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Abstract. Large ensembles of points with Coulomb interactions arise in var-

ious settings of condensed matter physics, classical and quantum mechanics,

and even approximation theory, and give rise to a variety of questions per-
taining to calculus of variations, partial differential equations, and probability.

We will review motivations from these fields as well as “mean-field limit” re-
sults that allow us to derive effective models and equations describing those

systems at the macroscopic scale. We then explain how to analyze the next-

order beyond the mean-field limit, obtaining information about systems at
the microscopic level. In the setting of statistical mechanics this allows, for in-

stance, to observe the effect of temperature and to connect with crystallization

questions.

1. General setup

The 18th century physicist Charles-Augustin de Coulomb was the first to pos-
tulate that electrically charged particles interact with one another by a force pro-
portional to the inverse square of their distances, in a way similar to Newton’s
gravitational force. In this paper we are interested in large systems of points (or
particles) interacting by such forces, having as motivation, besides the case of clas-
sical mechanics, numerous other situations that we will detail below.

Recalling that the force is the gradient of the energy, we consider a system of N
particles with energy of the form

(1.1) HN (x1, . . . , xN ) =
1

2

∑
1≤i6=j≤N

g(xi − xj) +N

N∑
i=1

V (xi).

Here the points xi belong to the Euclidean space Rd, although it is also interesting
to consider points on manifolds. The interaction kernel g(x) is taken to be

g(x) = − log |x|, in dimension d = 2,(1.2)

g(x) =
1

|x|d−2
, in dimension d ≥ 3.(1.3)

Up to a multiplicative constant, this is the Coulomb kernel in dimension d ≥ 2,
i.e. the fundamental solution to the Laplace operator, solving

(1.4) −∆g = cdδ0

where δ0 is the Dirac mass at the origin, and cd is an explicit constant depending
only on the dimension.

It is also interesting to broaden the study to the one-dimensional logarithmic
case
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(1.5) g(x) = − log |x|, in dimension d = 1,

which is not Coulombian, and to more general Riesz interaction kernels of the form

(1.6) g(x) =
1

|x|s
s > 0.

The one-dimensional Coulomb interaction with kernel −|x| is also of interest,
but has been extensively studied and is well understood.

We also include a possible external field or confining potential V , which is as-
sumed to be sufficiently smooth and tending to infinity fast enough at infinity. The
factor N in front of V makes the total confinement energy of the same order as
the total repulsion energy, effectively balancing them and confining the system to
a subset of Rd of fixed size.

The Coulomb interaction and the Laplace operator are obviously extremely im-
portant and ubiquitous in physics as the fundamental interactions of nature (grav-
itational and electromagnetic) are Coulombic. Below we will further review the
reasons for studying this type of systems.

There are several mathematical problems that are interesting to study, all in the
asymptotic limit of N →∞:

(1) understand the minimizers and possibly critical points of (1.1) ;
(2) understand the statistical mechanics of systems with energyHN and inverse

temperature β > 0, governed by the so-called Gibbs measure

(1.7) dPN,β(x1, . . . , xN ) =
1

ZN,β
e−βHN (x1,...,xN )dx1 . . . dxN .

Here PN,β is the probability density of observing the system in the config-
uration (x1, . . . , xN ) if the inverse of the temperature is 1/β. The constant
ZN,β , which is called the “partition function” in physics, is the normaliza-
tion constant that makes PN,β a probability measure1 i.e.

(1.8) ZN,β =

∫
(Rd)N

e−βHN (x1,...,xN )dx1 . . . dxN ;

(3) understand the dynamic evolutions associated to (1.1), such as the gradient
flow of HN given by the system of coupled ODEs

(1.9) ẋi = − 1

N
∇iHN (x1, . . . , xN ),

the conservative dynamics given by the systems of ODEs

(1.10) ẋi =
1

N
J∇iHN (x1, . . . , xN ),

where J is an antisymmetric matrix, or the Hamiltonian dynamics given by
Newton’s law

(1.11) ẍi = − 1

N
∇iHN (x1, . . . , xN );

and we can also be interested in these dynamics with an added noise.

1One does not know how to explicitly compute the integrals (1.8) except in the particular case
of (1.5) for specific cases of V where they are called Selberg integrals (cf. [Fo])
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From a mathematical point of view, the study of such systems touches on sev-
eral fields of mathematical analysis (partial differential equations and calculus of
variations, approximation theory), probability theory, mathematical physics, and
even geometry (when one considers such systems on manifolds). Some of the crys-
tallization questions they lead to also overlap with number theory, as we will see
below.

2. Motivations

There is a large number of motivations for the study of the above questions. We
briefly describe some of them:

(1) In superconductors, superfluids, and Bose-Einstein condensates, one ob-
serves the occurrence of quantized “vortices” which behave mathematically
like interacting particles with two-dimensional Coulomb interactions. In
these systems the vortices repel each other logarithmically, while being
confined together by the effect of the magnetic field or rotation, and the
result of the competition between these two effects is that, as predicted
by Abrikosov, the vortices arrange themselves in a perfect triangular lat-
tice pattern, called Abrikosov lattice, cf. Figure 1 (for more pictures, see
www.fys.uio.no/super/vortex/).

Figure 1. Vortices (in black) forming an Abrikosov lattice. H. F.
Hess et al. Bell Labs Phys. Rev. Lett. 62, 214 (1989).

These systems are, in fact, described by an energy (the Ginzburg-Landau
energy) and the associated PDEs, but we can show rigorously (in a study
started by Bethuel-Brezis-Hélein and continued by [SS], see also [Se1]) that,
in the case (1.2), the analysis of the vortices is reduced to the discrete
problems described above.

Another motivation is the analysis of vortices in classical fluids, such as
initiated by Onsager, see [MP], or in plasma physics.



4 SYLVIA SERFATY

(2) Fekete points in approximation theory: these points arise in interpolation
theory as the points minimizing interpolation errors for numerical integra-
tion. They are defined as those points maximizing the quantity∏

i6=j

|xi − xj |

or, equivalently, minimizing

−
∑
i 6=j

log |xi − xj |.

They are often studied on the sphere, or on other manifolds. In approx-
imation theory [SK] we are also interested in the minimization of Riesz
energies

(2.1)
∑
i 6=j

1

|xi − xj |s

for all values of s. One can show that, by letting s → 0, the minimizers of
Riesz energies converge to those of the logarithmic energy, whereas when
s → ∞ they converge to the minimizers of the optimal sphere packing
problem (whose solution in dimension 2 is known, from Fejes Tóth, to be
also the triangular lattice represented in Figure 2) It has been proved by

Figure 2. Solution of the sphere packing problem in dimension 2.

Hales that the solution of the same packing problem in dimension 3 is an
FCC (face-centered cubic) lattice, as was conjectured by Kepler. In higher
dimensions, the solution is only known in dimensions 8 and 24, due to a
recent breakthrough by Viazovska (see the presentation in [Coh] and the
review [Sl]). In high dimensions, where the problem is important for error
correcting codes, the solution is expected not to be a lattice.

(3) Statistical mechanics and quantum mechanics: In physics the ensemble
given by (1.7) in the Coulomb case is called a two-dimensional Coulomb
gas or one-component plasma and is a classical ensemble of statistical me-
chanics whose analysis is considered difficult due to the long range of the
interactions. The study of the two-dimensional Coulomb gas, as well as
the one-dimensional log gas, is also motivated by the analysis of certain
quantum wave-functions (fractional quantum Hall effect, free fermions in a
magnetic field, . . . ), and well as by several stochastic models in Probability,
cf. [Fo]. The variant of the two-dimensional Coulomb case with coexist-
ing positive and negative charges is interesting in certain theoretical physics
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models (XY-model, sine-Gordon) which exhibit a Kosterlitz-Thouless phase
transition (see [Spe]).

(4) Random matrices (see [Fo]): in the particular cases (1.5) and (1.2), the
Gibbs measure (1.7) corresponds, in certain instances, to the distribution
law of the eigenvalues of certain well known ensembles:
• the law of the complex eigenvalues of an N × N matrix where the

entries are Gaussian i.i.d. is (1.7) with (1.2), β = 2, and V (x) = |x|2.
This is called the Ginibre ensemble.

• the law of the real eigenvalues of an N × N Hermitean matrix with
complex Gaussian i.i.d. entries is (1.7) with (1.5), β = 2 and V (x) =
x2/2. This is called the GUE (unitary Gaussian) ensemble.

• the law of the real eigenvalues of an N × N symmetric matrix with
Gaussian i.i.d. entries is (1.7) with (1.5), β = 1 and V (x) = x2/2.
This is called the GOE (orthogonal Gaussian) ensemble.

(5) Complex geometry provides other examples of motivations. See, for in-
stance, the works of Robert Berman and co-authors.

3. The mean-field limit and theoretical physics

3.1. Questions. The first question that naturally arises is to understand the limit
as N →∞ of the empirical measure defined by

(3.1) µN :=
1

N

N∑
i=1

δxi

for configurations of points that minimize the energy (1.1), critical points, solutions
of the evolution problems presented above, or typical configurations under the Gibbs
measure (1.7), thus hoping to derive effective equations or minimization problems
that describe the average or mean-field behavior of the system. The term mean-
field refers to the fact that, from the physics point of view, each particle feels
the collective (mean) field g ∗ µN generated by all other particles. Convergence
in the mean-field sense is, thus, equivalent, in some sense, to the “propagation of
molecular chaos” (see [Go]). From the statistical mechanics point of view, we also
try to understand the temperature dependence of the behavior of the system and
the eventual occurrence of phase transitions.

3.2. The equilibrium measure. The energy (1.1) can be written as

HN (x1, . . . , xN ) = N2

(
1

2

∫∫
Rd×Rd\4

g(x− y)dµN (x)dµN (y) +

∫
Rd

V (x)dµN (x)

)
where 4 denotes the diagonal of Rd × Rd. Thus, it is natural to consider the
“continuum version” of the energy, namely:

IV (µ) :=
1

2

∫∫
Rd×Rd

g(x− y)dµ(x)dµ(y) +

∫
Rd

V (x)dµ(x).

It is well known from potential theory that, in the space of probability measures,
IV admits a unique minimizer, µV , which is called the equilibrium measure, and is
characterized by the fact that there exists a constant c such that

(3.2)

{
hµV + V ≥ c in Rd

hµV + V = c in the support of µV
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where

(3.3) hµV (x) :=

∫
Rd

g(x− y)dµV (y)

is the (electric) potential generated by µV . This is true for Coulomb and for Riesz
interactions, as well as for more general kernels. In the Coulomb case, the equi-
librium measure can be interpreted with the help of an obstacle problem (in the
Riesz case with a fractional obstacle problem), cf. [Se1, Chap. 2]. An example
is provided by Coulomb interaction (in any dimension) with confinement potential
V = c|x|2 : in this case we can verify that the equilibrium measure is always (a
multiple of the) characteristic function of a ball. In the context of the Ginibre
ensemble in Random Matrix Theory, this is known as the “circle law”. Another
important example is that of the logarithm interaction in dimension 1 with qua-
dratic potential V : the equilibrium measure has density

√
x2 − a21|x|<a, known, in

Random Matrix Theory, as the (Wigner) semi-circle law for the ensembles GOE
and GUE.

The energy IV is the “mean-field limit” of the energy HN , and one can show
without much difficulty that, for the minimizers of HN , the empirical measure
converges to µV , and 1

N2 minHN converges to IV (µV ).
We can interpret ∇(hµ + V ) as the total mean-force felt by a distribution with

density µ. Therefore, in view of (3.2) it is null for the minimizers. More generally,
we expect that the critical points of HN have a limiting empirical distribution
satisfying

(3.4) ∇(hµ + V )µ = 0.

For the dynamics (3), the formal limit of (1.9) or (1.10) is

(3.5) ∂tµ = −div (∇(hµ + V )µ),

or

(3.6) ∂tµ = −div (J∇(hµ + V )µ),

again with hµ = g ∗µ. In the case (1.2), (3.6) with V = 0 is also well known as the
vorticity form of Euler’s equation.

The difficulty in rigorously proving the convergence towards solutions of these
equations (whose well posedness also needs to be proved) consists in passing to the
limit in the products of the type ∇hµµ, which are nonlinear and, a priori, ill defined
in the energy space. In the case of (1.2) we can overcome these difficulties by the
reformulation of these terms introduced by Delort in the context of his works in
fluid mechanics, but this approach does not work in higher dimensions.

Until recently, all convergence results were limited to sub-Coulomb singularities
(s < d − 2) or to dimension 1. Recently, a modulated energy method developed
in [Se2] for the mean-field limit of the Ginzburg-Landau equations, based on the
stability of solutions of the limiting equations for the “Coulomb norm” (or “Riesz
norm”)

‖µ‖2 =

∫∫
g(x− y)dµ(x)dµ(y),

allowed for the treatment of Coulomb interactions and for more singular Riesz cases:

Theorem 1 ([Se3]). For the dynamics (1.9) and (1.10), for all d, and all s ∈
[d−2, d) in (1.6), or (1.5) or (1.2), the empirical measures converge to the solutions
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of (3.5) or (3.6), when N → +∞, provided these are sufficiently smooth and the
initial data energies converge to those of their limits.

This result was preceded by one by Duerinckx in dimension 1 and 2 for s < 1.
As far as (1.11) is concerned, the limiting equation is formally found to be the

Vlasov-Poisson equation

(3.7) ∂tρ+ v · ∇xρ+∇(hµ + V ) · ∇vρ = 0,

where ρ(t, x, v) is the density of particles at time t with position x and velocity
v, and µ(t, x) =

∫
ρ(t, x, v)dv is the density of particles. Notwithstanding recent

progresses, we do not yet know how to prove convergence of (1.11) to (3.7) when
the interaction is Coulomb or have an stronger singularity. About this topic, one
can consult the reviews [Jab, Go].

3.3. With temperature: statistical mechanics. Let us now consider (1.8) and
turn our attention to problem (2). It is known that even with temperature the
behavior of the system is still governed by the equilibrium measure. The result can
be phrased using the language of Large Deviations Principles, and states, essentially,
that if E is a subset of the space of probability measures, after identifying the
configurations (x1, . . . , xN ) in (Rd)N with their empirical measures, we have

(3.8) PN,β(E) ≈ e−βN
2(minE IV −min IV ),

which implies, due to the uniqueness of the minimizer µV of IV , that the configu-
rations for which the empirical measure do not converge to µV have a very small
probability. For example, in the case of matrices in GOE or GUE, for which the
equilibrium measure is the semi-circle law, we deduce as an application a corollary
of a result by Ben Arous and Guionnet: the probability that a GOE or GUE ma-
trix is definite positive (and thus, that all their eigenvalues are positive, which is
incompatible with the semi-circle law which is symmetric relative to 0) decreases

like e−cN
2

.
In other words, at this leading order, temperature does not affect the mean-

field behavior of the system. (This is not what happens if we replace β by β/N :
in this case we have a modified equilibrium measure which spreads out with the
temperature, minimizing βIV (µ) +

∫
µ logµ).

4. Beyond mean-field

In order to observe, for example, the effect of temperature (see Figure 3) it is
interesting to go beyond the mean-field limit: expanding the energy HN to next
order we have, at the same time, access to information about the typical microscopic
behavior of the configurations. Observe that, at the microscopic scale, the typical
distance between nearest neighbors is N−1/d.

4.1. Rigidity and Gaussian fluctuations. For minimizers of the energy HN or

of typical configurations under (1.7), since one already knows that
∑N
i=1 δxi−NµV

is small, one knows, for instance, that the so-called discrepancy in balls Br(x),
defined by

D(x, r) :=

∫
Br(x)

N∑
i=1

δxi −N dµV
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Figure 3. Case (1.2) with N = 100 and V (x) = |x|2, for β = 400
(left) and β = 5 (right).

is of order o(rdN), for fixed r > 0. It can be asked whether this estimation can be
refined, and if it remains true at mesoscopic scales, i.e., for r of order N−α with
α < 1/d, and for all temperatures. This would correspond to a rigidity result. We do
get such a result for the energy minimizers. For configurations with temperature, in
the context of bi-dimensional Coulomb interactions, we can prove a slightly different

form of such a result: it is true when we integrate
∑N
i=1 δxi −NµV not over a ball,

but against a sufficiently smooth test function. In this way we get an even more
precise result, since we can prove that these quantities converge to a Gaussian with
explicitly known mean and variance:

Theorem 2 ([LS2]). In case (1.2), let us assume that V ∈ C4 and µV has connected
support Σ with a regular boundary. Let f ∈ C3

c (Σ). Then

N∑
i=1

f(xi)−N
∫

Σ

f dµV

converges in law to a Gaussian with

mean =
1

2π

(
1

β
− 1

4

)∫
R2

∆f log ∆V variance=
1

2πβ

∫
R2

|∇f |2.

This result can be localized with test-functions f supported on any mesoscale N−α,
α < 1

2 . It is also true for energy minimizers, taking formally β =∞.

For an idea of the proof we suggest the lecture notes [Se4].
This result can be interpreted in terms of the convergence to a suitable Gauss-

ian free field, a sort of two-dimensional analogue of Brownian motion. Note that
a similar result was obtained by Bauerschmidt-Bourgade-Nikula-Yau, and it was
previously known for β = 2, and in the uni-dimensional logarithm case for all values
of β.

If f is sufficiently smooth, the associated fluctuations are typically of order 1,
i.e. much smaller than we could expect, for example comparing with the standard
Central Limit Theorem where the fluctuation of the sum of N i.i.d. random vari-
ables is typically of order

√
N . Proving this result in higher dimension or for more

general interactions remains an open problem.



SYSTEMS OF POINTS WITH COULOMB INTERACTIONS 9

4.2. Next order in the energy. As we pointed out above, the approach we em-
ploy (initiated with Etienne Sandier, and continued with Nicolas Rougerie, Mircea
Petrache, and Thomas Leblé) consists in studying the next order of the expansion
of the energy about the measure NµV , which is formaly the minimizer. Expanding

and using the characterization (3.2), the “order 1” terms in
∑N
i=1 δxi−NµV vanish

and we obtain

(4.1) HN (x1, . . . , xN ) = N2IV (µV ) + FµVN (x1, . . . , xN )

where
(4.2)

FµVN (x1, . . . , xN ) =
1

2

∫∫
4c

g(x− y)d
( N∑
i=1

δxi −NµV
)

(x)d
( N∑
i=1

δxi −NµV
)

(y),

and again 4 denote the diagonal Rd × Rd. This is a next-order expansion of HN
valid for arbitrary configurations.

The “next-order energy” FµVN can be seen as the total Coulomb energy of the
neutral system formed by the N positive point charges at the points xi and the
diffuse negative charge −NµV with the same mass. The goal is now to define a
limit of this energy when N → ∞, that will be the total Coulomb energy (per
unit volume) of an infinite system of positive charges and a (let us say) uniformly
distributed negative charge. In physics such a system is called a jellium. The
precise definition of this limiting energy is a bit complex, but it uses, in a crucial
way, the Coulomb nature of the interaction. In fact, since g is the kernel of the
Laplacian, we observe that if hµ = g ∗ µ is the electrostatic potential generated by
a charge distribution µ (with zero integral), then hµ solves Poisson equation

−∆hµ = cdµ,

which is a local elliptic PDE, and, aditionally, using the Gauss-Green formula, we
can write∫∫

Rd×Rd

g(x− y)dµ(x)dµ(y) = − 1

cd

∫
Rd

hµ∆hµ =
1

cd

∫
Rd

|∇hµ|2.

In another way, we can rewrite the interaction energy (which involves a double
integral) in the form of a single integral of a local function of the electrostatic
(or Coulomb) potential generated by this distribution, itself a solution of a local
equation. In Riesz’s case, these manipulations can be replaced by similar ones using
the fact that g is the kernel of an elliptic operator in divergence form, which is still
local.

With the help of this observation we succeed in defining an infinite volume energy
for an infinite configuration of points C neutralized by a distributed charge (let us
say −1), via the solutions of

−∆H = cd

∑
p∈C

δp − 1

 .

We shall denote this energy by W(C). When the configuration of points C is periodic
with respect to a lattice Λ, the energy W(C) has an explicit form: if there are M
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points ai in the fundamental cell we have (up to constants)

W(C) =
∑

1≤i6=j≤M

GT(ai, aj)

where GT is the Green function of the torus T := Rd/Λ.
We can show that W can be obtained as the limit (in a certain sense) of the

functional FµVN in (4.1). It also follows from an expansion to the next order of the
minimum of the energy HN and from the fact that, after dilation, the minimizers
of HN must converge (almost everywhere with respect to the origin of the dilation)
to a minimizer of W (see, for example, [Se1]).

We are therefore led to try to determine the minimizers of W. This problem is
extremely difficult, with the exception of the one dimensional case, where we can
prove that the minimum of W is attained by the lattice Z. In dimension 2 and
higher the problem remains open and the only positive result is the following:

Theorem 3. The minimum of W over lattices of volume 1 in dimension 2 is
achieved uniquely by the triangular lattice.

Here the triangular lattice means Z+Zeiπ/3, properly scaled, i.e., what is called
the Abrikosov lattice in the context of superconductivity. This partial result is, in
fact, a result from Number Theory, known since the 1950s, about the minimization
of Epstein’s zeta function (cf. [Mont] and references therein). It corresponds to
minimizing the height of a flat torus in Arakelov geometry.

Since the triangular lattice is observed in experiments with superconductors,
and since we have proved that the minimization of the Ginzburg-Landau energy of
the superconductor reduces to that of W [SS], it is natural to conjecture that the
triangular lattice is a global minimizer of the energy.

According to a conjecture of Cohn-Kumar, the triangular lattice should be a
universal minimizer in dimension 2 (i.e., should minimize a large class of interac-
tion energies). An analogous role is played in dimensions 8 by the lattice E8, and
in dimension 24 by the Leech lattice, which are the solutions of the optimal pack-
ing problem, as was recently proved [Coh]. In these dimensions the prove of the
universal minimization is near at hand.

In dimensions d ≥ 3 (except for d = 8 and d = 24), the minimization of W, even
among lattices, is an open problem. As before, we can think that this relative mini-
mum is global, but we expect this to be true only in low dimensions since computer
simulations provide clear indications that in dimensions d ≥ 9 the minimizers are
not lattices.

These questions belong to the more general family of crystallization problems
for which very few positive results are known once the dimension is larger than or
equal to 2 (cf. the review [BLe]).

4.3. Next order with temperature. In order to observe interesting temperature
effects, as well as for applications to random matrices, we must consider βN =
βN

2
d−1.

As we saw above, the macroscopic (or “mean-field”) behavior of the system does
not depend upon the temperature and is given by the equilibrium measure. In the
other hand, one shows that the microscopic behavior depends on the temperature
and is governed by a weighted sum of the energy W in the previous paragraph and
of a relative entropy. To formulate the result, one needs to dilate the configurations
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Figure 4. Simulation of the Poisson point process with intensity
1 (left), and of the Ginibre process (right)

by N−1/d, as in the previous paragraph, and consider the limiting point process P x

obtained by averaging near each point x. Here a point process is a law on infinite
configurations of points. For instance, Ginibre process is obtained by passing to
the limit N →∞ (after dilation) of the Ginibre ensemble; Poisson process Π with
intensity 1 corresponds to points thrown independently of each other in such a way
that the probability of having N(B) points in a set B is

Π (N(B) = n) =
|B|n

n!
e−|B|.

Thus, one defines a “specific relative entropy” with respect to the Poisson process,
denoted by ent[·|Π], that we can think of as measuring how much the process P is
close to Poisson.

For all β > 0, we define the functional Fβ

(4.3) Fβ(P ) :=

∫
Σ

β

2
W(P x) + ent[P x|Π]dx,

with P =
∫

Σ
P xdx. We can now formulate a large deviations result.

Theorem 4 ([LS1]). For all cases (1.5), (1.2) and (1.3) with d − 2 ≤ s < d, with
smooth assumptions on V and µV , and for all β > 0, we have a Large Deviations
Principle at speed N with rate function Fβ − inf Fβ, in the sense that

PN,β(PN ' P ) ' e−N(Fβ(P )−inf Fβ).

In this way, the Gibbs measure PN,β concentrates on microscopic point processes
which minimize Fβ . This minimization is due to a competition between energy and
entropy. When β → 0 the entropy dominates and we can prove that the limit
processes converge to a Poisson process. When β → ∞, the energy W dominates,
which, heuristically, forces the configurations to be more “ordered” and to converge
to the minimizers of W. Between these two extremes we have intermediate situa-
tions and to know if there is a critical β corresponding to a crystalization, or to a
liquid-solid phase transition (which is conjectured to take place for (1.2) in some
physics papers), is a problem that remains open. In dimension 1, on the other
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hand, due to the fact that we can identify the minimizers of W, it can be concluded
that a true crystallization result holds when temperature tends to 0.

One consequence of this result is to provide a variational interpretation for the
few known limiting processes: the so-called “sine-β” process, limit in the uni-
dimensional case (1.5), and the Ginibre’s process: they must minimize βW + ent.

We would like to obtain more information about the limiting point processes,
namely the behavior and decay of the “two-points correlation functions”, which
would shed light on the existence of phase transitions and crystallization. Unfor-
tunately, this theorem does not seem to provide much help for those problems.

As we have seen, many questions remain open, notably those of crystallization,
of identification of the minimizers and of the minima of W and Fβ , and of the
generalization of Theorem 2 to dimensions d ≥ 3, to Riesz interactions, and even
to more general interactions.
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