the positive part and (·)− the negative part of a quantity.
With this notation, the dynamic programming principle is

(2.21) uε(t, x) = sup
xP∈E+(x)

{
inf

xC∈E−(xP )
{uε(tC , xC)}

}
,

where

(2.22)


tP = t+

{
Cε[ε(v+(xP ))−1] if Bε(x) ∩ {v > 0} 6= ∅
ε2 if not

tC = tP +

{
Cε[ε(v−(xC))−1] if Bε(xP ) ∩ {v < 0} 6= ∅
ε2 if not

and
uε(t, x) = uT (x) if t ≥ T .

2.3.2. Viscosity solutions to the eikonal equation. We recall the definition of a viscos-
ity solution to the eikonal equation (2.17).

Definition 2 (Viscosity solution for (2.17)). Given a function u : (0, T )× RN → R,
we say that

(1) It is a viscosity sub-solution of (2.17) if it is upper semi-continuous and if
for every test-function φ ∈ C2 such that u − φ admits a local maximum at
(t, x) ∈ (0, T )× RN , we have

(2.23) −∂tφ(t, x)− v(x)|∇φ|(t, x) ≤ 0.

(2) It is a viscosity super-solution of (2.17) if it is lower semi-continuous and if
for every test-function φ ∈ C2 such that u − φ admits a local minimum at
(t, x) ∈ (0, T )× RN , we have

(2.24) −∂tφ(t, x)− v(x)|∇φ|(t, x) ≥ 0.

(3) It is a viscosity solution of (2.17) if it is both a sub and super-solution.

2.3.3. Convergence result. We next claim that the following convergence result holds
true; again the limiting equation can be predicted by a formal argument from (2.21)
(see below).

Theorem 2. Assume that v is Lipschitz continuous and uT is bounded and Lipschitz
continuous. Then the function uε converges locally uniformly as ε → 0 towards the
unique viscosity solution of (2.17), (2.5).

Remark 2.5. Let us mention that the parameters α = 1
2

and β = 3
2

in the definition
of Cε (2.19) really only need to satisfy 1 < α < β < 2.

We next give the formal argument which permits to predict the convergence result
for the eikonal equation.

Formal argument for Theorem 2. We first rewrite the dynamic programming princi-
ple as follows

0 = sup
xP∈E+(x)

{
uε(tP , xP )− uε(t, x) + inf

xC∈E−(xP )
{uε(tC , xC)− uε(tP , xP )}

}
.
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We only treat the case v(x) > 0 because the argument is completely analogous in
the case v(x) < 0. Hence, for ε small enough, Bε(x) ⊂ {v > 0}, Bε(xP )∩{v < 0} = ∅
and (tC , xC) = (tP + ε2, xP ). The previous equality then yields (approximating Cε(r)
by r)

0 = sup
xP∈Bε(x)

{
uε(tP , xP )− uε(t, x) +O(ε2)

}
= sup

xP∈Bε(x)

{
∂tu

ε(t, x)(tP − t) +Duε(t, x)(xP − x)

}
+ o(ε)

=
ε

v(xP )
(∂tu

ε(t, x) + v(xP )|Duε(t, x)|) + o(ε)

=
ε

v(xP )
(∂tu

ε(t, x) + v(x)|Duε(t, x)|) + o(ε) .

Hence, dividing by ε/v(xP ) and letting ε→ 0, we obtain formally

∂tu(t, x) + v(x)|Du|(t, x) = 0 .

�

2.4. Integral curvature flow.

2.4.1. Formal discussion. The integral curvature equation (2.18) is a particular case
of the eikonal equation (2.17), where v(x) is replaced by the nonlocal curvature of the
level-set of the solution, which is not given a priori. We will give a precise definition
of this nonlocal curvature below, but without going into these details yet, we start
by giving an idea of the game, then a precise definition of it.

Mimicking the game for the eikonal equation with prescribed velocity, we will still
have two players Paul and Carol; when the curvature κ is positive at x, Paul will
determine the next move in B(x, ε), and when it is negative, Carol will. The time
counter will be increased by ε/|κ|. The difficulty is that the definition of κ can only
be implicit: in the end κ should be a proxy for the integral curvature κ[x,Γ] of the
level set Γ of the value function at x. The idea is to let the curve Γ be chosen by the
players, in such a way that it becomes a proxy for the level set of the value function.
Assuming Paul is the one choosing the curve, this will be achieved be letting Carol
jump to any point on (one side of) Γ. This forces Paul to choose Γ within the sublevel
set {uε(y) ≤ uε(x)}, otherwise Carol could take advantage of it. Then, Paul will have
to choose Γ exactly equal to the level set {uε(y) = uε(x)}, because it is that choice
which is most favorable with respect to the advancement of the time counter.

With these ingredients, we are led to the formal definition of the game.
Formal definition of the game. The game proceeds in two main steps; in each step,
Paul and Carol play successively. It starts from x at time t.

• Paul can decide to play (see Figure 2.4.1); in this case, he chooses a point xP
in B(x, ε), then a curve Γ+ passing through xP , whose integral curvature at
xP is well defined and positive.
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• Paul can also decide not to play. In the game, this will be implemented by
allowing Paul to choose curves whose integral curvature is either not well
defined or non-positive.
• Carol chooses the next position “outside” the curve Γ+. Time gets reset to
t+ ε/|κ[xP ,Γ

+]|.
• Next, the roles of the players are reversed, and Carol can decide to play or not.

If she does, she chooses a point at distance ε from the current location, and
a curve Γ− passing through that point of negative integral curvature. Paul
chooses the next position “inside” Γ− and time gets reset to t+ ε/|κ[Γ−]|.
• All the previous steps are repeated until the final time T is reached. Then

Paul collects the final score uT (xcur) where xcur denotes the current position.

Γ+

x+
C

x+
P

Figure 1. Paul plays: he chooses a curve Γ+ passing through x+
P ∈

B(x, ε), whose integral curvature is well defined and positive. Then
Carol chooses the new current point x+

C “outside” the curve Γ+.

As explained above, players are expected to make the following choices:

• If the curvature of the set Γ = {uε(t, ·) = uε(t, x)} is positive, then in the first
step, we expect Paul to move first at distance ε in the direction of ∇uε(x),
then to choose Γ+ equal to the level set of uε at the new point, and Carol to
choose any point on Γ+. In the next step, we expect Carol not to play.
• If the curvature is negative, then we expect Paul not to play, and in the next

step, Carol to move first at distance ε in the direction of −∇uε(x), then to
choose Γ− equal to the level set of uε at that new point, and Paul to pick a
point on Γ−.
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These facts will be stated and proved rigourously for the rigourous game in technical
lemmas that we will refer to as consistency lemmas (see Lemmas 3.7, 3.8, 3.9, 3.10
in Section 3.3).

2.4.2. Definition of integral curvature and viscosity solutions. Even if most authors
do not use this word, the notion of integral curvature is considered in papers such as
[13, 16, 8, 17, 6]. Here is the definition we will take.

Consider a function K : RN → (0,+∞) such that

(2.25)


K is even, supported in BR(0)
K ∈ W 1,1(RN \Bδ(0)) for all δ > 0∫
Bδ(0)

K = o
(

1
δ

)∫
Q(r,e)

K < +∞ for all r > 0, e ∈ SN−1∫
Q(r,e)

K = o
(

1
r

)
where Q(r, e) is a paraboloid defined as follows

Q(r, e) = {z ∈ RN : r|z · e| ≤ |z − (z · e)e|2}.
Interesting examples of such K’s include

K(z) =
C(z)

1 + |z|N+α
or K(z) =

C(z)

|z|N+α

for some cut-off function C : RN → R which is even, smooth and supported in BR(0).

Remark 2.6. It is not necessary to assume that K has a compact support in order
to define the non-local geometric flow. However, we need this assumption in order
to construct the game and prove that it approximates the geometric flow. We can
then later follow what we did when dealing with parabolic PIDE: approximate any
integral curvature flow by first approximating K by kernels KR compactly supported
in BR(0) and by taking next the limit of the corresponding value functions as ε→ 0
and R→∞ respectively.

Consider U ∈ C2 such that DU(x) 6= 0. We define

κ∗[x, U ] = K ∗ 1{U≥U(x)} −K ∗ 1{U<U(x)}

κ∗[x, U ] = K ∗ 1{U>U(x)} −K ∗ 1{U≤U(x)}.

These functions coincide if for instance DU 6= 0 on {U = U(x)}. They define the
integral curvature of the “hypersurface” {U(z) = U(x)} at the point x. The reader
can notice that this “hypersurface” is oriented via the sign of the function U . The
classical curvature can be recovered if K(z) = 1−α

|z|N+α and α→ 1, α < 1; see [17].

Functions κ∗ and κ∗ enjoy the following properties (see [17]):

(1) Semi-continuity: functions κ∗[·, U ] and κ∗[·, U ] are respectively upper and
lower semi-continuous

κ∗[x, U ] ≥ lim sup
y→x

κ∗[y, U ];(2.26)

κ∗[x, U ] ≤ lim inf
y→x

κ∗[y, U ];(2.27)
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(2) Monotonicity property:

{U ≥ U(x)} ⊂ {V ≥ V (x)} ⇒ κ∗[x, U ] ≤ κ∗[x, V ],(2.28)

{U > U(x)} ⊂ {V > V (x)} ⇒ κ∗[x, U ] ≤ κ∗[x, V ].

We next make precise the notion of viscosity solutions for (2.18), (2.5) that will be
used in the present paper.

Definition 3 (Viscosity solutions for (2.18)). Given a function u : (0, T )×RN → R,
we say that

(1) It is a sub-solution of (2.18) if it is upper semi-continuous and if for every
test-function φ ∈ C2 such that u − φ admits a strict maximum in (0, T ) ×
BR+1(x) at (t, x), we have

(2.29) −∂tφ(t, x)− κ∗[x, φ(t, ·)]|Dφ|(t, x) ≤ 0

if Dφ(t, x) 6= 0 and −∂tφ(t, x) ≤ 0 if Dφ(t, x) = 0;
(2) It is a super-solution of (2.18) if it is lower semi-continuous and if for every

test-function φ ∈ C2 such that u − φ admits a strict minimum in (0, T ) ×
BR+1(x) at (t, x), we have

(2.30) −∂tφ(t, x)− κ∗[x, φ(t, ·)]|Dφ|(t, x) ≥ 0

if Dφ(t, x) 6= 0 and −∂tφ(t, x) ≥ 0 if Dφ(t, x) = 0;
(3) It is a solution of (2.18) if it is both a sub and super-solution.

It is proved in [17] that a comparison principle holds true for such super- and
sub-solutions.

2.4.3. Rigourous definition of the game. We now give a precise and rigourous descrip-
tion of the repeated game. Here and throughout the paper, a hypersurface refers to
the 0-level set of a smooth function φ. We recall the definition of the cut-off function
we considered in the repeated game for the eikonal case.

(2.31) Cε(r) = (r ∨ ε
3
2 ) ∧ ε

1
2 =


ε

3
2 if 0 < r < ε

3
2 ,

r if ε
3
2 < r < ε

1
2 ,

ε
1
2 if r > ε

1
2 .

We also recall that R is the size of the support of κ as in (2.25).

Game 3 (Integral curvature equation). At time t ∈ (0, T ), Paul starts at x with zero
score. His objective is to get the highest final score.

(1) Paul chooses a point x+
P ∈ Bε(x) and a hypersurface Γ+ passing through x+

P

defined by
Γ+ = {z ∈ RN : φ+(z) = φ+(x+

P )}
with φ+ ∈ C2(RN), oriented through the requirement φ+(x) ≤ φ+(x+

P ).
• If Dφ+(x+

P ) 6= 0 and κ∗[x+
P ,Γ

+] > 0, Carol chooses the new position point
x+
C in the half-space delimited by Γ+ i.e. in {z ∈ BR(x+

P ) : φ+(z) ≥
φ+(x+

P )}. Time gets reset to t+ = t+ Cε(εκ
∗[x+

P ,Γ
+]−1).

• If Dφ+(x+
P ) = 0 or κ∗[x+

P ,Γ
+] ≤ 0, then the game stays at x: x+

C = x.
Time gets reset to t+ = t+ ε2.
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(2) From the new position x+
C and time t+ determined above, Carol chooses a point

x−C ∈ Bε(x
+
C) and a hypersurface Γ− passing through x−C defined by

Γ− = {z ∈ RN : φ−(z) = φ−(x−C)}
with φ− ∈ C2(RN), and oriented through the requirement φ− is such that
φ−(x+

C) ≥ φ−(x−C).
• If Dφ−(x−C) 6= 0 and κ∗[x

−
C ,Γ

−] < 0, Paul chooses the new position point
x−P in the half-space delimited by Γ− i.e. in {z ∈ BR(x−C) : φ−(z) ≤
φ−(x−C)}. Time gets reset to t− = t+ + Cε(ε|κ∗[x−C ,Γ]|−1).
• If Dφ−(x−C) = 0 or κ∗[x

−
C ,Γ

−] ≥ 0, then the game stays at x+
C (x−C = x+

C)
and time gets reset to t− = t+ + ε2.

(3) Then previous steps are repeated as long as t− < T . Paul’s final score is
uT (x−P ).

Remark in particular that in Step 1, the value of the function φ+ is successively
increased while in Step 2, the value of the function φ− is successively decreased.
Precisely,

φ+(x) ≤ φ+(x+
P ) ≤ φ+(x+

C) ,

φ−(x+
C) ≥ φ−(x−C) ≥ φ−(x−P ) .

The value function for the game uε(t, x), when starting from x at time t is defined
as Paul’s maximal possible final score under the best opposition of Carol, and is
characterize by the one-step dynamic programming principle. In order to state it, we
first introduce admissible sets of points and half-spaces for both players. Precisely,
we consider

(2.32) C±(x) = {(y, ϕ) ∈ Bε(x)× C2(RN) : ±ϕ(y) ≥ ±ϕ(x)},
(2.33)

P+(x, y, ϕ) =

{
{z ∈ BR(y) : ϕ(z) ≥ ϕ(y)} if Dϕ(y) 6= 0 and κ∗[y, ϕ] > 0
{x} if not,

(2.34)

P−(x, y, ϕ) =

{
{z ∈ BR(y) : ϕ(z) ≤ ϕ(y)} if Dϕ(y) 6= 0 and κ∗[y, ϕ] < 0
{x} if not.

Hence, the dynamic programming principle associated to the game is

(2.35) uε(t, x) =

sup
(x+
P ,φ

+)∈C+(x)

{
inf

x+
C∈P+(x,x+

P ,φ
+)

{
inf

(x−C ,φ
−)∈C−(x+

C)

{
sup

x−P∈P−(x+
C ,x
−
C ,φ
−)

{
uε
(
t−, x−P

)}}}}
where
(2.36)

t+ = t +

{
Cε(εκ

∗[x+
P ,Γ

+]−1) if Dφ+(x+
P ) 6= 0 and κ∗[x+

P ,Γ
+] > 0,

ε2 if not,

t− = t+ +

{
Cε(ε|κ∗[x−C ,Γ−]|−1) if Dφ−(x−C) 6= 0 and κ∗[x

−
C ,Γ

−] < 0,
ε2 if not.
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2.4.4. Convergence result. The last main result is

Theorem 3. Assume that uT ∈ W 2,∞(RN). Then the sequence uε converges locally
uniformly as ε→ 0 towards the unique viscosity solution of (2.16), (2.5).

Remark 2.7. To avoid further technicalities, we assume that the terminal datum is
very regular; it can be shown that the result still holds true for much less regular
functions uT such as bounded uniformly continuous ones. This extension is left to
the reader.

2.5. Open problems. As we mentioned above, the games we have constructed have
much more complicated rules than the Paul-Carol game for mean curvature flow. It
is then a natural open problem to find simpler games and in particular a game for the
integral curvature flow associated with the singular measure ν(dz) = (1−α)dz/|z|N+α

which converges (in some sense) as α→ 1 to the original Paul and Carol game. The
reason to look for such as game is that it is known [17] that the integral curvature
flow converges towards the mean curvature flow as α→ 1. The same question can be
raised for the fractional Laplacian operators in the situation of PIDE’s: find a game
a natural game associated to ∆α operators, which coincides with a natural game for
α = 1.

3. Proofs of convergence results

3.1. Proof of Theorem 1. As explained in Remark 2.3, it is enough to prove the
convergence as ε→ 0 by assuming that ν is supported in BR for some fixed R > 0.

For fixed ε > 0 and x ∈ RN , the value function uε(t, x) is finite for t close to T
thanks to the following lemma. Proposition 3.2 below is needed to prove that uε(t, x)
is finite for all t ∈ (0, T ).

Lemma 3.1 (The functions uε are well defined). For all Φ ∈ C2(RN) such that

(3.1) ‖Φ‖∞ ≤ ε−α, |DΦ(x)| ≤ ε−α, |D2Φ(x)| ≤ ε−α ,

we have

−εF (t, x,DΦ(x), D2Φ(x), IR[x,Φ]) ≤ Cεγ

with γ = 1− αmax(1, k1, k2) ∈ (0, 1) and C depends on F , ν and R.

Proof of Lemma 3.1. We consider a bounded C2 function Φ such that (3.1) holds.
¿From the definition of IR[x, ·] (see (2.3)), it is clear that there exists a constant C
only depending on R and ν such that

|IR[x,Φ]| ≤ Cε−α .

We thus get from (A1) and (A3)

−εF (t, x,DΦ(x), D2Φ(x), IR[x,Φ]) ≤ Cε(1 + ε−αk1 + ε−αk2 + ε−α)

and the lemma follows at once. �

Let us define as usual the semi-relaxed limits u = lim inf∗ε→0 u
ε and u = lim sup∗ε→0 u

ε.
Theorem 1 will follow from the following two propositions.
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Proposition 3.1. The functions u and u are finite and are respectively a super-
solution and a sub-solution of (2.2).

Proposition 3.2. Given R > 0, there exists a constant C > 0 such that for all ε > 0,
all (t, x) ∈ (0, T )×BR, we have

|uε(T − t, x)− uT (x)| ≤ Ct .

In particular, u and u are finite and they satisfy at time t = T and for all x ∈ RN

u(T, x) = u(T, x) = uT (x) .

These two propositions together with the comparison principle imply that u = u,
i.e. uε converges locally uniformly towards a continuous function denoted u. This
implies that u is a (continuous) viscosity solution of (2.2) satisfying (2.5). This
finishes the proof of the theorem.

We now prove the two propositions.

Proof of Proposition 3.1. We use the general method proposed by Barles and Sougani-
dis [5] in order to prove that u is a super-solution of (2.2). This is the reason why,
given a function U : RN → R, we introduce

Sε[U ](t, x) = sup
Φ∈C2(RN )

‖Φ‖∞,|DΦ(x)|,|D2Φ(x)|≤ε−α

inf
y∈BR(x)

{
U(y) + Φ(x)− Φ(y)

− εF (t, x,DΦ(x), D2Φ(x), IR[x,Φ])

}
.

The two important properties of Sε are:

(3.2) it commutes with constants: Sε[U + C] = Rε[U ] + C for any C ∈ R;

(3.3) it is monotone: if U ≤ V then Sε[U ] ≤ Sε[V ].

The dynamic programming principle (2.7) is rewritten as follows

(3.4) uε(t, x) = Sε[uε(t+ ε, ·)](t, x).

We now explain how to prove that u is a super-solution of (2.2). The case of
u is proven analogously thanks to a “consistency lemma” (see below Lemma 3.2).
Following Definition 1 and Remark 2.1, consider a C2 bounded test function φ and
a point (t0, x0) with t0 > 0 such that u− φ admits a strict minimum 0 at (t0, x0) on
V0 = (0, T ) × BR+1(x0). By definition of u, there exists (τε, yε) such that (τε, yε) →
(t0, x0) and uε(τε, yε)→ u(t0, x0) as ε→ 0, up to a subsequence. Let then (tε, xε) be
a point of minimum of uε − φ on V0. We have

uε(tε, xε)− φ(tε, xε) ≤ uε(τε, yε)− φ(τε, yε)→ u(t0, x0)− φ(t0, x0) = 0

hence by definition of u and (t0, x0) as a strict local minimum, we conclude that we
must have (tε, xε)→ (t0, x0) as ε→ 0. In addition, for all (t, x) ∈ V0, we have

uε(t, x) ≥ φ(t, x) + (uε(tε, xε)− φ(tε, xε)) =: φ(t, x) + ξε.
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In particular, if ε is small enough, this inequality holds true on (0, T )×BR(xε). From
the definition of Sε, the dynamic programming principle (3.4), and the properties
(3.2)–(3.3), the previous inequality implies

uε(tε, xε) = Sε[uε(tε + ε, ·)](tε, xε)
≥ Sε[φ(tε + ε, ·) + ξε](tε, xε) = Sε[φ(tε + ε, ·)](tε, xε) + ξε.

Since uε(tε, xε) = φ(tε, xε) + ξε, we get

φ(tε, xε) ≥ Sε[φ(tε + ε, ·)](tε, xε).
We claim Proposition 3.1 is proved if the following lemma holds true.

Lemma 3.2 (Consistency lemma for PIDE). Consider a C2 bounded test function
ψ. Given a compact subset K of (0, T ) × RN , there then exists a function o(ε) such
that o(ε)/ε→ 0 as ε→ 0 and for all (t, x) ∈ K, we have

Sε[ψ](t, x) = ψ(x)− εF (t, x,Dψ(x), D2ψ(x), IR[x, ψ]) + o(ε).

Indeed, applying this lemma to ψ = φ(tε + ε, ·), we are led to

φ(tε, xε) ≥ φ(tε + ε, xε)

− εF (tε, xε, Dφ(tε + ε, xε), D
2φ(tε + ε, xε), IR[xε, φ(tε + ε, ·)]) + o(ε) .

Dividing by ε and letting ε→ 0 we obtain (using the C2 character of φ and continuity
of F ),

−∂tφ(t0, x0) + F (t0, x0, Dφ(t0, x0), D2φ(t0, x0), IR[x0, φ(t0, ·)]) ≥ 0.

This allows us to conclude that u is a viscosity super-solution of (2.2). The proof
that u is a sub-solution is analogous. �

We now turn to the proof of the consistency lemma, i.e. Lemma 3.2.

Proof of Lemma 3.2. This lemma easily follows from Lemma 2.1. Indeed, Lemma 2.1
implies that for ψ ∈ C2(RN), there exists o(ε) depending on ψ such that

Sε[ψ](t, x) ≤ ψ(x)− εF (t, x,Dψ(x), D2ψ(x), IR[x, ψ]) + o(ε).

On the other hand, by choosing Φ = ψ in the definition of Sε, we immediately get

Sε[ψ](t, x) ≥ ψ(x)− εF (t, x,Dψ(x), D2ψ(x), IR[x, ψ]) .

Combining the two previous inequalities yield the desired result. �

We next turn to the proof of the crucial Lemma, i.e. Lemma 2.1.

Proof of Lemma 2.1. By contradiction assume this is wrong, hence there exists η > 0
and εn → 0 such that for all y ∈ BR(x),

(3.5) Φ(x)− ψ(x)− Φ(y) + ψ(y)

> −εn
(
F (t, x,DΦ(x), D2Φ(x), IR[x,Φ])

− F (t, x,Dψ(x), D2ψ(x), IR[x, ψ])

)
+ ηεn .
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In order to simplify notation, εn is simply denoted by ε.
Let us first take y = x+ ε

1
2w with ‖w‖ = 1. Inserting into (3.5) and using the C2

character of Φ and ψ gives

−ε
1
2D(Φ− ψ)(x) · w ≥ −Cε

where C depends only on Φ, ψ, F, x and not on ε. Dividing by ε
1
2 , and using the fact

that this is true for every w ∈ RN with ‖w‖ = 1, we find that

(3.6) |D(Φ− ψ)(x)| ≤ Cε
1
2 .

Using now y = x+ ε
1
3w and doing a second order Taylor expansion of Φ−ψ, we find

−ε
1
3D(Φ− ψ)(x) · w − ε

2
3

2
〈D2(Φ− ψ)(x)w,w〉 ≥ O(ε)

and using (3.6) we obtain

〈D2(Φ− ψ)(x)w,w〉 ≤ O(ε
1
6 ) .

Since this is true for any w of norm 1, we deduce that

(3.7) |D2(Φ− ψ)(x)| ≤ O(ε
1
6 )

where |A| = λmax(A) denotes here the largest eigenvalue of a symmetric matrix.
Finally setting y = x+ z in (3.5) with z ∈ BR(0) gives

Φ(x+ z)− Φ(x) ≤ ψ(x+ z)− ψ(x) + Cε

where the constant C again depends on x,Φ, ψ, F but not on z. Integrating this
inequality with respect to z’s such that γ ≤ |z| ≤ R (with γ > 0 to be chosen later),
we obtain∫

|z|≥γ
(Φ(x+ z)− Φ(x))ν(dz) ≤

∫
|z|≥γ

(ψ(x+ z)− ψ(x))ν(dz) + Cεν(|z| ≥ γ) .

By (2.4), we know that γ2ν(|z| ≥ γ) ≤ Cν where Cν is a constant that only depends
on ν, we conclude that

(3.8)

∫
|z|≥γ

(Φ(x+ z)− Φ(x))ν(dz) ≤
∫
|z|≥γ

(ψ(x+ z)− ψ(x))ν(dz) + Cεγ−2

where C depends on x,Φ, ψ, F and ν (we do not change the name of the constant).
On the other hand, by using the C2 regularity of Φ and ψ, we obtain∫

|z|≤γ
(Φ(x+ z)− Φ(x)−DΦ(x) · z)ν(dz)

≤
∫
|z|≤γ

(ψ(x+ z)− ψ(x)−Dψ(x) · z)ν(dz)

+

(
1

2
|D2Φ(x)−D2ψ(x)|+ Cγ

)∫
|z|≤γ
|z|2ν(dz)



GAMES FOR INTEGRAL CURVATURE FLOWS 21

where C only depends on Φ and ψ. Now choosing γ = ε
1
6 and using (3.7), we get∫

|z|≤γ
(Φ(x+ z)− Φ(x)−DΦ(x) · z)ν(dz)

≤
∫
|z|≤γ

(ψ(x+ z)− ψ(x)−Dψ(x) · z)ν(dz) + Cε
1
6

where C depends only on Φ, ψ, x, F, ν. Finally, from (3.7), we have∣∣∣∣∫
ε1/6≤|z|≤1

(−DΦ(x) · z +Dψ(x) · z)ν(dz)

∣∣∣∣ ≤ Cε1/6.

Combining the above estimates with (3.8), we conclude that

(3.9) IR[x,Φ] ≤ IR[x, ψ] + Cε
1
6

where C depends on Φ, ψ, F, x and ν. Combining (3.6), (3.7) and (3.9), the continuity
of F and its monotonicity condition (2.6) yield that

(3.10) F (t, x,DΦ(x), D2Φ(x), IR[x,Φ])

− F (t, x,Dψ(x), D2ψ(x), IR[x, ψ]) ≥ o(1) .

Inserting this into (3.5) and choosing y = x, we find

0 > εo(1) + ηε

a contradiction for ε small enough. Hence the lemma is proved. �

We conclude the proof of the convergence theorem (Theorem 1) by proving that
the terminal condition is satisfied (Proposition 3.2).

Proof of Proposition 3.2. It is enough to prove that for some constant C > 0 and for
all k ∈ N, we have

(3.11) ∀(t, x) ∈ (0, T )× RN , |uε(T − kε, x)− uT (x)| ≤ Ckε .

We argue by induction. The relation (3.11) is clear for k = 0. We assume it is true
for k and we prove it for k + 1.

We first consider a family uηT of bounded C2 functions such that ‖uηT−uT‖W 2,∞ ≤ η.
From the one-step dynamic programming principle (2.7) and the choice Φ = uηT , we
easily deduce that

uε(T − (k + 1)ε, x) ≥ inf
y∈BR(x)

{uε(T − kε, y) + uηT (x)− uηT (y)

−εF (T − (k + 1)ε, x,DuηT (x), D2uηT (x), IR[x, uηT ])}
≥ inf

y∈BR(x)
{uε(T − kε, y)− uT (y)}+ uT (x)− C1ε− 2η

≥ −Ckε+ uT (x)− C1ε− 2η

where we used (3.11) and we chose

C1 = max{F (t, x, p, A, l) : t ∈ (0, T ), x ∈ BR,

|p|+ |A| ≤ 2‖uT‖W 2,∞ , |l| ≤ Cν‖uT‖W 2,∞}+ 1 .
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Changing C if necessary in (3.11) we can assume that C ≥ C1. Since η is arbitrary,
we easily get an estimate from below:

uε(T (k + 1)ε, x)− uT (x) ≥ −C(k + 1)ε.

Using once again the one-step dynamic programming principle (2.7) and (3.11), we
next get

(3.12) uε(T − (k + 1)ε, x)

≤ sup
Φ∈C2(RN )

‖Φ‖∞,|DΦ(x)|,|D2Φ(x)|≤ε−α

inf
y∈BR(x)

(
uηT (y) + Φ(x)− Φ(y)

− εF (T − (k + 1)ε, x,DΦ(x), D2Φ(x), IR[x,Φ])

)
+ Ckε+ η .

In order to get the upper bound in (3.11), we use the consistency Lemma 3.2. Ap-
plying it to Φ, ψ = uηT , t = T − (k + 1)ε, we get from (3.12)

uε(T − (k + 1)ε, x) ≤ uT (x) + Ckε+ 2η + o(ε)

−ε(F (T − (k + 1)ε, x,DuηT , D
2uηT (x), IR[x, uηT ])

≤ uT (x) + C1ε+ Ckε+ 2η

≤ uT (x) + C(k + 1)ε+ 2η

and since η is arbitrary, the proof of the proposition is now complete. �

3.2. Proof of Theorem 2. We first remark that for all ε > 0 and all (t, x) ∈
(0, T ] × RN , inf uT ≤ uε(t, x) ≤ supuT . We thus can consider the upper and lower
relaxed limits u and u (they are finite) and we will prove below the following result.

Proposition 3.3. The functions u and u are respectively a super-solution and a
sub-solution of (2.17).

In order to conclude that uε converges towards the unique solution of (2.17), (2.5),
it is then enough to prove that u(T, x) ≤ uT (x) ≤ u(T, x). This is an easy consequence
of the following proposition whose proof is postponed too.

Lemma 3.3. Given δ, R > 0 there exists C > 0 such that for all t ∈ (T − δ, T ] and
all x ∈ BR(0)

(3.13) |uε(t, x)− uT (x)| ≤ C(T − t+ ε
1
2 ) ‖uT‖Lip.

The comparison principle for (2.17) then permits to conclude.

It remains to prove Proposition 3.3 and Lemma 3.3. In order to do so, we proceed
as in the proof of Proposition 3.1 by introducing an operator Sε[φ]. More precisely,
if φ : (0, T ]× RN → R is a bounded function, we let

(3.14) Sε[φ](t, x) = sup
xP∈E+(x)

{
inf

xC∈E−(xP )
φ(tC , xC)

}
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where tC is defined by (2.22) and E± is defined by (2.20). It is convenient to write

tP = t+ TP (x, xP )

tC = tP + TC(xP , xC)

where TP and TC are defined as follows

TP (x, xP ) =

{
Cε[ε(v+(xP ))−1] if Bε(x) ∩ {v > 0} 6= ∅
ε2 if not ,

(3.15)

TC(xP , xC) =

{
Cε[ε(v−(xC))−1] if Bε(xP ) ∩ {v < 0} 6= ∅
ε2 if not .

We also introduce

Rε[φ](t, x) = sup
xP∈E+(x)

φ(tP , xP )

Rε[φ](t, x) = inf
xC∈E−(xP )

φ(tC , xC).

The two important properties of Rε are:

it commutes with constants:

Rε[φ+ c] = Rε[φ] + c for any constant c ∈ R;(3.16)

it is monotone:

if φ ≤ ψ then Rε[φ] ≤ Rε[ψ].(3.17)

We now rewrite Sε as

Sε[φ] = Rε[Rε[φ]] .

We remark that Rε and Sε also commute with constants and are monotone. One can
also observe that Rε and Rε have opposite values if v is changed into −v and φ into
−φ.

Recall that the dynamic programming principle in this context is (2.21) i.e. with
the new terminology

(3.18) uε(t, x) = Sε[uε](t, x) = Rε[Rε[uε]](t, x).

The core of the proof of of Proposition 3.3 lies in the following “consistency lemma”.

Lemma 3.4 (Consistency lemma for the eikonal equation). Consider a C1 bounded
smooth function φ : (0, T ]×R. Given r > 0 small enough and (t0, x0) ∈ (0, T−r)×RN ,
there exists a function o(1) depending only on (ε, r), φ, (t0, x0) and the speed function
v such that o(1)→ 0 as (ε, r)→ 0, and the following holds: for all (t, x) ∈ Br(t0, x0),
there exists xP , yP , xC , yC ∈ Bε(x), such that

Rε[φ](t, x)− φ(t, x) ≤ TP (x, xP )

(
∂tφ(t, x) + v+(x)|Dφ(t, x)|+ o(1)

)
,(3.19)

Rε[φ](t, x)− φ(t, x) ≥ TP (x, y)

(
∂tφ(t, x) + v+(x)|Dφ(t, x)|+ o(1)

)
,(3.20)



24 CYRIL IMBERT AND SYLVIA SERFATY

and

Rε[φ](t, x)− φ(t, x) ≤ TC(x, yC)

(
∂tφ(t, x) + v−(x)|Dφ(t, x)|+ o(1)

)
,(3.21)

Rε[φ](t, x)− φ(t, x) ≥ TC(x, xC)

(
∂tφ(t, x) + v−(x)|Dφ(t, x)|+ o(1)

)
.(3.22)

We can deduce from this lemma the following one

Lemma 3.5 (Consistency lemma for the eikonal equation - second version). We
consider a function φ : (0, T ]× R that is bounded and C1 and (t0, x0) ∈ (0, T )× RN .
There exist a function o(1) such that o(1) → 0 as (ε, r) → 0 and positive numbers
mε, Mε such that for all (t, x) ∈ Br(t0, x0) and all (ε, r) small enough

(3.23) mε

(
∂tφ(t0, x0) + v(x0)|Dφ(t0, x0)|+ o(1)

)
≤ Sε[φ](t, x)− φ(t, x)

≤Mε

(
∂tφ(t0, x0) + v(x0)|Dφ(t0, x0)|+ o(1)

)
.

The proofs of the two previous lemmas are postponed. We first explain how to
derive Proposition 3.3 from Lemma 3.5.

Proof of Proposition 3.3. We are going show that u is a super-solution. Following
Definition 2, let φ be a C1 function such that u − φ admits a minimum 0 at (t0, x0)
on V0 = Bδ(t0, x0). Without loss of generality, we can assume that this minimum is
strict, see [11]. Arguing as in the proof of Proposition 3.1, we deduce that uε − φ
admits a minimum at (tε, xε) on V0 with (tε, xε) → (t0, x0) as ε → 0; and for all
(t, x) ∈ V0

uε(t, x) ≥ φ(t, x) + (uε(tε, xε)− φ(tε, xε)) := φ(t, x) + ξε

¿From the properties (3.16), (3.17) of Sε and the dynamic programming principle
(3.18), we have

uε(tε, xε) ≥ Sε[φ+ ξε](tε, xε) = Sε[φ](tε, xε) + ξε.

Since uε(tε, xε) = φ(tε, xε) + ξε it follows that

φ(tε, xε) ≥ Sε[φ](tε, xε).

Using Lemma 3.5 applied at (tε, xε) we deduce the existence of mε such that

mε (∂tφ(t0, x0) + v(x0)|Dφ(t0, x0)|+ o(1)) ≤ 0.

Dividing by mε > 0 then letting ε→ 0 and r → 0, we obtain

∂tφ(t0, x0) + v(x0)|Dφ(t0, x0)| ≤ 0.

We thus conclude that u is a super-solution. The proof that u is a sub-solution is
entirely parallel and Proposition 3.3 is proved. �

We now turn to the core of the argument, i.e.
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Proof of Lemma 3.4. First we note that it suffices to prove (3.19), (3.20), because
(3.21) and (3.22) follow by changing φ into −φ and v into −v.

Consider (t, x) ∈ Br(t0, x0) and xP an ε3-optimal position starting from x at time
t i.e. such that xP ∈ E+(x) and

Rε[φ](t, x) = φ(tP , y) +O(ε3) .

First, remark that xP ∈ Bε(x) ⊂ Br+ε(x0). In particular, |v(xP )| ≤ |v(x0)|+Lv(r+ε)
where Lv is the Lipschitz constant of the function v. Hence, |v(y)| ≤ 1

ε
1
2

for ε small

enough (only depending on Lv, r and x0). In particular in view of the definitions

(2.19) and (3.15), TP (x, xP ) = ε2, TP (x, xP ) = εv+(xP )−1 or TP (x, xP ) = ε
1
2 .

We now distinguish these three cases.
Case TP (x, xP ) = ε2. This can only happen if xP = x, v+(x) = 0 and tP = t + ε2, so
we may write, by Taylor expansion of φ,

Rε[φ](t, x)− φ(t, x) = φ(tP , xP )− φ(t, x) +O(ε3)

= φ(t+ ε2, x)− φ(t, x) +O(ε3)

= ε2(∂tφ(t, x) + v+(x)|Dφ(t, x)|+ oε(1))

and we obtain the desired result (3.19)–(3.20).

Case TP (x, xP ) = ε
1
2 .. This case happens only if 0 < v(xP ) ≤ ε

1
2 . This implies in

particular that |v(x)| ≤ ε
1
2 + Lvε. Then we simply write

Rε[φ](t, x)− φ(t, x) = φ(t+ ε
1
2 , xP )− φ(t, x) +O(ε)

= ε
1
2 (∂tφ(t, x) + oε(1))

= ε
1
2 (∂tφ(t, x) + v+(x)|Dφ(t, x)|+ oε(1))

and we obtain the desired result in this case too.
Case TP (x, xP ) = εv(xP )−1. Then v(xP ) ≥ ε

1
2 . This implies in particular that v(x) ≥

ε
1
2 − Lvε. We write in this case, Taylor expanding φ again

Rε[φ](t, x)− φ(t, x) = φ(tP , xP )− φ(t, x) +O(ε3)

=
ε

v(xP )
(∂tφ(t, x) + oε(1)) + (xP − x) ·Dφ(t, x) +O(ε2) .

Hence, we are done if Dφ(t, x) = 0. If not, we can write

Rε[φ](t, x)− φ(t, x) ≤ ε

v(xP )
(∂tφ(t, x) + oε(1)) + ε|Dφ(t, x)|+O(ε2)

≤ ε

v(xP )
(∂tφ(t, x) + v+(x)|Dφ(t, x)|+ oε(1)) .

To get the reversed inequality in this last case, we consider yP = x+ε Dφ(t,x)
|Dφ(t,x)| . Remark

that v(yP ) ≥ v(x)−Lvε ≥ ε
1
2 − 2Lvε > 0 for ε small enough (only depending on Lv).
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Then, since yP ∈ E+(x), we have

Rε[φ](t, x)− φ(t, x) ≥ φ(t+ TP (x, yP ), yP )− φ(t, x)

≥ TP (x, yP )(∂tφ(t, x) + oε(1)) + ε|Dφ(t, x)|+O(ε2)

≥ TP (x, yP )(∂tφ(t, x) +
ε

TP (x, yP )
|Dφ(t, x)|+ oε(1))

≥ TP (x, yP )(∂tφ(t, x) + max(ε
1
2 , v(yP ))|Dφ(t, x)|+ oε(1)).

If v(yP ) ≥ ε
1
2 , then we use the Lipschitz continuity of v+ in order to get

Rε[φ](t, x)− φ(t, x) ≥ TP (x, yP )(∂tφ(t, x) + v+(x)|Dφ(t, x)|+ oε(1)).

If v(yP ) < ε
1
2 , then ε

1
2 − Lvε ≤ v(x) ≤ ε

1
2 + Lvε and we conclude that v(x) = o(1)

and the result is obtained in this case too. �

Proof of Lemma 3.5. Recall that Sε[φ] = Rε[Rε[φ]]. We distinguish cases.
Case v(x0) > 0. In this case, we can write v(x0) ≥ 2δ0 > 0. For ε small enough
and r ≤ 1

2
, we have for all xP ∈ E+(x) ⊂ Bε(x), δ0 ≤ v(xP ) ≤ v(x0) + 1 and

TP (x, xP ) = ε
v(xP )

. We thus obtain from Lemma 3.4 for all (t, x) ∈ Br(t0, x0), the

existence of xP ∈ Bε(x) such that

Rε[φ](t, x) ≤ φ(t, x) +
ε

v(xP )
(∂tφ(t, x) + v+(x)|Dφ(t, x)|+ o(1))

≤ φ(t, x) +
ε

δ1

(∂tφ(t0, x0) + v(x0)|Dφ(t0, x0)|+ o(1))

as (ε, r)→ 0, where

δ1 =

{
δ0 if ∂tφ(t0, x0) + v(x0)|Dφ(t0, x0)| > 0,
v(x0) + 1 if ∂tφ(t0, x0) + v(x0)|Dφ(t0, x0)| ≤ 0.

Since Rε commutes with constants and is monotone, the previous inequality implies
the following one

Sε[φ](t, x)− φ(t, x) ≤ Rε[φ](t, x)− φ(t, x)

+
ε

δ1

(∂tφ(t0, x0) + v(x0)|Dφ(t0, x0)|+ o(1)).

Now from (3.21) we deduce

Rε[φ](t, x) ≤ TC(x, yC) (∂tφ(t0, x0) + o(1))

for some yC ∈ Bε(x) and since v(x0) ≥ 2δ0 > 0 we have Bε(x) ∩ {v < 0} = ∅ for r
small enough and thus TC(x, yC) = ε2. It follows that

Sε[φ](t, x)− φ(t, x) ≤ ε2∂tφ(t0, x0) + o(ε2)

+
ε

δ1

(∂tφ(t0, x0) + v(x0)|Dφ(t0, x0)|+ o(1))

≤ ε

δ1

(∂tφ(t0, x0) + v(x0)|Dφ(t0, x0)|+ o(1)) .

which establishes the upper bound part in (3.23). The case v(x0) < 0 is analogous.
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Case v(x0) = 0. By (3.19), we may write

Rε[φ](t, x) ≤ φ(t, x) + TP (x, xP )(∂tφ(t, x) + o(1))

≤ φ(t, x) +Mε,1(∂tφ(t, x) + o(1))

for some positive constant Mε,1, since TP is bounded above and below by positive
constants depending on ε (the last relation is obtained by discussing according to the
sign of ∂tφ(t, x)). ¿From (3.21) we obtain similarly that

Rε[φ](t, x) ≤ φ(t, x) +Mε,2(∂tφ(t, x) + o(1))

for some positive Mε,2. Combining the two relations we obtain

Sε[φ](t, x)− φ(t, x) ≤ (Mε,1 +Mε,2)(∂tφ(t, x) + o(1)).

The lower bound is entirely parallel, and the desired result follows in this case. The
proof is now complete. �

Proof of Lemma 3.3. It is enough to study the sequence of iterated positions and
times starting from (t, x) ∈ (T − δ, T ]×BR(0). The dynamic programming principle
(2.21) gives optimal positions xP , xC such that uε(t, x) = uε(tC , xC) for the corre-
sponding time tC . Letting t0 = t and x0 = x, and iterating this, we may define for
k ∈ {1, . . . , K} optimal positions xk (corresponding to the xC) and corresponding
times tk with K such that tK ≥ T and tK−1 < T such that

uε(t0, x0) = uε(tk, xk) = uε(tK , xK) = uT (xK).

It follows that

uε(t, x)− uT (x) = uT (xK)− uT (x) .

We conclude from the previous equality that, in order to prove (3.13), it is enough to
prove that for any k ∈ {0, K − 1}
(3.24) |xk+1 − xk| ≤ C(tk+1 − tk)
with C not depending on ε and (t, x) (but possibly on δ and R).

We notice that the supremum and the infimum defining uε may not be attained. In
this case, we simply choose first an ε2-optimal position, then an ε3-optimal position
and iterating this, we obtain an error which is smaller than ε as soon as ε ≤ 1

2
.

In order to prove such a result, we first remark that it suffices to prove that

|xP − x| ≤ C(tP − t) and |xC − xP | ≤ C(tC − tP ) .

Hence, when xP = x and xC = xP , this is automatically satisfied. If not, we always
have |xP −x| ≤ ε and |xC−xP | ≤ ε. Hence, we only need to check that for such time
steps

Cε(ε|v(xP )|−1) ≥ C−1ε and Cε(ε|v(xC)|−1) ≥ C−1ε

for C > 0 well chosen. This is equivalent to showing

|v(xi)| ≤ C for i = P,C .

By Lipschitz continuity of v, there exists CR such that for all y ∈ BR+1(0)

|v(y)| ≤ CR .
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Recall that x ∈ BR(0). If the finite sequence (xk)k=0,...,K remains in BR/2(x) ⊂
BR+1(0), we are done: we choose C = CR. We now claim that the finite sequence
does remain in BR/2.

We argue by contradiction. If not, consider k0, the smallest integer k ≤ K such
that xk ∈ BR(x) \ BR/2(x) ⊂ BR+1(0). Consider also the number k1 (≤ k0) of steps
such that Paul and Carol move (i.e. xP 6= x and xC 6= xP ). This implies that the
corresponding time increments are at least ε/CR. This also implies that 2k1ε ≥ R/2.
Indeed,

R

2
≤ |xk0 − x| ≤

k0−1∑
i=0

|xi+1 − xi| ≤ k1 × (2ε) .

Recalling that t ∈ (T − δ, T ], it is now enough to choose

δ <
R

4CR

to conclude that tk0−t ≥ k1ε
CR
≥ R

4CR
> δ and thus tk0 > T , and get a contradiction. �

3.3. Proof of Theorem 3. First we denote u = lim inf∗ u
ε and u = lim sup∗ uε.

These relaxed semi-limits are finite since we always have inf uT ≤ uε ≤ supuT and
uT is assumed to be uniformly bounded. The theorem follows as above from the
following two results

Proposition 3.4. The functions u and u are respectively a super-solution and a
sub-solution of (2.18).

Lemma 3.6. Given R, δ, there exists C > 0 such that for all t ∈ (0, δ) and all
x ∈ BR(0)

(3.25) |uε(t, x)− uT (x)| ≤ C(T − t+ ε
1
2 ) .

Lemma 3.6 implies that u(T, x) ≥ uT (x) ≥ u(T, x) and the comparison principle
for (2.18) (see [17]) permits to conclude.

It remains to prove Proposition 3.4 and Lemma 3.6. We first introduce some
notation, analogous to that of Section 3.2. Given x ∈ RN and φ ∈ C2, TP and TC are
defined by

TP (x, φ) =

{
Cε(εκ

∗[x, φ]−1) if Dφ(x) 6= 0 and κ∗[x, φ] > 0
ε2 if not

(3.26)

TC(x, φ) =

{
Cε(ε|κ∗[x, φ]|−1) if Dφ(x) 6= 0 and κ∗[x, φ] < 0
ε2 if not .

It is convenient to write

t+ = t+ TP (x+
P , φ

+)

t− = t+ + TC(x−C , φ
−)

where TP and TC are defined by (3.26).
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We now introduce for any arbitrary function φ : (0, T ) × RN → R the following
operator

Sε[φ](t, x) = sup
(x+
P ,φ

+)∈C+(x)

{
inf

x+
C∈P+(x,x+

P ,φ
+)

{
inf

(x−C ,φ
−)∈C−(x+

C)

{
sup

x−P∈P−(x+
C ,x
−
C ,φ
−)

{
φ(t−, x−P )

}}}}
where t− is defined in (2.36). The dynamic programming principle (2.35) can be
rewritten as follows

(3.27) uε(t, x) = Sε[uε](t, x).

For the reader’s convenience, we recall here the definitions of C±(x) and P±(x, y, ϕ):

C±(x) = {(y, ϕ) ∈ Bε(x)× C2(RN) : ±ϕ(y) ≥ ±ϕ(x)} ,

P+(x, y, ϕ) =

{
{z ∈ BR(y) : ϕ(z) ≥ ϕ(y)} if Dϕ(y) 6= 0 and κ∗[y, ϕ] > 0
{x} if not,

P−(x, y, ϕ) =

{
{z ∈ BR(y) : ϕ(z) ≤ ϕ(y)} if Dϕ(y) 6= 0 and κ∗[y, ϕ] < 0
{x} if not.

Let us also define the following operators

Rε[φ](t, x) = sup
(y,ϕ)∈C+(x)

inf
z∈P+(x,y,ϕ)

φ(t+ TP (y, ϕ), z) ,

Rε[φ](t, x) = inf
(y,ϕ)∈C−(x)

sup
z∈P−(x,y,ϕ)

φ(t+ TC(y, ϕ), z) .

The reader can notice that

Sε[φ](t, x) = Rε[Rε[φ]](t, x) ,(3.28)

Rε[φ](t, x) = −Rε[−φ](t, x)

In order to get the second equality, we need to remark that

(z, ϕ) ∈ C+(y) ⇔ (z,−ϕ) ∈ C−(y) ,

z ∈ P+(y, ϕ) ⇔ z ∈ P−(y,−ϕ) ,

TP (z, ϕ) = TC(z,−ϕ) .

Moreover, the operator Rε is monotone and commutes with constants:

φ1 ≤ φ2 ⇒ Rε[φ1] ≤ Rε[φ2](3.29)

Rε[φ+ c] = Rε[φ] + c(3.30)

for all c ∈ R. The proof of Proposition 3.4 relies on four consistency lemmas. Before
stating them, let us point out that we will write κ[·]+ for the positive part of κ[·] and
κ[·]− for the negative part (both being nonnegative).

Lemma 3.7 (Estimate from below forRε). Consider a C2 function φ : (0, T ]×RN →
R and (t0, x0) ∈ (0, T )× RN . There exists a function o(1) depending on φ and (ε, r)
such that o(1) → 0 as (ε, r) → 0 and such that for all (t, x) ∈ Br(t0, x0) there exists
(y, ϕ) ∈ C+(x) such that



30 CYRIL IMBERT AND SYLVIA SERFATY

• if Dφ(t0, x0) 6= 0,
(3.31)

Rε[φ](t, x)− φ(t, x) ≥ TP (y, ϕ)

(
∂tφ(t0, x0) + κ∗[x0, φ(t0, ·)]+|Dφ(t0, x0)|+ o(1)

)
,

(3.32) |Dϕ(y)| ≥ 1

2
|Dφ(t0, x0)|

and

(3.33) κ∗[x0, φ(t0, ·)] + o(1) ≤ κ∗[y, ϕ] ≤ κ∗[y, ϕ] ≤ κ∗[x0, φ(t0, ·)] + o(1);

• if Dφ(t0, x0) = 0, (3.31) still holds true with the convention

κ∗[x0, φ(t0, ·)]+|Dφ(t0, x0)| = 0

and TP (y, ϕ) = ε2.

Lemma 3.8 (Estimate from above forRε). Consider a C2 function φ : (0, T ]×RN →
R and (t0, x0) ∈ (0, T ) × RN . There exists a function o(1) such that o(1) → 0 as
(ε, r)→ 0 and such that for all (t, x) ∈ Br(t0, x0)

• either

(3.34) Rε[φ](t, x)− φ(t, x) ≤ ε2(∂tφ(t0, x0) + o(1)) ;

• or Dφ(t0, x0) = 0 and

(3.35) Rε[φ](t, x)− φ(t, x) ≤ TP (y, ϕ)(∂tφ(t0, x0) + o(1))

for some (y, ϕ) ∈ C+(x);
• or Dφ(t0, x0) 6= 0 and κ∗[x0, φ(t0, ·)] ≥ 0 and

(3.36)
Rε[φ](t, x) − φ(t, x) ≤ TP (y, ϕ)(∂tφ(t0, x0) + κ∗[x0, φ(t0, ·)]|Dφ(t0, x0)| + o(1))

for some (y, ϕ) ∈ C+(x) such that TP (y, ϕ) = min
(
ε/κ∗[y, ϕ], ε

1
2

)
with

(3.37) 0 < κ∗[y, ϕ] ≤ κ∗[x0, φ(t0, ·)] + o(1).

By using the fact that Rε[φ] = −Rε[−φ] and exchanging the roles of + and −, we
then can deduce from the two previous lemmas the two following ones.

Lemma 3.9 (Estimate from above forRε). Consider a C2 function φ : (0, T ]×RN →
R and (t0, x0) ∈ (0, T )× RN . There exists a function o(1) depending on φ and (ε, r)
such that o(1) → 0 as (ε, r) → 0 and such that for all (t, x) ∈ Br(t0, x0) there exists
(y, ϕ) ∈ C−(x) such that

• if Dφ(t0, x0) 6= 0,
(3.38)

Rε[φ](t, x)− φ(t, x) ≤ TC(y, ϕ)

(
∂tφ(t0, x0)− κ∗[x0, φ(t0, ·)]−|Dφ(t0, x0)|+ o(1)

)

(3.39) |Dϕ(y)| ≥ 1

2
|Dφ(t0, x0)|
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and

(3.40) κ∗[x0, φ(t0, ·)] + o(1) ≤ κ∗[y, ϕ] ≤ κ∗[y, ϕ] ≤ κ∗[x0, φ(t0, ·)] + o(1);

• if Dφ(t0, x0) = 0, then (3.38) still holds true with the convention

κ∗[x0, φ(t0, ·)]−|Dφ(t0, x0)| = 0

and TC(y, ϕ) = ε2.

Lemma 3.10 (Estimate from below for Rε). Consider a C2 function φ : (0, T ] ×
RN → R and (t0, x0) ∈ (0, T )× RN . There exists a function o(1) such that o(1)→ 0
as (ε, r)→ 0 and such that for all (t, x) ∈ Br(t0, x0)

• either

(3.41) Rε[φ](t, x)− φ(t, x) ≥ ε2(∂tφ(t0, x0) + o(1));

• or Dφ(t0, x0) = 0 and

(3.42) Rε[φ](t, x)− φ(t, x) ≥ TC(y, ϕ)(∂tφ(t0, x0) + o(1))

for some (y, ϕ) ∈ C−(x);
• or Dφ(t0, x0) 6= 0 and κ∗[x0, φ(t0, ·)] ≤ 0 and

(3.43)
Rε[φ](t, x) − φ(t, x) ≥ TC(y, ϕ)(∂tφ(t0, x0) + κ∗[x0, φ(t0, ·)]|Dφ(t0, x0)| + o(1))

for some (y, ϕ) ∈ C−(x) such that TC(y, ϕ) = min
(
ε/|κ∗[y, ϕ]|, ε 1

2

)
with

0 > κ∗[y, ϕ] ≥ κ∗[x0, φ(t0, ·)] + o(1).

The proofs of Lemmas 3.7 and 3.8 are postponed. We now explain how to derive
Proposition 3.4.

Proof of Proposition 3.4. We only prove that u is a sub-solution of (2.18) since a
symmetric argument can be used to prove that u is a super-solution. In order to
do so, we consider a (t0, x0) ∈ (0, T ) × RN and a φ ∈ C2 such that u − φ attains a
strict maximum at (t0, x0) in (0, T )×BR+1(x0). We want to prove that −∂tφ(t0, x0)−
κ∗[x0, φ(t0, ·)]|Dφ(t0, x0)| ≤ 0 if Dφ(t0, x0) 6= 0 and −∂tφ(t0, x0) ≤ 0 if Dφ(t0, x0) = 0.

We know that there exists a sequence (tεn , xεn) such that uεn−φ attains a maximum
in (0, T ) × BR(xεn) at (tεn , xεn). For simplicity, we simply write (t, x) for (tεn , xεn)
and ε for εn. With the same argument as in the proof of Propositions 3.1 and 3.3,
the dynamic programming principle (3.27) and the monotonicity of Sε imply that

(3.44) φ(t, x) ≤ Sε[φ](t, x).

We now estimate Sε[φ](t, x) from above. We distinguish cases.
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Case Dφ(t0, x0) 6= 0 and κ∗[x0, φ(t0, ·)] > 0. Lemma 3.9 yields an (y, ϕ) ∈ C−(x), with
κ∗[y, ϕ] > 0 (by (3.40)) for ε small enough, thus TC(y, ϕ) = ε2, so that

Rε[φ](t, x)− φ(t, x) ≤ ε2 (∂tφ(t0, x0) + o(1))

and using properties (3.29)–(3.30), we find

Sε[φ](t, x) = Rε[Rε[φ]](t, x)

≤ Rε[φ](t, x) + ε2(∂tφ(t0, x0) + o(1)).

We now use Lemma 3.8. If (3.34) holds true, then (with (3.44))

0 ≤ Sε[φ](t, x)− φ(t, x) ≤ 2ε2(∂tφ(t0, x0) + o(1))

and we conclude that ∂tφ(t0, x0) ≥ 0. The result follows easily in this subcase. The
subcase where (3.35) holds works similarly.

If now (3.36) holds true, we get

0 ≤ Sε[φ](t, x)− φ(t, x) ≤ TP (y, ϕ)(∂tφ(t0, x0) + κ∗[x0, φ(t0, ·)]|Dφ(t0, x0)|+ o(1))

+ ε2 (∂tφ(t0, x0) + o(1)) .

Since TP (y, ϕ) = min
(
ε/κ∗[y, ϕ], ε

1
2

)
, this can be written as

0 ≤ Sε[φ](t, x)− φ(t, x) ≤ TP (y, ϕ)(∂tφ(t0, x0) + κ∗[x0, φ(t0, ·)]|Dφ(t0, x0)|+ o(1))

and dividing by TP (y, ϕ) and letting ε→ 0, the desired inequality follows.
Case Dφ(t0, x0) 6= 0 and κ∗[x0, φ(t0, ·)] < 0. We apply first Lemma 3.9 and find

Rε[φ](t, x)− φ(t, x) ≤ TC(y, ϕ)(∂tφ(t0, x0) + κ∗[x0, φ(t0, x0)]|Dφ(t0, x0)|+ o(1)).

We note that from (3.39) we have Dϕ(y) 6= 0. Now we cannot have κ∗[y, ϕ] ≥ 0, other-
wise a contradiction would follow from (3.40) and our assumption κ∗[x0, φ(t0, ·)] < 0.
We deduce that the case TC(y, ϕ) = ε2 cannot happen and we must have κ∗[y, ϕ] < 0
and ε2 = o(TC(y, ϕ)). With this piece of information at hand, we can write, as previ-
ously

0 ≤ Sε[φ](t, x)− φ(t, x) ≤ Rε[φ](t, x)− φ(t, x)

+ TC(y, ϕ)(∂tφ(t0, x0) + κ∗[x0, φ(t0, ·)]|Dφ(t0, x0)|+ o(1)).

On the other hand, Lemma 3.8 yields (we can only be in the first situation of the
lemma)

Rε[φ](t, x) ≤ φ(t, x) +O(ε2) = φ(t, x) + o(TC(y, ϕ)),

and we can write, dividing by TC(y, ϕ),

0 ≤ ∂tφ(t0, x0) + κ∗[x0, φ(t0, ·)]|Dφ(t0, x0)|+ o(1)

and the desired inequality is thus obtained in this case too.



GAMES FOR INTEGRAL CURVATURE FLOWS 33

Case Dφ(t0, x0) 6= 0 and κ∗[x0, φ(t0, ·)] = 0. Once again, we first apply Lemma 3.9
and we obtain

0 ≤ Sε[φ](t, x)− φ(t, x) ≤ Rε[φ](t, x)− φ(t, x) + TC(y, ϕ)(∂tφ(t0, x0) + o(1)).

Lemma 3.8 implies that

Rε[φ](t, x)− φ(t, x) ≤Mε(∂tφ(t0, x0) + o(1))

with Mε = ε2 or Mε = TP (y, ϕ). Hence we obtain

0 ≤ (TC(y, ϕ) +Mε)(∂tφ(t0, x0) + o(1))

and we obtain the desired inequality in this case too.
Case Dφ(t0, x0) = 0. Then Lemmas 3.9 and 3.8 yield

0 ≤ (ε2 + TP (y, ϕ))(∂tφ(t0, x0) + o(1))

or 0 ≤ 2ε2(∂tφ(t0, x0) + o(1)), and the proof of the proposition is now complete. �

We now turn to the proofs of Lemmas 3.7 and 3.8. As the reader shall see, we
follow along the lines of proofs of Lemmas 3.4 and 3.5 used in the eikonal case.

Proof of Lemma 3.7. We first assume that Dφ(t0, x0) 6= 0. So we can assume that,
for ε small enough, |Dφ(t, x)| ≥ θ0 > 0.

Consider y = x + ε Dφ(t,x)
|Dφ(t,x)| and ϕ(z) = φ(t, z) − αε(z) with αε : RN → [0,+∞)

smooth and

αε(z) =

{
0 if |z − x| ≤ ε

ε
1
4 if |z − x| ≥ 2ε.

We also can write for ε small enough

ϕ(y) = φ(t, y) = φ(t, x) + ε|Dφ(t, x)|+O(ε2) ≥ φ(t, x) = ϕ(x)

(we used the fact that |Dφ(t, x)| ≥ θ0 > 0). This means that (y, ϕ) ∈ C+(x) (at least
for ε small enough). Remark also that (3.32) holds. Hence

Rε[φ](t, x) ≥ inf
z∈P+(x,y,ϕ)

φ(t+ TP (y, ϕ), z).

Since (t, y) = (t0, x0) + oε(1) and ϕ ≤ φ(t, ·), it follows that

{z|ϕ(z) ≥ ϕ(y) = φ(t, y)} ⊂ {z|φ(t, z) ≥ φ(t, y)}

and, using the monotonicity of κ∗ and its upper semi-continuity (see (2.28) and
(2.26)), we conclude that

(3.45) κ∗[y, ϕ] ≤ κ∗[y, φ(t, ·)] ≤ κ∗[x0, φ(t0, ·)] + oε(1)

for ε small enough; the other part of (3.33) follows similarly by lower semi-continuity
of κ∗ (2.27). (3.33) is thus proved. Moreover (3.45) implies κ∗[y, ϕ] < 1√

ε
hence either

TP (y, ϕ) = ε2 or TP (y, ϕ) = ε
κ∗[y,ϕ]+

or TP (y, ϕ) = ε
1
2 . We treat these cases separately.
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Case TP (y, ϕ) = ε2. We know that in this case we have κ∗[y, ϕ] ≤ 0 and P+(x, y, ϕ) =
{x}. Hence,

Rε[φ](t, x)− φ(t, x) ≥ φ(t+ ε2, x)− φ(t, x) +O(ε3)

≥ ε2(∂tφ(t, x) + oε(1)).

Since κ∗[y, ϕ] ≤ 0 we deduce from (3.33) κ∗[x0, φ(t0, ·)] ≤ 0. hence (3.31) is proved in
this case.

In the two remaining cases, we have TP (y, ϕ) ≤ ε
1
2 and P+(x, y, ϕ) 3 y. These two

facts imply the following inequality

(3.46) Rε[φ](t, x) ≥ inf
z∈P+(x,y,ϕ)∩B2ε(x)

φ(t+ TP (y, ϕ), z).

i.e. the fact that the infimum can only be achieved in B2ε(x). To see this, we simply
write for z ∈ P+(x, y, ϕ) such that z /∈ B2ε(x),

φ(t+ TP (y, ϕ), z) = φ(t, z) +O(TP (y, ϕ))

≥ φ(t, y) + ε
1
4 +O(ε

1
2 )

≥ φ(t+ TP (y, ϕ), y) + ε
1
4 +O(ε

1
2 )

> inf
z∈P+(x,y,ϕ)∩B2ε(x)

φ(t+ TP (y, ϕ), z)

and (3.46) follows.

Case TP (y, ϕ) = ε
1
2 . By definition of Cε, this happens if κ∗[y, ϕ] ≤ ε

1
2 and from (3.33)

it follows that κ∗[x0, φ(t0, ·)] ≤ 0. For z ∈ P+(x, y, ϕ) ∩B2ε(x), we have

φ(t+ TP (y, ϕ), z)− φ(t, x) ≥ φ(t+ ε
1
2 , z)− φ(t, z) + φ(t, z)− φ(t, x) +O(ε3)

But ϕ(z) ≥ ϕ(y) since z ∈ P+(x, y, ϕ), hence φ(t, z)− αε(z) ≥ φ(t, y) so replacing in
the above and using αε ≥ 0 we are led to

φ(t+ TP (y, ϕ), z)− φ(t, x) ≥ φ(t+ ε
1
2 , z)− φ(t, z) + φ(t, y)− φ(t, x) +O(ε3)

≥ ε
1
2∂tφ(t, x) + ε|Dφ(t, x)|+ oε(ε)

≥ ε
1
2 (∂tφ(t, x) + oε(1))

≥ ε
1
2 (∂tφ(t, x) + κ∗[x0, φ(t0, ·)]+|Dφ(t0, x0)|+ oε(1))

and we get (3.31) in this case too.
Case TP (y, ϕ) = ε

κ∗[y,ϕ]+
. Observe that from (3.45), κ∗(y, ϕ) is bounded above hence

TP (y, ϕ) bounded below by cε. As above, we may write, recalling the choice of
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y = x+ ε Dφ(t,x)
|Dφ(t,x)|

Rε[φ](t, x)− φ(t, x) ≥ inf
z∈P+(x,y,ϕ)∩B2ε(x)

φ(t+ TP (y, ϕ), z)− φ(t, x)

≥ inf
z∈P+(x,y,ϕ)∩B2ε(x)

φ(t+ TP (y, ϕ), z)− φ(t, z) + φ(t, z)− φ(t, x)

≥ TP (y, ϕ)(∂tφ(t, x) + oε(1)) + φ(t, y)− φ(t, x)

≥ TP (y, ϕ)(∂tφ(t, x) + oε(1)) + ε|Dφ(t, x)|+O(ε2)

≥ TP (y, ϕ)

(
∂tφ(t, x) +

ε

TP (y, ϕ)
|Dφ(t, x)|+ oε(1)

)
≥ TP (y, ϕ)

(
∂tφ(t, x) + κ∗[y, ϕ]+|Dφ(t, x)|+ oε(1)

)
≥ TP (y, ϕ)

(
∂tφ(t, x) + κ∗[x0, φ(t0, ·)]+|Dφ(t0, x0)|+ oε(1)

)
where the last inequality follows from (3.33) ; and we get (3.31) in all cases.

Assume now that Dφ(t0, x0) = 0. Then choose y = x and ϕ(z) = −αε(z). This is
admissible and Dϕ(y) = 0 and TP (y, ϕ) = ε2 and the conclusion follows easily. �

We now turn to the proof of Lemma 3.8.

Proof of Lemma 3.8. We recall that

(3.47) Rε[φ](t, x) = sup
(y,ϕ)∈C+(x)

inf
z∈P+(x,y,ϕ)

φ(t+ TP (y, ϕ), z)

In view of the definition of C+(x) and P+(x, y, ϕ), we can write more precisely

(3.48) Rε[φ](t, x)

= sup
ϕ∈C2(RN )

max

(
sup

y∈Bε(x):ϕ(y)≥ϕ(x)

Dϕ(y)6=0, κ∗[y,ϕ]>0,

inf
z∈P+(x,y,ϕ)

φ(t+ TP (y, ϕ), z), φ(t+ ε2, x)

)
.

Let ϕ be a fixed C2 test function.
Case 1. Assume first that the max above is φ(t+ ε2, x). Then we easily obtain (3.34)
as desired.
Case 2. We then turn to the situation where

(3.49) sup
y∈Bε(x):ϕ(y)≥ϕ(x)

Dϕ(y) 6=0,κ∗[y,ϕ]>0

inf
z∈P+(x,y,ϕ)

φ(t+ TP (y, ϕ), z) > φ(t+ ε2, x).

We need to prove that (3.35) or (3.36) holds true in this case. So let y ∈ Bε(x) be
such that ϕ(y) ≥ ϕ(x), Dϕ(y) 6= 0 and κ∗[y, ϕ] > 0, and such that

(3.50) inf
z∈P+(x,y,ϕ)

φ(t+ TP (y, ϕ), z) > φ(t+ ε2, x)− ε3.
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For any z ∈ P+(x, y, ϕ) = {z ∈ BR(y) : ϕ(z) ≥ ϕ(y)} we may write

φ(t+, z)− φ(t, x) = φ(t+, z)− φ(t+, y) + φ(t+, y)− φ(t, x)

= φ(t+, z)− φ(t+, y)

+TP (y, ϕ)(∂tφ(t0, x0) + oε(1)) +Dφ(t+, y) · (y − x) +O(ε2),

and using the fact that |y−x| ≤ ε and O(ε2) = o(t+− t) since TP (y, ϕ) ≥ ε3/2 in this
case; we obtain

(3.51) φ(t+, z)− φ(t, x) ≤ φ(t+, z)− φ(t+, y) + ε|Dφ(t+, y)|
+ TP (y, ϕ)(∂tφ(t0, x0) + oε(1)).

We now evaluate φ(t+, z)−φ(t+, y). In view of (3.48), (3.49) and (3.51), the following
lemma permits to conclude.

Lemma 3.11. For any (y, ϕ) ∈ C+(x) with Dϕ(y) 6= 0, κ∗[y, ϕ] > 0, such that (3.50)
holds, we have

(3.52) inf
z∈P+(x,y,ϕ)

φ(t+, z)− φ(t+, y) ≤ TP (y, ϕ)(κ∗[x0, φ(t0, ·)]+|Dφ(t0, x0)|+ oε(1))

− ε|Dφ(t+, y)|.
Moreover, if Dφ(t0, x0) 6= 0, we have

0 < κ∗[y, ϕ] ≤ κ∗[x0, φ(t0, ·)] and TP (y, ϕ) = min
(
ε/κ∗(y, ϕ), ε

1
2

)
.

There now remains to give the proof of Lemma 3.11. We start by

Lemma 3.12. If Dφ(t0, x0) 6= 0, then for any (y, ϕ) as in the above lemma, we have

0 < κ∗[y, ϕ] ≤ κ∗[x0, φ(t0, ·)].

Proof of Lemma 3.12. We are in the case where (3.50) holds true, hence for all z ∈
{z ∈ BR(y) : ϕ(z) ≥ ϕ(y)}, we have φ(t+TP (y, ϕ), z) ≥ φ(t+ε2, x)−ε3. This implies

(3.53) {z ∈ BR(0) : ϕ(y + z) ≥ ϕ(y)} ⊂ {z ∈ BR(0) : φ(t0, x0 + z) ≥ φ(t0, x0)}.
Indeed, if z ∈ BR(0) is such that φ(t0, x0 + z) < φ(t0, x0), then for ε small enough
and (t, x)− (t0, x0) small enough, φ(t+TP (y, ϕ), y+ z) < φ(t+ ε2, x)− ε3 and in view
of the above this implies ϕ(y + z) < ϕ(y). By properties of the non-local curvature,
(3.53) implies (3.54) and the proof of the lemma is complete. �

We can now complete the proof of Lemma 3.11 by

Proof of (3.52). Remark first that Lemma 3.12 implies in particular that

(3.54) κ∗[y, ϕ]|Dφ(t0, x0)| ≤ κ∗[x0, φ(t0, ·)]|Dφ(t0, x0)|
since this inequality is trivial when Dφ(t0, x0) = 0.

We now argue by contradiction. We thus assume that there exists η > 0, εn → 0,
(tn, xn) → (t0, x0) and (yn, ϕn) ∈ C+(xn) such that Dϕn(yn) 6= 0, κ∗[yn, ϕ] > 0 and
(3.50) holds, and for all z ∈ BR(yn) ∩ {ϕn ≥ ϕn(yn)}, we have
(3.55)
φ(t+n , z)− φ(t+n , yn) ≥ TP (yn, ϕn)(κ∗[x0, φ(t0, ·)]+|Dφ(t0, x0)|+ η)− εn|Dφ(t+n , yn)|.



GAMES FOR INTEGRAL CURVATURE FLOWS 37

It then follows from (3.54) that for n large enough
(3.56)

φ(t+n , z)− φ(t+n , yn) ≥ TP (yn, ϕn)
(
κ∗[yn, ϕn]|Dφ(t+n , yn)|+ η

2

)
− εn|Dφ(t+n , yn)|.

Assume first that there exists a subsequence such that TP (yn, ϕn) = ε
1
2
n . In this case,

for all z ∈ BR(yn) ∩ {ϕn ≥ ϕn(yn)}, we find

φ(t+n , z)− φ(t+n , yn) ≥ η

2
ε

1
2
n +O(εn) > 0

for n large enough. We obtain a contradiction by taking z = yn.
Either we have TP (yn, ϕn) = ε3/2 or TP (yn, ϕn) = εn/κ

∗[yn, ϕn]. In both situations
we have TP (yn, ϕn) ≥ εn/κ

∗[yn, ϕn]. Choosing z = yn in (3.56) yields

0 ≥ TP (yn, ϕn)
η

2

which is a contradiction. �

�

We next prove that the terminal condition is satisfied at the limit.

Proof of Lemma 3.6. The proof consists in proving the following estimate

(3.57) |uε(t, x)− uT (x)| ≤ C(T − t)

for t < T and x ∈ RN with

C = sup
x∈RN

max(|κ∗[x, uT ]||DuT (x)|+ 1, |κ∗[x, uT ]||DuT (x)|+ 1).

We remark that (3.57) is a consequence of the following lemma.

Lemma 3.13. Consider k ∈ N ∩ (0, ε−2T ). If,

(3.58) ∀(t, x) ∈ (T − kε2, T )× RN , |uε(t, x)− uT (x)| ≤ C(T − t),

then

(3.59) ∀(t, x) ∈ (T − (k + 1)ε2, T )× RN , |uε(t, x)− uT (x)| ≤ C(T − t).

�

It remains to prove Lemma 3.13.

Proof of Lemma 3.13. We only prove that for all (t, x) ∈ (T − (k+ 1)ε2, T )×RN , we
have

uε(t, x) ≥ uT (x)− C(T − t)
and the reader can check that the proof of the reverse inequality is similar.

It is enough to consider t ∈ (T − (k + 1)ε2, T − kε2). We recall that the dynamic
programming principle can be written as follows

uε(t, x) = Sε[uε](t, x) = Rε[Rε[u
ε]](t, x).
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Thanks to Lemma 3.10 and (3.58), we know that there exists (y, ϕ) ∈ C+(x) such
that

Rε[u
ε](t, x) ≥ uT (x)− C(T − (t+ TC(y, ϕ)))− TC(y, ϕ)(κ∗[x, uT ]|DuT (x)|+ 1)

≥ uT (x)− C(T − t).

We now use that Rε is monotone and commutes with constants (see (3.29) and
(3.30)) in order to write

uε(t, x) ≥ Rε[uT ](x)− C(T − t).

We remark next that (x, uT ) ∈ C+(x) and we write

uε(t, x) ≥ inf
z∈P+(x,x,uT )

uT (z)− C(T − t).

We distinguish cases.
If DuT (x) 6= 0 and κ∗[x, uT ] > 0, then we have the desired inequality; indeed,

uε(t, x) ≥ inf
z:uT (z)≥uT (x)

uT (z)− C(T − t)

≥ uT (x)− C(T − t).

If now DuT (x) = 0 or κ∗[x, uT ] ≤ 0, then we also have

uε(t, x) ≥ uT (x)− C(T − t).

The proof of Lemma 3.13 is now complete. �
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